Distribution, transport and controlling factors of suspended sediment near Rizhao in the west of South Yellow Sea
-
摘要: 基于2020年10月日照近岸海域大潮期水文泥沙观测资料,研究了海流和悬浮泥沙时空分布特征,利用单宽通量机制分解等方法,探讨了悬浮泥沙输运机制和控制因素。结果表明,日照近岸海域悬浮泥沙浓度平面上呈由岸向海逐渐降低的分布特征,垂向上呈由表层至底层逐渐升高的趋势。悬浮泥沙浓度变化与潮周期流速变化趋势总体一致,但具有滞后效应。研究区单宽净输沙率为4.72~24.68 g/(s·m),近岸单宽净输沙率明显大于远岸输沙率。悬浮泥沙输运以平流输运为主,其次为潮泵效应或垂向净环流输运。研究区水体垂向混合均匀,对悬浮泥沙垂向分布影响微弱。潮流引起研究区悬浮泥沙浓度的潮周期变化,南黄海西部近海悬浮泥沙净输运方向和潮余流方向大体相同,在远岸开阔海域总体呈向南的净输运趋势。研究成果有利于完善南黄海西部近海泥沙输运规律理论成果,对日照近岸工程建设具有一定的指导意义。Abstract: In this paper, based on the hydrological and sediment observation data collected from the coastal area of Rizhao in October 2020 during the spring tide, the spatial and temporal distribution pattern of ocean current and suspended sediment are studied, and the transport mechanism and controlling factors of the suspended sediment discussed by means of single wide flux mechanism decomposition. The results show that the concentration of suspended sediment in the studied coastal area decreases gradually from shore to sea laterally, and increases gradually from top to bottom vertically. The variation trend of suspended sediment concentration is consistent with the velocity change of tidal cycle, except for the hysteresis effect. The net sediment transport rate per width in the study area varies between 4.72 and 24.68 g/(s·m), and the net sediment transport rate per width near shore is significantly higher than that offshore. The main transport of suspended sediment is advection, followed by tidal pump effect or vertical net circulation. The vertical mixing of water body in the study area is uniform, and its effect on vertical distribution of suspended sediment is rather weak. Tidal current is the major process to cause the tidal cycle change of suspended sediment concentration in the study area. The net transport direction of suspended sediment and tidal residual current are roughly the same in the west coast of the South Yellow Sea, and there is southward net transport trend in general in the far shore area of the open sea. The research results are beneficial to improve the theoretical results of sediment transport pattern in the west of the South Yellow Sea and have certain guiding significance to the engineering construction in the Rizhao coast.
-
Keywords:
- control factors /
- suspended sediment /
- transport mechanism /
- Rizhao /
- South Yellow Sea
-
碳循环由于其重大环境意义,一直得到国内外广泛重视和研究。长期以来,国内外关于碳循环的研究主要集中在大气圈、水圈和浅地表圈层[1-2]。然而,浅部圈层的碳循环并不会改变地表的碳总量[1,3]。来自地幔的岩浆作用和导致洋壳重返地幔的板块俯冲作用可以直接影响到地表碳总量[2]。因此,深部碳循环可能在改变地表(包括大气)碳组成和塑造宜居地球的过程中起到不可或缺的作用。通常认为,CO2在地幔熔融和岩浆过程中表现为强不相容性和挥发性组分[4],地幔通过部分熔融和岩浆作用向地表迁移了大量CO2。因此,在地质历史时期,火山活动可以明显影响全球碳总量[3]。有研究认为,全球火山作用(洋中脊、岛弧和板内火山)向地表释放的碳通量为约2.2×1012 mol/a[5]。另外,洋底也是一个重要碳汇,大洋俯冲带是直接将地表的碳带入地球深部的场所[1]。在地质历史时期,大洋板块俯冲构成了地表和地球内部之间的大规模物质交换,也很大程度上影响着地幔物质组成和全球碳循环[1-2]。另外,板块俯冲体系也伴有广泛的岛弧和弧后盆地岩浆活动,部分碳通过俯冲过程的脱碳和岩浆作用重返地表[2]。因此,板块俯冲过程是认识地表和深部相互作用及深部碳循环规律的关键所在。地球深部的碳可以参与地幔熔融和岩浆活动,CO2很大程度上改变了岩浆的物理化学性质[6-8],并可以形成高度富集稀土等元素的碳酸盐化岩浆,对一些重要元素的富集和火山岩成因有重要指示意义。
国际上近年来才开始认识到,除了大气和地表以外,地球内部可能也是一个巨大的碳储库。地球内部(地幔+地核)可能存储了大量的碳(占地球20%~80%)[4]。关于地球内部存在大量碳的推论,得到关于地幔深部来源岩浆作用研究和高压模拟实验研究的佐证或支持[5-6,9]。例如,高压实验显示,碳酸岩熔体具有极高的电导率,这可以解释在岩石圈底部出现的高电导率层[10];再如,含CO2系统的高压实验结果显示,CO2对一些低Si岩浆的成因可能起到至关重要的作用,尤其是以碳酸盐矿物为主的火成碳酸岩出现,进一步证实了地球内部存在碳富集带[11]。火成碳酸岩是一种十分少见的岩浆岩,通常具有高度富集的稀土等微量元素,被认为是认识地幔物质组成的重要“探针”[12]。然而,通常出现的火成碳酸岩组分很难直接由地幔熔融形成,这使得碳酸岩成因长期以来都是备受争议的焦点。
尽管目前国际上越来越重视深部碳循环在全球碳循环中的作用,但是关于地球深部碳的富集机制、赋存部位,以及碳在地球内部各圈层之间的交换规律,还存在很大争议[2,9,11,13]。尤其是CO2在岩浆过程中十分活跃[14],岩浆在岩石圈中迁移和火山喷发过程中会将大量的CO2释放。这使得很难根据岩浆组成直接判断CO2对岩浆成因的影响。由于俯冲板块的碳酸盐在一些金属同位素组成上与地幔存在差异,近年来,国内外兴起了通过金属同位素(如Mg、Zn、Ca等)示踪碳循环的大量研究[15-16]。富CO2岩浆的源区,或碳在地幔中的富集部位和赋存形式一直以来都不清楚。高压实验研究和天然火山岩地球化学研究显示,地幔转换带(410~660 km)可以是个重要的碳富集带[16-17];然而,也有研究认为,地球最重要的碳富集带是在浅部岩石圈内(地壳和岩石圈地幔),而不是深部地幔[2,18]。广泛的地质观测和室内实验显示,至少一部分碳可以通过俯冲带进入地幔深部。尽管基于火山岩的岩浆碳通量研究显示,板块携带的一部分碳在俯冲过程中通过脱碳和火山活动重返至地表圈层[2]。一些高温高压实验研究倾向于认为,俯冲板块大部分碳可以通过冷的俯冲带进入地幔,并导致地表碳的减少和地球深部碳的富集[17]。这使得板块俯冲过程中碳的地球化学行为成为认识地球内部碳富集和碳循环规律的重要切入点。
综上,深部碳循环是地球系统科学研究的重要切入点,也是认识地球内部组成和演化的重要方面,近年来已经成为国际研究的热点。近年来的深部碳循环研究,无论在室内高温高压实验、地球物理观测,或是在天然火山岩样品研究方面,都取得了新的认识和进展。这些研究结果对于认识地球内部碳的组成、岩浆过程中碳的地球化学行为等具有重要推动作用。由于板块俯冲和岩浆过程是碳循环的重要载体和途径,为了更好地理解近年来深部碳循环相关研究进展,本文将总结近年来关于深部碳循环与板块俯冲和岩浆过程关系的研究,以期更有效地掌握相关国际进展,针对性地解决关键科学问题。
1. 幔源岩浆的二氧化碳组成
CO2在地幔熔融过程中具有强不相容性,优先富集在熔体中。地质历史时期岩浆活动脱气作用可能是大气CO2组成的重要贡献之一。洋中脊玄武岩代表了地表60%的岩浆通量,也是CO2释放的主要来源。洋中脊玄武岩是来自软流圈地幔部分熔融的产物,其CO2组成可以反映软流圈地幔的组成。然而,玄武岩岩浆在迁移过程中由于减压会导致CO2的饱和,从而在岩浆减压过程中发生脱气作用,使得岩浆初始CO2丢失[19]。为了估算地幔或岩浆源区的CO2组成,通常方法是寻找与CO2在地幔熔融过程中不相容性相似的元素进行对比,例如,通常选择CO2与Ba或Nb的比值作指标。Ba和Nb不是挥发分,在岩浆过程中不受脱气作用影响,因此火山玻璃的CO2/Ba比值变化可以反映岩浆脱气作用是否发生[20]。通常在CO2不饱和的岩浆中,随着Ba的升高CO2会线性升高,因此岩浆不饱和阶段的CO2/Ba比值反映了岩浆源区的CO2的富集程度。高压结晶相内的包裹体可能未经历CO2脱气,可以更好地反映原始岩浆中的CO2组成[21]。
我们统计分析了全球主要洋中脊玄武岩的CO2组成,这些洋中脊包括东太平洋洋隆、大西洋和印度洋洋中脊。对贫CO2和Ba的MORB而言,二者具有较好的相关性,二者之间的比值大致反映了未脱气的原始岩浆的特征(图1)。这些洋中脊玄武岩的CO2含量多数为200~60 μg/g,CO2高于400 μg/g的玄武岩其CO2随Ba变化很小,这说明洋中脊玄武岩CO2达到了饱和(图1)。为了计算软流圈地幔的CO2组成,Cartigny 等根据中大西洋洋中脊玄武岩得出上地幔的CO2/Ba比值为106,从而计算得出上地幔软流圈CO2含量为427±45 μg/g,并根据CO2/Nb比值534,得出上地幔软流圈CO2含量为382±82 μg/g [22]。最近Michael和Graham [19]认为,洋中脊玄武岩的CO2/Ba基本恒定,而CO2/Nb比值随富集程度增加而明显增加,因此CO2/Ba作为计算地幔的CO2含量更为合适,根据CO2/Ba比值获得洋中脊玄武岩CO2平均为2 085 μg/g,其中远离地幔柱热点的N-MORB为1 840 μg/g,计算获得的N-MORB上地幔CO2为183 μg/g。Hauri等通过类似的方法,计算获得全球MORB地幔源区的CO2为182±59 μg/g[23]。尽管如此,一些洋中脊段的玄武岩也是异常富集CO2。如在胡安德富卡洋中脊出现了碎屑式喷发的玄武岩,其橄榄石内熔体包裹体组成显示原始岩浆的CO2含量可以达到3 900 μg/g,其CO2/Ba比值可达180[24]。北极附近的Gakkel洋脊玄武岩的CO2甚至可以达到9 159 μg/g[25]。这些结果表明,洋中脊下部软流圈在CO2组成上也是高度不均一的。实际上,软流圈内CO2组分的不均一性是认识上地幔地球化学不均一性的重要组成部分,也是重要的切入点之一。
图 1 玄武岩橄榄石熔体包裹体中CO2和Ba含量相关图图中虚线表示CO2与Ba的比值。JFR(Juan de Fuca Ridge)数据引自文献[24,27],Gakkel(Gakkel Ridge)数据引自文献[28,29],MAR(Mid-Atlantic Ridge)数据引自文献[20],Borarhraun数据引自文献[23],Hawaii数据引自文献[30],Azores数据引自文献[31],Iceland数据引自文献[21]Figure 1. Plot of CO2 content vs. Ba abundance for melt inclusions from a basalt olivineDashed lines show constant CO2/Ba ratios. The data of JRF(Juan de Fuca Ridge) is from references[24,27], the data of Gakkel(Gakkle Ridge) from references[28,29], the data of MAR (Mid-Atlantic Ridge) from reference[20],the data of Borarhraun from reference[23],and the data of Azores from reference[31],the data of Iceland from reference[21]另外,我们也统计了典型洋岛玄武岩橄榄石包裹体的CO2组成,包括冰岛、夏威夷海山链、亚速尔海山链(图1),结果表明,大部分洋岛玄武岩的CO2与Ba相关性不好,例如夏威夷的Ba变化不大,而CO2变化范围较大,这些反映了CO2饱和后的脱气作用影响(图1)。Anderson和Poland对夏威夷玄武岩展开研究,发现夏威夷玄武岩源区地幔的CO2为962 μg/g,远高于MORB的地幔源区(约400 μg/g)[26]。Miller等对来自冰岛的玄武岩熔体包裹体研究,发现熔体包裹体具有很高的CO2/Ba比值(396±48),计算获得其地幔源区的CO2为>690 μg/g,计算获得其富集地幔端元的CO2为1 350±350 μg/g[21]。这个估计值几乎高出MORB亏损地幔的10倍。实际上,大多数研究都认为,洋岛玄武岩普遍具有比洋中脊玄武岩高的CO2/Ba比值。一般洋岛玄武岩起源于软流圈之下更深的地幔源区,达到下地幔甚至核幔边界深部,这说明软流圈以下的深部地幔相对浅部地幔是一个更为重要的碳储库。
2. 深部碳富集带
2.1 地幔转换带
固体地球科学研究中,对上地幔底部250 km(410~660 km)厚度范围的认识是上地幔研究中认识最浅薄的(图2)[16]。这里是上、下地幔的过渡带,存在密度差异,这使得俯冲板块可能较长时间(如100 Ma)停留在转换带附近。地球物理层析成像往往在转换带附近探测到速度异常,可能代表了俯冲板片的残留。例如,在俯冲带众多的西太平洋和中国大陆东部下部被认为存在俯冲残留的古太平洋板块[32-33]。板块俯冲可能将大洋板块的一部分碳酸盐带入到地幔深部(图2)[16]。携带碳酸盐的俯冲板片很可能在上地幔底部(或地幔转换带)发生低程度部分熔融,这就会产生富集CO2的碳酸盐熔体,并与俯冲板片分离[17]。分离出来的碳酸盐熔体可能在上地幔深部汇集,构成低速异常。另一方面,高温高压实验研究认为,地幔橄榄岩在高压下(>20 GPa)可以产生还原环境,这是由于其中的Fe2+在高压下会发生歧化反应,并产生一定的Fe0(图2)[34]。如果碳酸盐熔体从板片中脱离出来,会与周围还原性Fe0发生反应形成金刚石,将碳以金刚石形式固定在地幔转换带。地幔转换带接受越多的俯冲板块,就可能聚集越多的碳(金刚石形式)。
另一方面,地幔转换带富集的碳也可能因为板块俯冲之外的因素而获得。由于金刚石在上地幔底部和下地幔中可以稳定存在,而金刚石也可能因为早期地幔演化而形成[35]。例如,在地球演化初期的地幔分异过程中,深部还原性地幔中就可以产生金刚石。由于金刚石相对上地幔较高的平均密度而倾向于滞留在上地幔深部,而在下地幔中金刚石具有相对较低的密度,从而倾向于聚集在下地幔的顶部[35]。因此使得原始地幔中产生的金刚石长期停留在地幔转换带附近。
地幔转换带是潜在重要碳储库,得到了来自深部上地幔低程度熔体的进一步佐证。中国东部新生代以来形成了大量的板内火山岩,多为贫硅碱性火山岩[36]。这些低硅的火山岩最可能来源于CO2的参与,因为CO2参与下的地幔熔融可以使得熔体具备低硅的特征。最近关于中国东部新生代板内玄武岩Mg同位素的研究,也显示源区有CO2的作用[16]。俯冲板块携带的碳酸盐具有较轻的Mg同位素比值,这就使得地幔熔融产生的玄武岩熔体携带了再循环碳酸盐的信息。李曙光等发现中国东部普遍具有相对上地幔较低的Mg同位素比值,认为这反映了地幔中存在再循环洋壳来源的碳酸盐[16]。
2.2 岩石圈底部
岩石圈底部可能也是巨大的碳储库[18,37]。碳酸盐化的熔/流体与冷的地幔岩之间是不平衡的,二者之间可以发生交代反应,反应的结果使得碳交代富集于岩石圈之中[38-39]。地幔中的CO2主要由两种方式上涌,一种是对流上地幔,另一种是来自深部的上地幔物质(如地幔柱)。无论是大陆岩石圈还是大洋岩石圈,二者都是由于软流圈冷凝向固态岩石圈转换的结果。在软流圈上部地幔熔融程度较低,富集CO2的熔体或流体,会上涌交代上部的岩石圈。同样,地幔柱上涌的过程中也可以导致岩石圈发生富碳作用,尤其是地幔柱前缘的熔体常携带CO2与岩石圈发生交代反应产生碳酸盐化的岩石圈地幔。这两种来自地幔CO2熔体的交代富集作用会由于地质时间而逐渐累积,使得越老的岩石圈富集的碳也越多[18]。大陆岩石圈年龄一般在20~30亿年,明显老于目前最老的大洋岩石圈(不超过2亿年)。大陆底部累积的碳总量远超过大洋岩石圈。
大陆下部存在碳富集带可以由广泛的大陆裂谷岩浆活动而体现出来。东非裂谷带是全球最主要的火成碳酸岩分布区,占据全球30%的碳酸岩岩浆[12]。这可能是由于大陆裂解过程中软流圈上涌,将大陆岩石圈底部的碳酸盐化岩浆活化,从而形成碳酸岩岩浆。除了碳酸岩分布以外,东非裂谷断层裂隙内也有广泛的CO2逸出,这也构成了深部碳循环不可或缺的一环[40]。这些现象都说明大陆岩石圈是个重要的碳储库。根据大陆岩石圈的增长和演化,岩石圈下部的碳富集可以分为3个阶段:初始形成过程中的碳富集、大陆演化过程中熔体交代碳富集以及地幔柱穿过岩石圈活动过程的交代富集[18]。据估计,大陆岩石圈初始形成时的碳含量为0.25 Mt C/km3; 在第二阶段,来自对流上地幔的碳可达14~28 Mt C/km3; 在第三阶段,地幔柱活动富集碳可达43 Mt C/km3。作为一个巨大的碳储库,大陆裂解过程可以向地表释放大量CO2。可以推测,地球演化历史过程中大陆裂解和重组可以使得大量碳释放至地表,对地表的总碳以及大气环境可能产生重要影响。
大陆岩石圈中碳的存在形式依赖于岩石圈的厚度和氧逸度。一般而言,地幔岩在较高压力下具有较强的还原性。岩石圈地幔中的碳在>150 km的深度下,可以还原为金刚石[41]。来自深部地幔的板内火山岩中的地幔捕掳体,其中的地幔岩的捕掳体(榴辉岩或橄榄岩)可以含有碳酸盐,也可能含有金刚石。例如,对来自非洲的金伯利岩中出现的金刚石研究,显示岩石圈深部的碳可以大量以金刚石形式存在[42-43]。目前发现的火山岩中的金刚石,基本上都是来自岩石圈,只有极少量是来自岩石圈下的对流地幔[41]。地幔中上涌的碳酸盐化熔体与橄榄岩反应,形成碳酸盐化的地幔岩使得岩石圈浅部碳主要以碳酸盐形式存在。实际上,上涌的碳酸盐熔体/流体可以是氧化性的,也可以是还原性的。一般认为,岩石圈中金刚石的形成大多是由于来自还原性流体(如CH4)与地幔岩的反应。
2.3 下地幔
上地幔上部通常被认为是氧化环境,俯冲板块携带的碳酸盐可能在上地幔中参与熔融,从而返回至地表。常在金刚石中发现的碳酸盐矿物说明,板块俯冲可以将碳酸盐带到至少转换带的深度。然而,关于板块俯冲是否将一部分碳带入下地幔,以及碳在下地幔的存在形式,都还存在很大争议。例如,Kelemenhe和Manning [2] 认为每年俯冲进入地幔的碳为0.0001~52 Mt。尽管如此,冷的板块俯冲有助于将碳酸盐携带至地球更深处,而且越深的地幔越有助于碳酸盐与周围地幔反应,并将碳酸盐转化为金刚石或碳化物。如果这些来自板块俯冲的碳被携带至核幔边界附近,则碳会经历多个相态转变,最终存在形式受地核附近的金属铁等控制[4]。俯冲板块的碳是否进入下地幔深部,这决定于地幔的温度、压力、氧逸度和碳存在形式。在较高的压力下俯冲板块的碳酸钙可以与硅酸盐反应,并转换为更加稳定的菱镁矿(MgCO3),而菱镁矿会随板块俯冲至更大的深度,甚至可能到达下地幔或地核[44]。高压实验显示二价铁在高压下可以通过歧化反应产生Fe0,如果是在下地幔底部和地核附近,则会存在大量金属铁[34,44]。因此,在更大的下地幔深度会使得俯冲碳酸盐转换为金刚石或金属碳化物,从而将其固定到地球深部。
3. CO2对岩浆的成因贡献
CO2是一种具有高度不相容性的组分,无论浅部岩石圈还是地幔转换带的碳,只要参与地幔熔融就会对岩浆组分产生重要影响,并可能对岩浆起源起到关键作用[14]。CO2对地幔深部熔融和岩浆起源可能有着十分重要的意义。有研究认为,软流圈初始熔融开始于300 km以上。软流圈深部(>300 km)的初始熔融深度可能与CO2活动有关。低压下CO2在岩浆中的溶解度很低,幔源岩浆在迁移上升过程中的减压脱气通常使岩浆脱去大部分CO2。近年来,室内高温高压实验在认识CO2对岩浆成因影响机制上做出了巨大贡献。高温高压实验结果显示,在CO2作用下,上地幔深部可以发生低程度部分熔融并形成碳酸岩岩浆,随着熔融程度升高可以演化成为碳酸盐化的硅酸岩岩浆[6,13],这种碳酸盐化的岩浆具有贫硅(硅不饱和)、富磷和轻稀土、亏损高场强元素等特征[7,45]。自然界出现的大部分火成碳酸岩都是以碳酸钙为主,并不符合高温高压实验结果。这些火成碳酸岩常常与碱性火山岩伴生,说明二者之间又具有密不可分的成因联系。尽管火成碳酸岩与碱性玄武岩在主、微量元素组成上存在巨大差异,但在同位素组成上体现出同源性[46],二者之间的成因联系一直没有得到很好的解释。这种火成碳酸岩可能的起源有:直接来自地幔部分熔融,来自岩浆的分离结晶过程,或者来自于母岩浆的液相不混溶[46]。然而,最近中国南海大洋钻探岩芯研究发现,南海海盆扩张停止后在残留脊形成了化学组成符合碳酸盐化硅酸岩岩浆的火山岩,并连续演化为碱性玄武岩[14]。这表明碳酸盐化岩浆演化过程中通过脱去CO2,自身可以直接连续演化成为大洋碱性玄武岩。
大洋板内海山的基底主要由碱性玄武岩组成。通常被认为形成于地幔柱的大洋海山链(如夏威夷海山链[47-48]、卡洛琳海山链[49]等)也常存在碱性玄武岩。虽然CO2常被认为可以构成幔源岩浆的重要组分,但目前发现的大洋火成碳酸岩只有两处(Cape Verde岛和Canary岛[11]),而且大洋碱性玄武岩的CO2含量通常也很低。尽管如此,大洋碱性玄武岩也体现出其源区富集CO2的特征。碱性玄武岩早期结晶的矿物(如橄榄石)中常出现富集CO2的熔融包裹体[50],全岩具有高CaO、低SiO2等与碳酸盐化岩浆相似的特征,以及碱性玄武岩的地幔岩捕掳体中常出现碳酸岩熔体交代的现象[51]等,这说明一些大洋碱性玄武岩的成因与CO2密切相关。目前,国内外关于碳酸盐化岩浆与大洋碱性玄武质岩浆的成因关系的认识仍远为不足。
研究幔源岩浆与CO2的成因联系涉及到CO2的来源。导致地幔CO2富集的最可能原因是大洋板块俯冲[17]。大洋板块(洋壳和沉积物)含有大量沉积碳酸盐,且沉积碳酸盐可以通过较冷的俯冲带进入地幔深部[2,17]。俯冲-再循环的大洋地壳可能是构成地幔不均一性的重要组分,常用来解释一些大洋板内火山的成因。俯冲-再循环洋壳也可能是一些地幔柱的主要来源,可以形成有年龄序列的典型大洋海山链[49,52-53](如夏威夷海山链)。如果大洋板块俯冲将地表碳酸盐带入地幔深部,则CO2在再循环洋壳重返地表并熔融形成海山链的过程中可能起到重要作用。
4. 板块俯冲过程的碳循环
大洋板块是地表过程的重要碳汇,而且是深部碳循环的一个重要碳源(图3)[54]。碳酸钙从海水中沉淀形成大洋沉积物中碳酸盐,大量钙质生物壳体的沉积作用也是大洋碳酸盐的重要来源。另外,大洋地壳中也广泛存在着碳酸盐,主要是由于大洋裂隙中的低温热液流体循环沉淀碳酸盐导致[55]。大洋浅水沉积物中往往存在大量碳酸盐,在碳酸盐补偿深度以浅的碳酸盐可占沉积物体积分数的50%以上。然而,深水沉积物中大部分初始沉积的碳酸盐会溶解,从而使得俯冲沉积物的碳酸盐大量减少。然而,玄武质洋壳裂隙内的碳酸盐随着洋壳年龄增长逐渐增多[54]。据估计,洋壳中的碳酸盐可占洋壳组分的1%~2%,这主要是根据洋壳上层玄武岩岩芯得出的结论[54-55]。因此大洋沉积物和洋壳玄武岩构成了俯冲板块的主要碳载体。目前,对深部岩石圈地幔的碳组成仍存在较多未知(图3)。
大洋板块俯冲是地球深部碳循环的重要一环,板块携带的碳酸盐在俯冲带中的行为很大程度上控制着地球内外的碳收支平衡(图3)[2]。通常认为,以碳酸钙为主的碳酸盐矿物在俯冲带容易发生脱碳反应而释放CO2[56]。一般认为,携带碳酸盐的沉积物在俯冲带先发生脱水再发生部分熔融作用,其中沉积物熔融使得碳酸盐释放出CO2,并参与到岛弧岩浆活动,释放了大部分板块俯冲携带的碳(图3)[57]。实际上,自然界的碳酸盐大多含有一定的Mg或Mn等元素[58-59]。高压实验结果显示,富Mg的碳酸盐相对碳酸钙而言不易在俯冲带发生脱碳反应[44],这可能使得至少一部分含Mg碳酸盐可以通过俯冲带返回至地幔中。另外,俯冲板块年龄和俯冲起始后的不同阶段对碳酸盐的活动性也有较大影响。对于年轻板块俯冲而言,俯冲带具有较高的温度,这使得碳酸盐容易在俯冲带浅部发生熔融和脱碳。对于初始俯冲阶段的俯冲带而言,俯冲碳酸盐也倾向于熔融脱碳,并使其参与到岩浆活动中。对于老的板块俯冲和成熟的冷俯冲带而言,碳酸盐倾向于稳定于更大的深度,甚至被还原为更稳定的单质碳(金刚石)(图2),随着板块俯冲进入地幔深部[60]。
关于板块俯冲携带碳进入地幔转换带的通量,目前还存在很大争议(图3)。但是,如果碳酸盐俯冲进入深部地幔,会很大程度上影响到板块的性质,其中俯冲板块的碳也受到深部地幔中氧逸度变化的影响[34,60-61]。通常来说,俯冲带浅部和上地幔浅部的氧逸度较高(适用于Fe2+/Fe3+氧逸度计)(图2),其中的碳主要以碳酸盐或CO2形式存在。携带碳酸盐的俯冲板片在一定深度会发生部分熔融[17],发生熔融的深度与板片冷热有关,越热的板片发生部分熔融的深度越浅。板片产生的碳酸盐化熔体将与板片分离,分离的碳酸盐化熔体在浅部软流圈深度形成碳酸盐化的硅酸盐熔体,随着深度增加形成碳酸盐熔体。在更大的深度,熔融产生的碳酸盐熔体会与周围的地幔橄榄岩还原环境发生反应(氧逸度受Fe0-FeO控制),并将碳酸盐熔体的碳还原为单质碳[17]。综上,俯冲板片在上地幔深度发生部分熔融后,阻止了碳的进一步俯冲。也有研究认为,俯冲板片在岛弧下部就发生了部分熔融,使得板片来源的CO2参与到岛弧岩浆活动返回地表,或交代岛弧下部的地幔楔。
5. 存在的问题和未来研究展望
由于深部碳循环影响到地表系统的碳总量,并对地球系统科学的建立有着关键作用,因此逐渐得到了地球科学界的广泛重视。室内高温高压实验在深部碳的存在形式、地幔熔融和岩浆过程中碳的地球化学行为等方面做出了重要贡献。由于地质活动过程中的碳非常活跃,通过天然样品研究深部碳循环存在诸多局限性。尽管如此,自然界除了有以钙质火成碳酸岩为主的岩浆岩以外,一些岩浆的形成也需要源区有CO2的参与来解释,岩浆早期结晶矿物中也往往携带了地幔来源的未脱气的碳组分。尤其是一些岩浆或俯冲循环板块中携带了来自深部的金刚石,这些都是开展深部碳循环研究的重要切入点。未来的深部碳循环研究需要将室内高温高压实验与天然样品的研究结合起来,下面列出未来深部碳循环研究存在的主要问题和研究展望:
(1)碱性火山岩与地幔深部CO2的成因联系。低熔融程度有利于富碱金属火山岩的形成,然而,低熔融程度也会使CO2在熔体中高度富集。火成碳酸岩非常少见,但是碱性火山岩很常见,碱性火山岩成因与初始富CO2熔体的成因联系一直存在争议。高度贫硅的碱性火山岩很难由单纯的低熔融程度来解释,导致这些贫硅碱性火山岩形成的原因不仅需要低的熔融程度,更需要CO2在源区起关键作用。未来需要着重研究初始富集CO2的岩浆如何脱碳、如何转化为碱性火山岩。
(2)板块俯冲过程中碳的地球化学行为。碳酸盐矿物在板块俯冲过程中可能会与其他矿物反应而脱碳,也可能参与到板片熔融贡献于岛弧或弧后盆地火山活动,或随着板块俯冲进入地幔深处。俯冲板块中碳的这些行为受到俯冲带热状态、俯冲板块年龄、俯冲带氧逸度等因素的影响。未来需要精确模拟俯冲带的温压条件和氧逸度及其对碳行为的影响。
(3)地幔深部碳的存在形式。如果地幔深部存在一个碳储库,这些碳的存在形式不仅受到温压条件,而且受到氧逸度的影响。近年来,逐渐认识到地幔橄榄岩在高压条件下主要体现为还原环境,可以使得碳以还原态的金刚石(石墨)或金属碳化物形式存在。但是,碳酸盐在金刚石中以包裹体形式的出现说明地幔深部也可能存在氧化态的碳。实际上,地幔体现出的组成不均一性可能反映了再循环组分(如再循环洋壳)的存在,碳在这些复杂的地幔组分影响下的存在形式是未来值得研究的重要科学问题。
(4)火成碳酸岩与大陆岩石圈碳储库之间的成因联系。地球上的火成碳酸岩以碳酸钙为主,而绝大部分火成碳酸岩都出露在陆地上,尤其是在大陆裂谷附近。然而,这些碳酸岩并不符合高压实验研究产生的富Mg原始碳酸岩组成,而更像是来自大陆岩石圈底部的碳储库。大洋中出现的以碳酸钙为主的碳酸岩距离非洲大陆不远,也可能来自大陆底部的岩石圈碳储库。未来需要开展大陆火成碳酸岩的成因研究及其与大陆底部岩石圈碳储成因联系研究。
(5)地幔转换带中的碳储库。地幔转换带是上、下地幔转换的过渡带,大量俯冲板块在此滞留可能也导致了碳的富集。地幔转换带附近的碳很可能通过参与地幔氧化还原熔融而参与到板内岩浆活动中。未来值得通过开展来自滞留板块的板内火山岩成因研究(如中国大陆东部碱性火山岩),来检验地幔转换中碳的作用。
(6)板块俯冲和火山活动导致的碳通量。对于地表系统而言,板块俯冲将地表的碳带入地幔中,而火山活动(洋中脊、岛弧、板内火山活动)增加了地表的碳总量。在地质历史时期,二者导致的地球内外碳通量决定了地球上碳的分布和地表碳总量。目前关于板块俯冲和火山活动对地表碳总量的影响还存在较大争议。未来工作需要针对代表性俯冲带、洋中脊和板内火山开展系统的碳通量研究工作。
-
表 1 各站位海流观测结果
Table 1 Marine current observation results at each station
涨潮 落潮 站位 层位 最大 平均 最大 平均 流速/(cm/s) 流向
/(°)流速/(cm/s) 流向
/(°)流速/(cm/s) 流向
/(°)流速/(cm/s) 流向
/(°)1# 表层 78.78 274.2 51.69 223.14 67.93 108.4 45.03 68.19 中层 66.50 294.5 46.22 239.22 56.21 97.1 41.26 58.04 底层 53.43 271.3 32.06 233.10 40.90 91.3 29.89 59.91 2# 表层 94.56 277.9 55.50 216.15 77.60 134.1 50.55 65.71 中层 92.17 351.7 55.36 242.51 69.24 181.6 42.47 66.52 底层 63.54 267.2 44.16 228.07 44.79 123.3 28.25 69.73 3# 表层 105.80 345.9 58.30 255.99 75.60 152.5 52.13 74.80 中层 89.95 336.9 55.27 256.61 77.48 120.0 53.53 61.68 底层 67.35 355.1 32.76 267.59 45.89 113.9 28.50 47.94 4# 表层 96.21 279.0 58.30 254.57 79.06 105.6 49.91 60.66 中层 85.10 303.0 52.24 261.03 75.26 135.5 47.65 59.28 底层 61.33 277.0 34.50 248.25 67.88 103.9 31.84 61.78 5# 表层 83.70 347.5 53.89 260.53 52.00 144.3 38.11 70.11 中层 78.60 320.4 51.30 257.51 44.60 140.9 33.85 63.83 底层 57.10 308.1 33.22 251.34 31.70 135.5 20.36 90.33 表 2 各站位垂向余流特征值
Table 2 Vertical residual power flow characteristic values at each station
站位 表层 中层 底层 流速/(cm/s) 流向
/(°)流速/(cm/s) 流向
/(°)流速/(cm/s) 流向
/(°)1# 10.1 107.0 7.5 56.6 6.6 71.9 2# 4.9 140.8 4.7 193.9 5.6 198.6 3# 3.8 264.5 5.4 312.4 3.4 324.5 4# 8.9 14.6 8.7 15.8 5.5 34.6 5# 3.3 297.0 2.5 279.7 3.9 241.3 表 3 各海流观测站位平均悬浮泥沙浓度垂向变化统计
Table 3 Statistical table of vertical variation of average suspended sediment concentration at each current observation station
mg/L 站位 1# 2# 3# 4# 5# 表层 34.92 12.92 12.62 30.55 12.67 中层 44.61 19.06 16.30 39.12 17.61 底层 63.00 38.25 35.32 59.61 35.19 表 4 悬浮泥沙浓度特征值
Table 4 List of characteristic values of suspended sediment concentration
mg/L 表层 中层 底层 最小值 14.79 19.43 33.25 最大值 45.22 53.85 85.53 平均值 23.97 30.22 50.19 表 5 1#、3#、4#站位温度、盐度特征值
Table 5 The characteristic values of temperature and salinity at stations 1, 3 and 4
站位 温度/℃ 盐度/PSU 最小值 最大值 平均值 最小值 最大值 平均值 1# 20.01 20.51 20.29 28.45 28.65 28.57 3# 20.93 21.28 21.10 28.99 29.31 29.15 4# 18.66 20.32 19.54 26.85 28.02 27.44 表 6 大面站温度、盐度特征值
Table 6 Table of characteristic values of temperature and salinity of the main surface station
层位 温度/℃ 盐度/PSU 最小值 最大值 平均值 最小值 最大值 平均值 表层 18.70 21.22 20.07 27.38 29.69 28.60 中层 18.30 21.23 20.08 27.46 29.70 28.61 底层 18.42 21.23 20.09 27.49 29.68 28.63 表 7 悬浮泥沙输运项及单宽净输沙率
Table 7 Suspended sediment transport items and net sediment transport rate per width
站位 输沙项 T1 T2 T3+T4 T5 T6+T7+T8 T1+T2 T总 1# 输沙率/(g/(s·m)) 30.38 9.82 5.31 2.15 0.47 24.46 19.12 方向/(°) 80.09 214.97 232.65 308.18 31.32 96.62 103.02 2# 输沙率/(g/(s·m)) 7.90 8.39 0.37 3.75 1.06 11.64 13.42 方向/(°) 128.20 217.06 178.32 234.00 42.02 174.31 184.97 3# 输沙率/(g/(s·m)) 7.66 7.11 2.10 2.13 1.21 7.33 9.11 方向/(°) 335.83 215.20 232.30 340.35 49.06 279.22 286.92 4# 输沙率/(g/(s·m)) 38.96 9.95 7.34 1.98 0.55 30.25 24.68 方向/(°) 25.47 230.62 248.42 187.12 48.33 17.44 5.61 5# 输沙率/(g/(s·m)) 4.36 3.75 1.70 1.97 0.43 4.45 7.62 方向/(°) 304.62 190.64 241.68 234.14 50.10 254.26 247.69 表 8 各悬浮泥沙输运项在单宽净输沙率中占比
Table 8 Proportion of suspended sediment transport terms in net sediment transport rate per width %
站位 T1 T2 T3+T4 T5 T6+T7+T8 T1+T2 1# 158.88 51.37 27.77 11.26 2.47 129.72 2# 58.88 58.88 2.76 27.98 7.92 86.73 3# 84.12 78.13 23.06 23.39 13.34 80.52 4# 157.89 40.31 29.73 8.04 2.22 122.6 5# 57.27 49.24 22.36 25.86 5.68 58.42 注:各悬浮泥沙输运项为具有方向的矢量值,因此,部分悬浮泥沙输运项在净输沙率中占的比例大于100%。 表 9 各站位涨落潮悬浮泥沙输运通量
Table 9 Suspended sediment transport at each station at ebb and flow tide
站名 输沙率/(g/(s·m)) 输沙方向/(°) 涨潮 落潮 涨潮 落潮 1# 207.86 153.78 229.68 60.97 2# 189.41 111.06 238.50 69.08 3# 212.53 104.16 252.23 59.36 4# 290.63 205.09 255.72 59.24 5# 150.73 71.60 248.22 63.59 -
[1] Bian C W, Jiang W S, Quan Q, et al. Distributions of suspended sediment concentration in the Yellow Sea and the East China Sea based on field surveys during the four seasons of 2011 [J]. Journal of Marine Systems, 2013, 121-122: 24-35. doi: 10.1016/j.jmarsys.2013.03.013
[2] Bouchez J, Gaillardet J, France-Lanord C, et al. Grain size control of river suspended sediment geochemistry: clues from Amazon River depth profiles [J]. Geochemistry, Geophysics, Geosystems, 2011, 12(3): Q03008.
[3] Bian C W, Jiang W S, Greatbatch R J, et al. The suspended sediment concentration distribution in the Bohai Sea, Yellow Sea and East China Sea [J]. Journal of Ocean University of China, 2013, 12(3): 345-354. doi: 10.1007/s11802-013-1916-3
[4] Ma M, Feng Z, Guan C, et al. DDT, PAH and PCB in sediments from the intertidal zone of the Bohai Sea and the Yellow Sea [J]. Marine Pollution Bulletin, 2001, 42(2): 132-136. doi: 10.1016/S0025-326X(00)00118-1
[5] Zhang J, Liu S M, Xu H, et al. Riverine sources and estuarine fates of particulate organic carbon from North China in late summer [J]. Estuarine, Coastal and Shelf Science, 1998, 46(3): 439-448. doi: 10.1006/ecss.1997.0277
[6] 韦钦胜, 刘璐, 臧家业, 等. 南黄海悬浮体浓度的平面分布特征及其输运规律[J]. 海洋学报, 2012, 34(2):73-83 WEI Qinsheng, LIU Lu, ZANG Jiaye, et al. The distribution and transport of suspended matter in the Southern Huanghai Sea [J]. Acta Oceanologica Sinica, 2012, 34(2): 73-83.
[7] 刘芳, 黄海军, 郜昂. 春、秋季黄东海海域悬浮体平面分布特征及海流对其分布的影响[J]. 海洋科学, 2006, 30(1):68-72 doi: 10.3969/j.issn.1000-3096.2006.01.014 LIU Fang, HUANG Haijun, GAO Ang. Distribution of suspended matter on the Yellow Sea and the East China Sea and effect of ocean current on its distribution [J]. Marine Sciences, 2006, 30(1): 68-72. doi: 10.3969/j.issn.1000-3096.2006.01.014
[8] 蔡德陵, 石学法, 周卫健, 等. 南黄海悬浮体和沉积物的物质来源和运移: 来自碳稳定同位素组成的证据[J]. 科学通报, 2003, 48(S1):21-29 doi: 10.1007/BF02900936 CAI Deling, SHI Xuefa, ZHOU Weijian, et al. Sources and transportation of suspended matter and sediment in the southern Yellow Sea: evidence from stable carbon isotopes [J]. Chinese Science Bulletin, 2003, 48(S1): 21-29. doi: 10.1007/BF02900936
[9] 范恩梅, 陈沈良, 张国安. 连云港海域水文泥沙运动特征[J]. 世界科技研究与发展, 2009, 31(4):703-707 doi: 10.3969/j.issn.1006-6055.2009.04.040 FAN Enmei, CHEN Shenliang, ZHANG Guoan. The hydrological and sediment characteristics in Lianyungang coastal waters [J]. World Sci-Tech R & D, 2009, 31(4): 703-707. doi: 10.3969/j.issn.1006-6055.2009.04.040
[10] 郭瑜璇. 渤、黄、东海悬浮物传输过程和机制的数值模拟[D]. 自然资源部第一海洋研究所硕士学位论文, 2019. GUO Yuxuan. Numerical simulation of suspended sediment transport process and its mechanism of the Bohai Sea, Yellow Sea and East China Sea[D]. Master Dissertation of the First Institute of Oceanography, 2019.
[11] 庞重光, 杨扬, 刘志亮. 黄东海悬浮泥沙输运结构及其形成机制[J]. 泥沙研究, 2010(3):24-30 PANG Chongguang, YANG Yang, LIU Zhiliang. Transportation pattern of suspended sediment and its forming mechanism in the Yellow and East China Sea [J]. Journal of Sediment Research, 2010(3): 24-30.
[12] 余佳, 王厚杰, 毕乃双, 等. 基于MODIS L1B数据的黄海悬浮体季节性分布的反演[J]. 海洋地质与第四纪地质, 2014, 34(1):1-9 YU Jia, WANG Houjie, BI Naishuang, et al. Seasonal distribution and variation of suspended sediment in the Yellow Sea in 2010 based on retrieved monthly data from Modis L1B imagery [J]. Marine Geology & Quaternary Geology, 2014, 34(1): 1-9.
[13] 李文建, 王珍岩, 黄海军. 夏季南黄海悬浮体粒度分布及其影响因素[J]. 海洋地质与第四纪地质, 2020, 40(6):49-60 LI Wenjian, WANG Zhenyan, HUANG Haijun. Grain size distribution pattern and influencing factors of suspended matters in the Southern Yellow Sea during summer season [J]. Marine Geology & Quaternary Geology, 2020, 40(6): 49-60.
[14] 仲毅, 乔璐璐, 王震, 等. 南黄海中部悬浮体垂直分布及其季节变化[J]. 海洋与湖沼, 2016, 47(3):518-526 ZHONG Yi, QIAO Lulu, WANG Zhen, et al. Vertical distribution and seasonal variation of suspended particulate matter in the central South Yellow Sea [J]. Oceanologia et Limnologia Sinica, 2016, 47(3): 518-526.
[15] 李建超, 乔璐璐, 李广雪, 等. 基于LISST数据的冬季南黄海悬浮体分布[J]. 海洋地质与第四纪地质, 2013, 33(5):13-25 LI Jianchao, QIAO Lulu, LI Guangxue, et al. Distribution of winter suspended particulate matters in the South Yellow Sea based on LISST data [J]. Marine Geology & Quaternary Geology, 2013, 33(5): 13-25.
[16] 高建华, 高抒, 董礼先, 等. 鸭绿江河口地区沉积物特征及悬沙输送[J]. 海洋通报, 2003, 22(5):26-33 doi: 10.3969/j.issn.1001-6392.2003.05.005 GAO Jianhua, GAO Shu, DONG Lixian, et al. Sediment distribution and suspended sediment transport in Yalu River Estuary [J]. Marine Science Bulletin, 2003, 22(5): 26-33. doi: 10.3969/j.issn.1001-6392.2003.05.005
[17] 刘运令, 汪亚平, 吴祥柏, 等. 南黄海苏北近岸西洋水道水沙输运机制分析[J]. 海洋科学, 2011, 35(11):120-127 LIU Yunling, WANG Yaping, WU Xiangbai, et al. Mechanism of water and suspended sediment transport in the Xiyang Channel along the Southwestern Yellow Sea coast [J]. Marine Sciences, 2011, 35(11): 120-127.
[18] 英晓明, 丁平兴. 洋山港海域水体和悬沙输运机制研究[J]. 海洋通报, 2011, 30(2):135-140 doi: 10.3969/j.issn.1001-6392.2011.02.003 YING Xiaoming, DING Pingxing. Research on transport mechanism of water and suspended sediment in the Yangshan harbor waters [J]. Marine Science Bulletin, 2011, 30(2): 135-140. doi: 10.3969/j.issn.1001-6392.2011.02.003
[19] Liu J H, Yang S L, Zhu Q, et al. Controls on suspended sediment concentration profiles in the shallow and turbid Yangtze Estuary [J]. Continental Shelf Research, 2014, 90: 96-108. doi: 10.1016/j.csr.2014.01.021
[20] 杜家笔, 裴艳东, 高建华, 等. 弱动力浅海中的悬沙输运机制: 以天津港附近海域为例[J]. 海洋学报, 2012, 34(1):136-144 DU Jiabi, PEI Yandong, GAO Jianhua, et al. The suspended sediment transport associated with low flow patterns in shallow waters: a case study from the Tianjin subtidal area [J]. Acta Oceanologica Sinica, 2012, 34(1): 136-144.
[21] 孟令鹏, 胡日军, 李毅, 等. 福宁湾海域冬季大潮期悬浮泥沙输运特征[J]. 海洋地质与第四纪地质, 2020, 40(3):61-73 MENG Lingpeng, HU Rijun, LI Yi, et al. Transport characteristics of suspended sediment in Funing Bay during spring tide in winter [J]. Marine Geology & Quaternary Geology, 2020, 40(3): 61-73.
[22] 刘伟, 范代读, 涂俊彪, 等. 椒江河口春季悬沙输运特征及通量机制研究[J]. 海洋地质与第四纪地质, 2018, 38(1):41-51 LIU Wei, FAN Daidu, TU Junbiao, et al. Suspended transportation and flux mechanism of sediment in the Jiaojiang Estuary in spring [J]. Marine Geology & Quaternary Geology, 2018, 38(1): 41-51.
[23] 秦亚超, 高飞, 苏大鹏, 等. 南黄海西部日照至连云港海域的春季温跃层和化学跃层[J]. 海洋地质与第四纪地质, 2021, 41(3):22-32 QIN Yachao, GAO Fei, SU Dapeng, et al. Late spring thermocline and chemoclines in the area off the Rizhao–Lianyungang coast, western South Yellow Sea [J]. Marine Geology & Quaternary Geology, 2021, 41(3): 22-32.
[24] 宋红瑛, 刘金庆, 印萍, 等. 日照近海表层沉积物粒度特征与沉积环境[J]. 中国海洋大学学报, 2016, 46(3):96-104 SONG Hongying, LIU Jinqing, YIN Ping, et al. Grain size characteristics of the surface sediment and sedimentary environment in Rizhao offshore [J]. Periodical of Ocean University of China, 2016, 46(3): 96-104.
[25] 薛刚. 岚山港西突堤工程对海底冲淤影响预测[D]. 中国海洋大学博士学位论文, 2007. XUE Gang. Prediction on erosion and accumulation of the seabed by the project of western jetty of Lanshan Harbor[D]. Doctor Dissertation of Ocean University of China, 2007.
[26] Dyer K R. The salt balance in stratified estuaries [J]. Estuarine and Coastal Marine Science, 1974, 2(3): 273-281. doi: 10.1016/0302-3524(74)90017-6
[27] Ingram R G. Characteristics of the great Whale River Plume [J]. Journal of Geophysical Research, 1981, 86(C3): 2017-2023. doi: 10.1029/JC086iC03p02017
[28] Uncles R J, Elliott R C A, Weston S A. Dispersion of salt and suspended sediment in a partly mixed estuary [J]. Estuaries, 1985, 8(3): 256-269. doi: 10.2307/1351486
[29] Trowbridge J H. A simple description of the deepening and structure of a stably stratified flow driven by a surface stress [J]. Journal of Geophysical Research, 1992, 97(C10): 15529-15543. doi: 10.1029/92JC01512
[30] Prandle D. On salinity regimes and the vertical structure of residual flows in narrow tidal estuaries [J]. Estuarine, Coastal and Shelf Science, 1985, 20(5): 615-635. doi: 10.1016/0272-7714(85)90111-8
[31] 陈斌, 周良勇, 刘健, 等. 废黄河口海域潮流动力与悬沙输运特征[J]. 海洋科学, 2011, 35(5):73-81 CHEN Bin, ZHOU Liangyong, LIU Jian, et al. The relationship between the suspended sediment movement and tidal current dynamic characteristic in Old Yellow River Delta [J]. Marine Sciences, 2011, 35(5): 73-81.
[32] 鲁号号, 杨旸, 唐杰平, 等. 南黄海废黄河口近岸海域近底部悬沙输运观测[J]. 海洋地质与第四纪地质, 2019, 39(1):38-48 LU Haohao, YANG Yang, TANG Jieping, et al. Observation of near-bottom transport of suspended sediment in the offshore area of abandoned Yellow River mouth [J]. Marine Geology & Quaternary Geology, 2019, 39(1): 38-48.
[33] 周良勇, 陈斌, 刘健, 等. 江苏废黄河口外夏季悬浮泥沙运动[J]. 海洋地质与第四纪地质, 2009, 29(6):17-24 ZHOU Liangyong, CHEN Bin, LIU Jian, et al. Observation of currents and suspended sediment concentration off Northern Jiangsu Coast, China [J]. Marine Geology & Quaternary Geology, 2009, 29(6): 17-24.
[34] 杨林, 杨红, 吉新磊, 等. 废黄河口海域悬沙输运特征[J]. 海洋湖沼通报, 2018(6):1-8 YANG Lin, YANG Hong, JI Xinlei, et al. Sediment transportation in the Abandoned Yellow River Delta [J]. Transactions of Oceanology and Limnology, 2018(6): 1-8.
[35] 徐粲, 高建华, 杨旸, 等. 南黄海辐射沙脊群潮汐水道的悬沙输运特征[J]. 海洋学报, 2014, 36(11):150-162 XU Can, GAO Jianhua, YANG Yang, et al. Suspended sediment transport patterns in the tidal channels in the southwestern Yellow Sea [J]. Acta Oceanologica Sinica, 2014, 36(11): 150-162.
[36] 庞重光, 白学志, 胡敦欣. 渤、黄、东海海流和潮汐共同作用下的悬浮物输运、沉积及其季节变化[J]. 海洋科学集刊, 2004(46):32-41 PANG Chongguang, BAI Xuezhi, HU Dunxin. The transport and sedimentation of suspended matter and their seasonal variation are affected by circulation and tide current in the Bohai Sea, the Yellow Sea and the East China Sea [J]. Studia Marina Sinica, 2004(46): 32-41.
[37] 陈沈良, 张国安, 杨世伦, 等. 长江口水域悬沙浓度时空变化与泥沙再悬浮[J]. 地理学报, 2004, 59(2):260-266 doi: 10.3321/j.issn:0375-5444.2004.02.012 CHEN Shenliang, ZHANG Guoan, YANG Shilun, et al. Temporal and spatial changes of suspended sediment concentration and resuspension in the Yangtze River Estuary and its adjacent waters [J]. Acta Geographica Sinica, 2004, 59(2): 260-266. doi: 10.3321/j.issn:0375-5444.2004.02.012
[38] 曹祖德, 王桂芬. 波浪掀沙、潮流输沙的数值模拟[J]. 海洋学报, 1993, 15(1):107-118 CAO Zude, WANG Guifen. Numerical simulation of wave lifting sand and tidal current transporting sand [J]. Acta Oceanologica Sinica, 1993, 15(1): 107-118.
[39] 邢飞, 汪亚平, 高建华, 等. 江苏近岸海域悬沙浓度的时空分布特征[J]. 海洋与湖沼, 2010, 41(3):459-468 doi: 10.11693/hyhz201003025025 XING Fei, WANG Yaping, GAO Jianhua, et al. Seasonal distributions of the concentrations of suspended sediment along Jiangsu coastal sea [J]. Oceanologia et Limnologia Sinica, 2010, 41(3): 459-468. doi: 10.11693/hyhz201003025025
[40] 秦蕴珊, 李凡, 郑铁民, 等. 南黄海冬季海水中悬浮体的研究[J]. 海洋科学, 1986, 10(6):1-7 QIN Yunshan, LI Fan, ZHENG Tiemin, et al. Study on suspended matter of the South Yellow Sea in winter [J]. Marine Science, 1986, 10(6): 1-7.
[41] 秦蕴珊, 李凡, 徐善民, 等. 南黄海海水中悬浮体的研究[J]. 海洋与湖沼, 1989, 20(2):101-112 doi: 10.3321/j.issn:0029-814X.1989.02.002 QIN Yunshan, LI Fan, XU Shanmin, et al. Suspended matter in the south Yellow Sea [J]. Oceanologia et Limnologia Sinica, 1989, 20(2): 101-112. doi: 10.3321/j.issn:0029-814X.1989.02.002
[42] 左书华, 庞启秀, 杨华, 等. 海州湾海域悬沙分布特征及运动规律分析[J]. 山东科技大学学报:自然科学版, 2013, 32(1):10-17 ZUO Shuhua, PANG Qixiu, YANG Hua, et al. Analysis on the distribution and movement of suspended sediment in Haizhou Bay sea area [J]. Journal of Shandong University of Science and Technology:Natural Science, 2013, 32(1): 10-17.
[43] 赵季伟, 李占海, 徐圣, 等. 长江口北港上段河道枯季悬沙浓度垂向分布特征研究[J]. 长江流域资源与环境, 2019, 28(9):2207-2218 ZHAO Jiwei, LI Zhanhai, XU Sheng, et al. Vertical profile of suspended sediment concentration in the upper reach of north channel in the Changjiang Estuary during the dry season [J]. Resources and Environment in the Yangtze Basin, 2019, 28(9): 2207-2218.
[44] 郑铁民, 赵一阳, 李凡, 等. 南黄海夏季海水中悬浮体的研究[J]. 海洋学报, 1990, 12(6):749-757,806 ZHENG Tiemin, ZHAO Yiyang, LI Fan, et al. A study on total suspended matter in winter in the south Yellow Sea [J]. Acta Oceanologica Sinica, 1990, 12(6): 749-757,806.
[45] Dyer K R. Coastal and Estuarine Sediment Dynamics[M]. Chichester: Wiley, 1986.
[46] 文明征, 陈天, 胡云壮, 等. 波流作用下海底边界层沉积物再悬浮与影响因素研究[J]. 海洋学报, 2020, 42(3):97-106 WEN Mingzheng, CHEN Tian, HU Yunzhuang, et al. Sediment resuspension of bottom boundary layer under waves and currents [J]. Acta Oceanologica Sinica, 2020, 42(3): 97-106.
-
期刊类型引用(6)
1. 杨丹丹,刘盛,张志顺,赵彦彦,杨俊,魏浩天,张广璐,孙国静,郭晓强. 南海北部神狐海域不同粒级沉积物的地球化学特征及其物源指示意义. 中国海洋大学学报(自然科学版). 2022(10): 109-126 . 百度学术
2. 刘昌岭,孙运宝. 海洋天然气水合物储层特性及其资源量评价方法. 海洋地质与第四纪地质. 2021(05): 44-57 . 本站查看
3. 陈唯,赵彦彦,李三忠,唐智能,杨俊,魏浩天,吴佳庆,朱俊江,刘盛,董涛,张广璐,杨丹丹,孙国静. 南海北部陆坡神狐海域SH-CL38站位的粒度特征及沉积记录. 海洋地质与第四纪地质. 2021(05): 90-100 . 本站查看
4. 肖倩文,冯秀丽,苗晓明. 南海北部神狐海域SH37岩芯浊流沉积及其物源分析. 海洋地质与第四纪地质. 2021(05): 101-111 . 本站查看
5. 宁伏龙,梁金强,吴能友,祝有海,吴时国,刘昌岭,韦昌富,王冬冬,张准,徐猛,刘志超,李晶,孙嘉鑫,欧文佳. 中国天然气水合物赋存特征. 天然气工业. 2020(08): 1-24+203 . 百度学术
6. 姜衡,苏明,雷新华,匡増桂,吴能友,刘丽华,杨睿. 神狐海域海底峡谷群脊部细粒浊积体分布范围及意义. 海洋地质与第四纪地质. 2018(05): 52-62 . 本站查看
其他类型引用(4)