Characteristics of the recently bedrock hydrocarbon reservoir in China Seas and future exploration directions
-
摘要: 基岩油气藏是一种特殊类型的油气藏。随着渤中19-6凝析气藏、永乐8-3-1基岩油气藏及渤中13-2油气田等取得重大突破,证实中国海域基岩油气藏具有巨大勘探潜力。截至目前,已在渤海盆地、北部湾盆地、琼东南盆地、珠江口盆地获得多个高产基岩油气田。中国海域基岩油气藏具有分布广泛、纵向层系多、岩性多、类型多样的特征,主要发育前寒武系变质岩和混合花岗岩、古生代碳酸盐岩、中生代火山岩以及花岗岩侵入体、中生代碎屑岩等4套储层,尤其以前寒武系变质岩和中生代花岗岩侵入体为主。研究表明基岩油气藏主要表现为新生古储,其形成主要受控于富烃凹陷、构造运动、储盖条件等多种控制因素的影响。在总结前人成果的基础上,指出了中国海域未来基岩油气藏勘探应重点关注6大勘探方向:渤海盆地残山,北黄海盆地东部坳陷东北部局部凸起,南黄海盆地凸起带,东海陆架盆地低凸起,北部湾盆地涠西南凹陷、珠江口盆地惠州凹陷和琼东南盆地松南低凸起,南海南部中建南盆地和万安盆地。Abstract: Great breakthroughs have been made recently in the exploration of hydrocarbon in bedrock reservoirs in China Seas, such as the Bozhong 19-6 condensate gas reservoir, the Yongle 8-3-1 bedrock oil and gas reservoir and the Bozhong 13-2 oil and gas field, which prove that bedrock oil and gas reservoirs have great potential in offshore China. Up to now, many high-yield bedrock oil and gas fields have been found in the Bohai Basin, Beibu Gulf Basin, Qiongdongnan Basin and Pearl River Mouth Basin. The bedrock hydrocarbon reservoirs in China's sea areas are characterized by wide distribution, multiple layers in vertical sequence, changing lithology and multiple types. As observed, there are four sets of major reservoirs: the Precambrian metamorphic rocks and migmatitic granite, the Paleozoic carbonate rocks, the Mesozoic volcanic rocks and granite intrusions and the Mesozoic clastic sequences, among which the Precambrian metamorphic rocks and Mesozoic granite intrusions dominate. The bedrock oil and gas reservoir is the kind of bedrock reservoir filled by later generated hydrocarbons, and their formation is controlled by many factors, such as source rocks, tectonic activities, reservoir properties and sealing conditions. On the basis of previous researches, it is suggested that the future exploration of bedrock oil and gas reservoirs in China's sea areas should focus more on the following six aspects: the residual mountains in the Bohai basin; the local uplift in the northeast of the eastern depression of the North Yellow Sea Basin; the uplifting belt of the South Yellow Sea Basin; the low uplift in the East China Sea shelf basin; the Weixi 'nan Sag in the Beibu Gulf Basin, the Huizhou Sag in the Pearl River Mouth Basin and the Songnan Low Uplift in Qiongdongnan Basin; and the Zhongjiannan Basin and Wan 'an Basin in the southern South China Sea.
-
天然气水合物是在低温、高压条件下,甲烷等气体与水作用形成的笼形晶体化合物[1],分布广、储量大、能量密度高,是最为重要的替代能源之一。我国陆地和海洋中的水合物资源相当丰富[2-3]。根据地质构造和储层条件,水合物藏可分为4类(Ⅰ—Ⅳ类)[4-5]。如图1所示,其中,Ⅱ类水合物藏由水合物层和下伏水层组成,顶底为非渗透层。从地质学、地球化学及热力学等角度分析,Ⅱ类水合物藏是分布最为广泛的一种类型,最有希望得到大规模开发利用[6]。
从经济和技术角度看,降压法[8]和热激法[9]是实际水合物藏开采最为可行的方式,常用于现场的开采试验[10-14]。但与常规油气藏不同,水合物藏在开采过程中会发生相变,即固态的水合物吸热分解为可动流体(气和水),单一的降压法或热激法的作用效果往往十分有限。Moridis等[15]研究了定流量抽取地层水,以实现Ⅱ类水合物藏储层降压的方法,但产气效果并不理想。Gao等[16]开展的降压分解实验也表明,在单纯降压条件下,Ⅱ类水合物岩心的生产指标欠佳。杨圣文[17]研究了定井底流压结合井筒加热进行Ⅱ类水合物藏开采的方法,分析了不同井底流压下的开采效果,结果表明,降低井底流压能改善水合物藏的开采效果。Moridis等[18]提出了单井条件下,分阶段进行井筒加热和注热水开采Ⅱ类水合物藏的方法,但施工程序较为复杂,实际应用存在一定困难。Reagan等[19]对Moridis等提出的方法进行了敏感性分析,结果表明孔隙度、储层非均质性等对开采效果有明显影响。
实验研究[20]和数值模拟研究[21]都表明,热水驱替法能够结合降压法和热激法的优点,是水合物藏开采的一种有效方法。对Ⅱ类水合物藏而言,将热水驱替和井组[22]结合具有明显优势。鉴于Ⅱ类水合物藏分布的广泛性,且相关开采模拟仍有待加强,本文结合实际水合物藏参数,使用数值模拟方法研究了热水驱替方式下Ⅱ类水合物藏的开采规律,并与降压法的开采效果进行了对比,以加强对水合物资源开发利用的认识。
1. 研究方法
1.1 开采方法
采用五点井网,热水驱替开采Ⅱ类水合物藏的示意图如图2所示。由于水合物层的渗透率很低、注入性较差,中心注入井在下伏水层的上部区域射孔,向储层注入热水;4口生产井定井底流压生产。在生产过程中,生产井近井地带的低压环境和注入井持续的热水注入使得储层中的水合物大量分解,分解得到的气体运移至生产井采出。
1.2 数值模拟方法
由于水合物藏开采试验不多,数值模拟是目前研究水合物藏开采动态规律的主要手段。HydrateResSim(HRS)是专门用于水合物藏开采的开源学术代码[23],它考虑了水合物藏开采过程中的相变、传热、多相渗流等机理,能够对降压法、热激法等方式下的水合物藏开采进行有效模拟[24]。在HRS中,相变过程采用主变量变换法处理,数学模型的离散采用积分有限差分法,离散得到的非线性方程组使用Newton-Raphson方法迭代求解。
本文在HRS基础上开展模拟研究,研究的水合物假设为单一的甲烷水合物,体系考虑4相3组分,相包括气相(G)、水相(A)、水合物相(H)和冰相(I),这4相均为储层孔隙中的一部分。其中冰相和水合物相为不可流动相,水相与气相为可流动相,其流动遵循达西定律。组分包括甲烷组分(m)、水组分(w)和水合物组分(由甲烷组分和水组分根据水合数表示,本文水合数取值为6)。其中,水相、气相和水合物相中都存在水组分和甲烷组分,冰相中只存在水组分。
组分κ的质量守恒方程如式(1)所示:
$$\frac{\partial }{{\partial t}}\left(\sum\limits_{\beta = A,G,H,I} {\varphi {S_\beta }{\rho _\beta }X_\beta ^\kappa } \right) + \nabla \cdot \left(\sum\limits_{\beta = A,G} {X_\beta ^\kappa {{\vec F}_\beta }}\right) = {q^\kappa }$$ (1) 式中,φ为储层孔隙度;Sβ为相β(=G, A, I, H)的饱和度;ρβ为相β的密度,kg·m−3;
$X_\beta ^\kappa $ 为组分κ(=m, w)在相β中的质量分数;${\vec F_\beta }$ 为相β的质量流速,kg·m−2·s−1;qκ为组分κ的源汇项,kg·m−3·s−1。体系的能量守恒方程如式(2)所示:
$$\begin{split}&\frac{\partial }{{\partial t}}\left( {(1 - \varphi ){\rho _R}{C_R}T + \sum\limits_{\beta = A,G,H,I} {\varphi {S_\beta }{\rho _\beta }{H_\beta }} + {H_d}} \right) + \nabla \cdot \\ & \left\{ { - \left( {(1 - \varphi ){K_R} + \sum\limits_{\beta = A,G,H,I} {\varphi {S_\beta }{K_\beta })} } \right)\nabla T + \sum\limits_{\beta = A,G} {{H_\beta }{{\vec F}_\beta }} } \right\} = {q^e}\end{split}$$ (2) 式中,ρR为岩石的密度,kg·m−3;CR为岩石的比热容,J·kg−1·K−1;Hβ为相β的焓,J·kg−1;Hd为水合物的形成/分解焓,J·m−3;KR为岩石的导热系数,W·m−1·K−1;Kβ为相β的导热系数,W·m−1·K−1;qe为热量的源汇项,J·m−3·s−1。
模拟研究时,采用平衡模型描述水合物的分解与形成,采用的相对渗透率模型[23]和毛管力模型[23]分别如式(3)、式(4)所示:
$${k_{rA}} = \min \left\{ {{{\left[ {\frac{{{S_A} - {S_{irA}}}}{{1 - {S_{irA}}}}} \right]}^{{n_A}}},1} \right\}$$ $$\begin{aligned}{k_{rG}} = \min \left\{ {{{\left[ {\frac{{{S_G} - {S_{irG}}}}{{1 - {S_{irA}}}}} \right]}^{{n_G}}},1} \right\}\end{aligned}$$ (3) 式中,krA为水相相对渗透率;SA为水相饱和度;SirA为束缚水饱和度;nA为水相相对渗透率递减指数,本文取3.572[25];krG为气相相对渗透率;SG为气相饱和度;SirG为束缚气饱和度;nG为气相相对渗透率递减指数,本文取3.572[25]。
$${p_c} = - {p_{c0}}{\left[ {{{\left( {\frac{{{S_A} - {S_{irA}}}}{{1 - {S_{irA}}}}} \right)}^{ - 1/\lambda }} - 1} \right]^{1 - \lambda }}$$ (4) 式中,pc为气水间毛管力,Pa;pc0为模型参数,本文取2×103 Pa[25];λ为模型参数,本文取0.45[25]。
2. 研究实例
2.1 数值模拟模型
参考Mallik地区Ⅱ类水合物藏的参数[26]建立基础模型(如图3所示。模型大小为165 m×165 m×90 m,从上到下,依次由顶部非渗透层、水合物层、下伏水层和底部非渗透层组成。采用直角网格系统,x,y,z方向对应的网格数分别为33×33×22。模型参数如表1所示。采用五点井网热水驱替方式进行模拟研究,生产时间为3年。其中,注入井和生产井的井径均为0.1 m。各生产井的射孔范围为[−1 m,15 m],以3 MPa进行定井底流压生产;注入井的射孔范围为[−1 m,0 m],以200 t/d的速度注入50 ℃的热水。
表 1 基础模型参数Table 1. Basic model parameters of the Class Ⅱ hydrate reservoir参数 水合物层 下伏水层 顶底非渗透层 厚度/m 15 15 30 绝对渗透率/10−3 μm2 1 000 1 000 0 孔隙度 0.35 0.35 0 水合物饱和度 0.7 0 − 含水饱和度 0.3 1 − 底部初始压力/MPa 10.67 − − 底部初始温度/℃ 13.3 − − 温度梯度/(℃/100 m) 3.0 束缚水饱和度 0.20 − 束缚气饱和度 0.02 − 由于相变的存在,水合物在开采过程中会与周围环境进行大量的热交换,热效应显著。而水合物藏的顶底非渗透层虽然几乎没有渗透性,但通常赋存着大量热量,在开采过程中能够以热传导的方式为水合物的分解提供能量[27],因而对水合物藏的开采效果有直接影响。在本文的模型中,顶底非渗透层均为30 m,这个厚度足以刻画开采过程中的热效应[28]。
2.2 开采规律
2.2.1 产气动态
产气速率和累产气、分解气速率和累分解气曲线分别如图4和图5所示。从图4可以看出,产气速率可大致分为两个阶段(阶段①和阶段②),呈现先快速上升,然后以较快速度下降至趋于相对稳定的变化规律。在阶段①,经50 d达到峰值产气速率约为7.0×104 m3/d。在阶段②,产气速率先以较快速度降低,然后逐渐趋于稳定,在生产末期,产气速率约为5×103 m3/d。分解气速率的变化与产气速率变化相同(图5)。对应产气速率和分解气速率的变化,累产气和累分解气前期快速上升,而后近似线性增加。截至生产结束,累产气1.31×107 m3,累分解气1.33×107 m3。除极少量溶于地层水中的气体外,Ⅱ类水合藏中的采出气全部来源于水合物的分解,因此,分解气几乎被全部采出(>99%),地层中的残余极少。
出现上述变化的原因主要是:在阶段①,由于定压生产以及水层中水的产出,储层压力下降较快,生产井近井地带的水合物快速分解。同时,热水的注入也导致储层水合物的大量分解,但产出的气体主要来自生产井近井地带水合物的分解。在阶段②,随生产时间的增加,在生产井的降压作用和注入井的热水作用(图6)下,水合物持续分解,但由于水合物饱和度持续下降,总体产气速率逐渐降低。
储层温度场的变化如图6所示(剖面图)。可以看出,随生产时间的增加,水合物的分解导致温度降低,模型的温度整体呈逐渐下降趋势,但注入井近井地带由于热水的注入,高温区域不断扩大,能够持续为水合物的分解提供能量。
2.2.2 水合物饱和度
模型水合物饱和度场的变化如图7所示(剖面图)。可以看出,随生产时间的增加,在生产井的降压作用和注入井的热水作用下,生产井周围、水合物层与下伏水层接触面、注入井周围的水合物饱和度逐渐降低;至生产末期,相当一部分水合物已经分解,剩余的水合物主要存在于井间地带。顶部非渗透层携带的热量也促进了水合物的分解,因而水合物层顶部(即顶部非渗透层与水合物层的交界处)的水合物分解明显。当生产结束时,水合物层的平均水合物饱和度降至0.176。
2.3 开采效果对比
鉴于降压法在水合物藏开采方法中具有重要地位,为对比热水驱替开采水合物藏的效果,建立了降压法开采的对比模型。在降压法开采模型中,将中心注入井关闭,生产井以定井底流压方式生产(3 MPa),其他储层参数及生产参数不变。
在热水驱替和降压开采条件下,水合物藏的气体采出程度、水合物分解程度及累积气水比如图8所示。其中,气体采出程度为采出气量与气体总储量的比值,如式(5)所示:
$$\eta = \frac{{{N_G}}}{{{R_G}}}$$ (5) 式中,η为气体采出程度;NG为采出的甲烷量,m3;RG为水合物藏中甲烷初始总储量(包括水相中的溶解气以及水合物中蕴藏的甲烷总量),m3。
水合物分解程度为分解的水合物量与水合物总储量的比值,如式(6)所示:
$$\beta = \frac{{{D_H}}}{{{R_H}}}$$ (6) 式中,β为水合物分解程度;DH为分解的水合物量,kg;RH为水合物藏中的水合物总储量,kg。
累积气水比为累积产气量与累积产水量的比值,如式(7)所示:
$$r = \frac{{{V_G}}}{{{m_A}}}$$ (7) 式中,r为累积气水比;VG为累积产气量,m3;mA为累积产水量,t。
从图8可以看出,截至生产结束,相对于降压法,热水驱替的气体采出程度和水合物分解程度更高(分别高出约40%和24%),且热水驱替条件下的气体采出程度和水合物分解程度均大于60%,处于较高水平。两种模型的差异来源于外源热水的注入。相对于降压模型,热水驱替模型中热水的注入扩大了水合物的分解范围,携带的热量提高了水合物的分解程度,相应地气体采出程度也较高;在降压和热水的综合作用下,开采指标优于降压模型。因此,热水驱替对Ⅱ类水合物藏的开采具有一定的适应性,开采指标较好。但热水驱替的产水量较高,其累积气水比仅为降压开采的1/3,这是由外源热水的注入导致的不可避免的结果,因而开采过程中的水处理是十分重要的问题。
3. 结论
(1)热水驱替开采Ⅱ类水合物藏时,水合物藏的产气速率和分解气速率首先快速上升,然后以较快速度下降至趋于相对稳定;累产气和累分解气先快速上升,然后近似线性增加。气体采出程度和水合物分解程度处于较高水平(>60%)。
(2)热水驱替对Ⅱ类水合物藏的开采具有一定的适应性。相对于降压开采,在热水驱替条件下,水合物藏的气体采出程度更高,水合物饱和度的降低更显著;但累积气水比较低,伴随较大的产水量。
-
Table 1 World distribution characteristics of important basement rock hydrocarbon reservoirs
国家 构造位置 油气藏类型 油气田名称 盆地类型 地层时代 储层岩性 埃及 蔡特盆地 油藏 蔡特湾 裂陷盆地 ∈ 火成岩+变质岩 利比亚 苏尔特盆地 油藏 拿法拉-奥季拉 裂陷盆地 ∈ 花岗岩 中国 酒西盆地 油气藏 鸭儿峡 前陆盆地 S 变质岩 中国 下辽河盆地 油气藏 兴隆台 裂陷盆地 Ar 砾岩+花岗岩 中国 渤海湾盆地 油气藏 义和庄 裂陷盆地 O 石灰岩 中国 辽河盆地 油藏 东胜堡 裂陷盆地 Ar 变质岩 中国 渤海湾盆地 油气藏 任丘 裂陷盆地 Z 白云岩 中国 渤海湾盆地 油气藏 渤中19-6 裂陷盆地 Ar 变质岩 中国 渤海湾盆地 油气藏 渤中13-2 裂陷盆地 Ar 变质岩 中国 海拉尔盆地 油藏 布达特群 裂陷盆地 Ar 碎屑岩 中国 塔里木盆地 油气藏 轮南古隆起 克拉通盆地 O 碳酸盐岩 印度尼西亚 贾提巴朗盆地 油藏 贾提巴朗 弧后盆地 E 火成岩 印度尼西亚 巴里托盆地 油藏 丹戎 前陆盆地 E 火成岩+变质岩 越南 湄公河盆地 油气藏 白虎、龙 裂陷盆地 ∈ 花岗岩 越南 万安盆地 油藏 大熊 裂陷盆地 E 花岗岩 美国 洛杉矶盆地 油藏 爱迪生 走滑盆地 J 变质岩+火成岩 美国 堪萨斯隆起 油藏 克拉福特-普菩萨 中央隆起 ∈ 灰岩+石英岩 美国 堪萨斯隆起 油藏 林华尔 中央隆起 ∈ 石英岩 美国 洛杉矶盆地 油藏 威明顿 断陷盆地 J 片岩 委内瑞拉 拉波开波盆地 油藏 拉巴斯-马拉 前陆盆地 K 石灰岩 阿尔及利亚 三叠盆地 油藏 哈西迈萨乌德 裂陷盆地 ∈ 石英砂岩 基岩油气藏 构造 岩性 蓬莱9-1潜山油藏 庙西北凸起 中生界二长花岗岩 锦州25-2S潜山油藏 辽西北凸起 太古界二长片麻岩、
斜长片麻岩曹妃甸11-6潜山油藏 沙垒田凸起 混合化黑云母花岗岩 曹妃甸18-2潜山凝析气藏 沙垒田凸起 二长花岗岩 渤中26-2潜山凝析气藏 渤海凸起 英云闪长岩、
花岗闪长岩锦州20-2凝析气藏 辽西低凸起 混合岩、碎屑岩 渤中19-6凝析气藏 渤中凹陷 太古界变质岩 渤中13-2油气田 渤中凹陷 太古界变质岩 渤中28-1油气田 渤南凸起 古生界碳酸盐岩 岐口17-9油气田 岐口凹陷 碎屑岩 428W、428E油气田 石臼坨凸起 古生界碳酸盐岩 曹妃甸2-1油气田 沙垒田凸起 古生界碳酸盐岩 涠6-1、涠10-3N等油气田 涠西南凹陷 古生界碳酸盐岩 惠州26-6油气田 惠州凹陷 中生界花岗岩 永乐8-1油气田 松南低凸起 中生界花岗岩 大熊油田 万安盆地 中生界花岗岩 -
[1] 杨飞, 徐守余. 全球基岩油气藏分布及成藏规律[J]. 特种油气藏, 2011, 18(1):7-11 doi: 10.3969/j.issn.1006-6535.2011.01.002 YANG Fei, XU Shouyu. Global distribution and hydrocarbon accumulation pattern of basement reservoirs [J]. Special Oil and Gas Reservoirs, 2011, 18(1): 7-11. doi: 10.3969/j.issn.1006-6535.2011.01.002
[2] 龚再升. 继续勘探中国近海盆地花岗岩储层油气藏[J]. 中国海上油气, 2010, 22(4):213-220 doi: 10.3969/j.issn.1673-1506.2010.04.001 GONG Zaisheng. Continued exploration of granitic-reservoir hydrocarbon accumulations in China offshore basins [J]. China Offshore Oil and Gas, 2010, 22(4): 213-220. doi: 10.3969/j.issn.1673-1506.2010.04.001
[3] 施和生, 王清斌, 王军, 等. 渤中凹陷深层渤中19-6构造大型凝析气田的发现及勘探意义[J]. 中国石油勘探, 2019, 24(1):40-49 SHI Hesheng, WANG Qingbin, WANG Jun, et al. Discovery and exploration significance of large condensate gas fields in BZ19-6 structure in deep Bozhong sag [J]. China Petroleum Exploration, 2019, 24(1): 40-49.
[4] 杨辉, 文百红, 张研, 等. 准噶尔盆地火山岩油气藏分布规律及区带目标优选——以陆东—五彩湾地区为例[J]. 石油勘探与开发, 2009, 36(4):419-427 doi: 10.3321/j.issn:1000-0747.2009.04.002 YANG Hui, WEN Baihong, ZHANG Yan, et al. Distribution of hydrocarbon traps in volcanic rocks and optimization for selecting exploration prospects and targets in Junggar Basin: Case study in Ludong-Wucaiwan area, NW China [J]. Petroleum Exploration and Development, 2009, 36(4): 419-427. doi: 10.3321/j.issn:1000-0747.2009.04.002
[5] 李欣, 闫伟鹏, 崔周旗, 等. 渤海湾盆地潜山油气藏勘探潜力与方向[J]. 石油实验地质, 2012, 34(2):140-144+152 doi: 10.3969/j.issn.1001-6112.2012.02.007 LI Xin, YAN Weipeng, CUI Zhouqi, et al. Prospecting potential and targets of buried-hill oil and gas reservoirs in Bohai Bay Basin [J]. Petroleum Geology & Experiment, 2012, 34(2): 140-144+152. doi: 10.3969/j.issn.1001-6112.2012.02.007
[6] 陈建文, 梁杰, 张银国, 等. 中国海域油气资源潜力分析与黄东海海域油气资源调查进展[J]. 海洋地质与第四纪地质, 2019, 39(6):1-29 CHEN Jianwen, LIANG Jie, ZHANG Yinguo, et al. Regional evaluation of oil and gas resources in offshore China and exploration of marine Paleo-Mesozoic oil and gas in the Yellow Sea and East China Sea [J]. Marine Geology & Quaternary Geology, 2019, 39(6): 1-29.
[7] 谢玉洪, 高阳东. 中国海油近期国内勘探进展与勘探方向[J]. 中国石油勘探, 2020, 25(1):20-30 doi: 10.3969/j.issn.1672-7703.2020.01.003 XIE Yuhong, GAO Yangdong. Recent domestic exploration progress and direction of CNOOC [J]. China Petroleum Exploration, 2020, 25(1): 20-30. doi: 10.3969/j.issn.1672-7703.2020.01.003
[8] Walters R E. Oil production from fractured pre-Cambrian basement rocks in central Kansas [J]. AAPG Bull., 1953, 37(2): 300-313.
[9] 吴伟涛, 高先志, 刘兴周, 等. 基岩油气藏的形成与分布[J]. 地质科技情报, 2014, 33(1):106-113 WU Weitao, GAO Xianzhi, LIU Xingzhou, et al. Formation and distribution of basement rock reservoir [J]. Geological Science and Technology Information, 2014, 33(1): 106-113.
[10] 陈发景, 李明诚. 基岩油藏的区域地质背景和特征[C]∥中国石油学会石油地质专业委员会. 基岩油气藏. 北京: 石油工业出版社, 1987: 15-22. CHEN Fajing, LI Mingcheng. Regional geological background and characteristics of basement rock reservoirs[C] // Petroleum Geology Professional Committee of China Petroleum Institute. Basement Rock Reservoirs. Beijing: Petroleum Industry Press, 1987: 15-22.
[11] 甘克文. 基岩油藏的成因和分布与盆地的关系[C]∥中国石油学会石油地质专业委员会. 基岩油气藏. 北京: 石油工业出版社, 1987: 23-31. GAN Kewen. Relationship between genesis and distribution of basement rock reservoirs and basin[C] // Petroleum Geology Professional Committee of China Petroleum Institute. Basement Rock Reservoirs. Beijing: Petroleum Industry Press, 1987: 23-31.
[12] 任丽华, 林承焰, 刘菊, 等. 海拉尔盆地苏德尔特构造带布达特群碎屑岩潜山油藏类型划分[J]. 中国石油大学学报: 自然科学版, 2007, 31(2):9-12 REN Lihua, LIN Chengxian, LIU Ju, et al. Classification of reservoir types of Budate group in clastic buried hills of Sudeerte structural zone, Hailaer Basin [J]. Journal of China University of Petroleum, 2007, 31(2): 9-12.
[13] 何君, 韩剑发, 潘文庆. 轮南古隆起奥陶系潜山油气成藏机理[J]. 石油学报, 2007, 28(2):44-48 doi: 10.3321/j.issn:0253-2697.2007.02.008 HE Jun, HAN Jianfa, PAN Wenqing. Hydrocarbon accumulation mechanism in the giant buried hill of Ordovician in Lunnan paleohigh of Tarim Basin [J]. Acta Petrolei Sinica, 2007, 28(2): 44-48. doi: 10.3321/j.issn:0253-2697.2007.02.008
[14] 朱伟林, 吴景富, 张功成, 等. 中国近海新生代盆地构造差异性演化及油气勘探方向[J]. 地学前缘, 2015, 22(1):88-101 ZHU Weilin, WU Jingfu, ZHANG Gongcheng, et al. Discrepancy tectonic evolution and petroleum exploration in China offshore Cenozoic basins [J]. Earth Science Frontiers, 2015, 22(1): 88-101.
[15] 吴庆勋, 高坤顺, 吴昊明, 等. 渤海海域前新生代基底特征及其油气勘探意义[J]. 现代地质, 2019, 33(4):802-810 WU Qingxun, GAO Kunshun, WU Haoming, et al. Characteristics of Pre-Cenozoic basement in bohai sea and its significance in oil and gas exploration [J]. Geoscience, 2019, 33(4): 802-810.
[16] 杨传胜, 李刚, 杨长清, 等. 东海陆架盆地及其邻域岩浆岩时空分布特征[J]. 海洋地质与第四纪地质, 2012, 32(3):125-133 YANG Chuansheng, LI Gang, YANG Changqing, et al. Temporal and Spatial distribution of the igneous rocks in the east China Sea Shelf Basin and its adjacent regins [J]. Marine Geology & Quaternary Geology, 2012, 32(3): 125-133.
[17] 徐发, 张建培, 张田, 等. 中国近海主要大中型含油气盆地形成条件类比研究[J]. 海洋石油, 2012, 32(3):1-8 doi: 10.3969/j.issn.1008-2336.2012.03.001 XU Fa, ZHANG Jianpei, ZHANG Tian, et al. Comparison of the geologic conditions for forming of the main offshore petroliferous basins in china [J]. Offshore Oil, 2012, 32(3): 1-8. doi: 10.3969/j.issn.1008-2336.2012.03.001
[18] 李伍志, 王璞珺, 张功成, 等. 珠江口盆地深部基底地层的地震时深转换研究[J]. 地球物理学报, 2011, 54(2):449-456 doi: 10.3969/j.issn.0001-5733.2011.02.023 LI Wuzhi, WANG Pujun, ZHANG Gongcheng, et al. Researches on time-depth conversion of deep-seated basal strata of Pearl River Mouth Basin [J]. Chinese Journal of Geophysics, 2011, 54(2): 449-456. doi: 10.3969/j.issn.0001-5733.2011.02.023
[19] 尤龙, 王璞珺, 吴景富, 等. 莺歌海盆地前新生代基底特征[J]. 世界地质, 2014, 33(3):511-523 doi: 10.3969/j.issn.1004-5589.2014.03.001 YOU Long, WANG Pujun, WU Jingfu, et al. Basement characteristics of Yinggehai Basin in Pre-Cenozoic [J]. Global Geology, 2014, 33(3): 511-523. doi: 10.3969/j.issn.1004-5589.2014.03.001
[20] 刘兵, 吴世敏, 龙根元, 等. 琼东南盆地基底特征及其构造演化[J]. 地球物理学进展, 2012, 27(4):1465-1475 doi: 10.6038/j.issn.1004-2903.2012.04.021 LIU Bing, WU Shimin, LONG Genyuan, et al. Basement characteristics and tectonic evolition in Qingdongnan Basin [J]. Progress in Geophysics, 2012, 27(4): 1465-1475. doi: 10.6038/j.issn.1004-2903.2012.04.021
[21] 董贺平, 肖国林, 何书峰, 等. 中国海域油气勘探开发数据库与形势图成果结题报告[R]. 青岛: 青岛海洋地质研究所, 2016. DONG Heping, XIAO Guolin, HE Shufeng. Completion report of oil and gas exploration and development database and situation map in China Sea[R]. Qingdao: Qingdao Institute of Marine Geology, 2016.
[22] 徐长贵, 侯明才, 王粤川, 等. 渤海海域前古近系深层潜山类型及其成因[J]. 天然气工业, 2019, 39(1):21-32 doi: 10.3787/j.issn.1000-0976.2019.01.003 XU Changgui, HOU Mingcai, WANG Yuechuan, et al. Type and genesis of Pre-Tertiary deep buried hills in the Bohai Sea area [J]. Natural Gas Industry, 2019, 39(1): 21-32. doi: 10.3787/j.issn.1000-0976.2019.01.003
[23] 纪友亮, 杜金虎, 邹伟宏, 等. 渤海湾盆地剥蚀量恢复中的综合分析法[J]. 同济大学学报: 自然科学版, 2004, 32(5):617-621 JI Youliang, DU Jinhu, ZOU Weihong, et al. Application of synthetical analysis method for seeking eroded strata thickness of Mesozoic in Bohai Bay Basin [J]. Journal of Tongji University: Natural Science, 2004, 32(5): 617-621.
[24] 刘长江, 桑树勋, 陈世悦, 等. 渤海湾盆地石炭—二叠纪沉积作用与储层形成[J]. 天然气工业, 2008, 28(4):22-25 doi: 10.3787/j.issn.1000-0976.2008.04.006 LIU Changjiang, SANG Shuxun, CHEN Shiyue, et al. Permo-Carboniferous sedimentation and reservoiring in the Bohai Bay Basin [J]. Natural Gas Industry, 2008, 28(4): 22-25. doi: 10.3787/j.issn.1000-0976.2008.04.006
[25] 邓运华. 渤海大中型潜山油气田形成机理与勘探实践[J]. 石油学报, 2015, 36(3):253-261 doi: 10.7623/syxb201503001 DENG Yunhua. Formation mechanism and exploration practice of large-medium buried-hill oil fields in Bohai Sea [J]. Acta Petrolei Sinica, 2015, 36(3): 253-261. doi: 10.7623/syxb201503001
[26] 罗伟, 蔡俊杰, 万琼华, 等. 惠州凹陷花岗岩潜山储层条件分析及石油地质意义[J]. 海洋地质与第四纪地质, 2019, 39(4):126-135 LUO Wei, CAI Junjie, WANG Qionghua, et al. Reservoir condition analysis of a buried granite hill in the Huizhou Depression and its petroleum geological significance [J]. Marine Geology & Quaternary Geology, 2019, 39(4): 126-135.
[27] 田立新, 施和生, 刘杰, 等. 珠江口盆地惠州凹陷新领域勘探重大发现及意义[J]. 中国石油勘探, 2020, 25(4):22-30 doi: 10.3969/j.issn.1672-7703.2020.04.003 TIAN Lixin, SHI Hesheng, LIU Jie, et al. Great discovery and signifi cance of new frontier exploration in Huizhou sag, Pearl River Mouth Basin [J]. China Petroleum Exploration, 2020, 25(4): 22-30. doi: 10.3969/j.issn.1672-7703.2020.04.003
[28] 周心怀, 项华, 于水, 等. 渤海锦州南变质岩潜山油藏储集层特征与发育控制因素[J]. 石油勘探与开发, 2005(6):17-20 doi: 10.3321/j.issn:1000-0747.2005.06.004 ZHOU Xinhuai, XIANG Hua, YU Shui, et al. Reservoir characteristics and development controlling factors of JZS Neo-Archean metamorphic buried hill oil pool in Bohai Sea [J]. Petroleum Exploration and Development, 2005(6): 17-20. doi: 10.3321/j.issn:1000-0747.2005.06.004
[29] 孟卫工, 李晓光, 刘宝鸿. 辽河坳陷变质岩古潜山内幕油藏形成主控因素分析[J]. 石油与天然气地质, 2007, 28(5):584-589 doi: 10.3321/j.issn:0253-9985.2007.05.007 MENG Weigong, LI Xiaoguang, LIU Baohong. Main factors controlling the formation of interior reservoirs in the metamorphic palaeo-buried hills of the Liaohe Depression [J]. Oil & Gas Geology, 2007, 28(5): 584-589. doi: 10.3321/j.issn:0253-9985.2007.05.007
[30] 邓运华, 彭文绪. 渤海锦州25-1S混合花岗岩潜山大油气田的发现[J]. 中国海上油气, 2009, 21(3):145-150 doi: 10.3969/j.issn.1673-1506.2009.03.001 DENG Yunhua, PENG Wenxu. Discovering large buried-hill oil and gas fields of migmatitic granite on Jinzhou 25-1S in Bohai sea [J]. China Offshore Oil and Gas, 2009, 21(3): 145-150. doi: 10.3969/j.issn.1673-1506.2009.03.001
[31] 谢文彦, 孟卫工, 李晓光, 等. 辽河坳陷基岩油气藏[M]. 石油工业出版社, 2012. XIE Wenyan, MENG Weigong, LI Xiaoguang, et al. Reservoirs in Liaohe Depression[M]. Beijing: Petroleum Industry Press, 2012.
[32] 降栓奇, 陈彦君, 赵志刚, 等. 二连盆地潜山成藏条件及油藏类型[J]. 岩性油气藏, 2009, 21(4):22-27 doi: 10.3969/j.issn.1673-8926.2009.04.004 JIANG Shuanqi, CHEN Yanjun, ZHAO Zhigang, et al. Reservoir accumulation conditions and patterns of buried hill in Erlian Basin [J]. Lithologic Reservoirs, 2009, 21(4): 22-27. doi: 10.3969/j.issn.1673-8926.2009.04.004
[33] 陈文玲, 周文. 含油气盆地重要勘探领域——基岩油气藏[J]. 西南石油大学学报: 自然科学版, 2012, 34(5):17-24 CHEN Wenling, ZHOU Wen. Important exploration areas in petaliferous basins the basement hydrocarbon reservoirs [J]. Journal of Southwest Petroleum University: Science & Technology Edition, 2012, 34(5): 17-24.
[34] 伍友佳, 刘达林. 中国变质岩火山岩油气藏类型及特征[J]. 西南石油学院学报, 2004, 26(4):1-4 WU Youjia, LIU Dalin. The reservoir type and characterization of metamorphic and volcanic rock of China [J]. Journal of Southwest Petroleum Institute, 2004, 26(4): 1-4.
[35] 赵贤正, 吴兆徽, 闫宝义, 等. 冀中坳陷潜山内幕油气藏类型与分布规律[J]. 新疆石油地质, 2010, 31(1):4-6 ZHAO Xianzheng, WU Zhaohui, YAN Baoyi, et al. Distributionand types of buried hill oil-gas reservoir in Jizhong Depression [J]. Xinjiang Petroleum Geology, 2010, 31(1): 4-6.
[36] 赵树栋. 任丘碳酸盐岩油藏[M]. 北京: 石油工业出版社, 1997. ZHAO Shudong. The Carbonate Reseroirs In Renqiu Oilfield[M]. Beijing: Petroleum Industry Press, 1997.
[37] 郑荣才, 胡诚, 董霞. 辽西凹陷古潜山内幕结构与成藏条件分析[J]. 岩性油气藏, 2009, 12(4):10-18 doi: 10.3969/j.issn.1673-8926.2009.04.002 ZHENG Rongcai, HU Cheng, DONG Xia, et al. Analysis of internal structure and reservoir-forming conditions of palaeo-buried hill, Western Liaohe Sag [J]. Lithologic Reservoirs, 2009, 12(4): 10-18. doi: 10.3969/j.issn.1673-8926.2009.04.002
[38] 潘钟祥. 潘钟祥石油地质文选[M]. 北京: 石油工业出版社, 1989. PAN Zhongxiang. Selected Works of Pan Zhongxiang's Petroleum Geology[M]. Beijing: Petroleum Industry Press, 1989.
[39] 李友川, 邓运华, 张功成. 中国近海海域烃源岩和油气的分带性[J]. 中国海上油气, 2012, 24(1):6-12 doi: 10.3969/j.issn.1673-1506.2012.01.002 LI Youchuan, DENG Yunhua, ZHANG Gongcheng. Zoned distribution of source rocks and hydrocarbon offshore China [J]. China Offshore Oil and Gas, 2012, 24(1): 6-12. doi: 10.3969/j.issn.1673-1506.2012.01.002
[40] 薛永安, 韦阿娟, 彭靖淞, 等. 渤海湾盆地渤海海域大中型油田成藏模式和规律[J]. 中国海上油气, 2016, 28(3):10-19 XUE Yongan, WEI Ajuan, PENG Jingsong, et al. Accumulation models and regularities of large-middle scale oilfields in Bohai Sea, Bohai Bay Basin [J]. China Offshore Oil and Gas, 2016, 28(3): 10-19.
[41] 肖述光, 吕丁友, 侯明才, 等. 渤海海域西南部中生代构造演化过程与潜山形成机制[J]. 天然气工业, 2019, 39(5):34-44 doi: 10.3787/j.issn.1000-0976.2019.05.004 XIAO Shuguang, LV Dingyou, HOU Mingcai, et al. Mesozoic tectonic evolution and buried hill formation mechanism in the southwestern Bohai Sea [J]. Natural Gas Industry, 2019, 39(5): 34-44. doi: 10.3787/j.issn.1000-0976.2019.05.004
[42] 赵顺兰, 赵亚卓, 杨希冰, 等. 北部湾盆地涠西南凹陷碳酸盐岩潜山储层特征与主控因素分析[J]. 海洋学报, 2018, 40(9):43-53 ZHAO Shunlan, ZHAO Yazhuo, YANG Xibing, et al. An analysis on the characteristics and main controlling factors of reservoir in carbonate buried hill in the Weixi'nan Sag, Beibuwan Basin [J]. Haiyang Xuebao, 2018, 40(9): 43-53.
[43] 周建生, 杨长春. 渤海湾地区前第三系构造样式分布特征研究[J]. 地球物理学进展, 2007, 22(5):1416-1426 doi: 10.3969/j.issn.1004-2903.2007.05.012 ZHOU Jiansheng, YANG Changchun. A study of pre-tertiary structural characteristics and evolution in the Bohai bay region [J]. Progress in Geophysics, 2007, 22(5): 1416-1426. doi: 10.3969/j.issn.1004-2903.2007.05.012
[44] 漆家福, 张一伟, 陆克政, 等. 渤海湾盆地新生代构造演化[J]. 石油大学学报: 自然科学版, 1995, 19(S1):1-6 QI Jiafu, ZHANG Yiwei, LU Kezheng, et al. Genozoic Tectonic evolution in Bohai Bay Basin province [J]. Journal of the University of Petroleum, China, 1995, 19(S1): 1-6.
[45] 蒋有录, 叶涛, 张善文, 等. 渤海湾盆地潜山油气富集特征与主控因素[J]. 中国石油大学学报: 自然科学版, 2015, 39(3):20-29 JIANG Youlu, YE Tao, ZHANG Shanwen, et al. Enrichment characteristics and main controlling factors of hydrocarbon in buried hill of Bohai Bay Basin [J]. Journal of China University of Petroleum(Edition of Natural Science), 2015, 39(3): 20-29.
[46] 何家雄, 张伟, 颜文, 等. 中国近海盆地幕式构造演化及成盆类型与油气富集规律[J]. 海洋地质与第四纪地质, 2014, 34(2):121-134 HE Jiaxiong, ZHANG Wei, YAN Wen, et al. Episodic tectonic evolution, basin types and hydrocarbon accumulation in Chinese marginal basins [J]. Marine Geology & Quaternary Geology, 2014, 34(2): 121-134.
[47] 赵贤正, 王权, 金凤鸣, 等. 冀中坳陷隐蔽型潜山油气藏主控因素与勘探实践[J]. 石油学报, 2012, 33(S1):71-79 doi: 10.7623/syxb2012S1009 ZHAO Xianzheng, WANG Quan, JIN Fengming, et al. Main controlling factors and exploration practice of subtle buried-hill hydrocarbon reservoir in Jizhong depression [J]. Acta Petrolei Sinica, 2012, 33(S1): 71-79. doi: 10.7623/syxb2012S1009
[48] 王拥军, 张宝民, 王政军, 等. 渤海湾盆地南堡凹陷奥陶系潜山油气地质特征与成藏主控因素[J]. 天然气地球科学, 2012, 23(1):51-59 WANG Yongjun, ZHANG Baomin, WANG Zhengjun, et al. Geological characteristics of Ordovician buried hill and main factors of oil/ gas accumulation in Nanpu Sag, Bohai Bay Basin, China [J]. Natural Gas Geoscience, 2012, 23(1): 51-59.
[49] 夏庆龙, 周心怀, 王昕, 等. 渤海蓬莱9-1大型复合油田地质特征与发现意义[J]. 石油学报, 2013, 34(S2):15-23 doi: 10.7623/syxb2013S2002 XIA Qinglong, ZHOU Xinhuai, WANG Xin, et al. Geological characteristics and discovery significance of large scale and compound oilfield of Penglai 9-1 in Bohai [J]. Acta Petrolei Sinica, 2013, 34(S2): 15-23. doi: 10.7623/syxb2013S2002
[50] Anirbid Sircar. Hydrocarb on production from fractured basement formations [J]. Current Science, 2004, 87(2): 147-15.
[51] 陈更新, 王建功, 杜斌山, 等. 柴达木盆地尖北地区裂缝性基岩气藏储层特征[J]. 岩性油气藏, 2020, 32(4):36-47 CHEN Gengxin, WANG Jiangong, DU Binshan, et al. Characteristics of fractured bedrock gas reservoir in Jianbei gas field, Qaidam Basin [J]. Lithologic Reservoirs, 2020, 32(4): 36-47.
[52] 李尧, 张笑桀, 刘恭利, 等. 渤海油田渤中A构造太古宙潜山裂缝储层预测[J]. 物探与化探, 2021, 45(1):37-45 LI Yao, ZHANG Xiaojie, LIU Gongli, et al. The prediction of Archean buried hill fracture reservoir in BZ-A structure of the Bohai oilfield [J]. Geophysical and Geochemical Exploration, 2021, 45(1): 37-45.
[53] 刘华, 蒋有录, 陈涛. 东营凹陷辛东地区有效输导体系及成藏模式[J]. 中国石油大学学报: 自然科学版, 2008, 32(4):13-18 Liu Hua, Jiang Youlu, Chen Tao. Effective migration pathways and Pool form model of Xindong area in Dongying Depression [J]. Journal of China University of Petroleum: Edition of Natural Science, 2008, 32(4): 13-18.
[54] 何登发. 不整合面的结构与油气聚集[J]. 石油勘探与开发, 2007, 34(2):142-149+201 doi: 10.3321/j.issn:1000-0747.2007.02.003 HE Dengfa. Structure of unconformity and its control on hydrocarbon accumulation [J]. Petroleum Exploration and Development, 2007, 34(2): 142-149+201. doi: 10.3321/j.issn:1000-0747.2007.02.003
[55] 吴孔友, 邹才能, 査明, 等. 不整合结构对地层油气藏形成的控制作用研究[J]. 大地构造与成矿学, 2012, 36(4):518-524 doi: 10.3969/j.issn.1001-1552.2012.04.005 WU Kongyou, ZHOU Caineng, CHA Ming, et al. Controls of unconformity on the formation of stratigraphic reservoirs [J]. Geotectonica et Metallogenia, 2012, 36(4): 518-524. doi: 10.3969/j.issn.1001-1552.2012.04.005
[56] 王建强, 赵青芳, 董贺平, 等. 海域油气勘探开发形势分析与战略研究成果报告[R]. 青岛海洋地质研究所, 2019. WANG Jiangqiang, ZHAO Qingfang, DONG Heping, et al. Analysis of oil and gas exploration and development situation in offshore and report on strategic research results[R]. Qingdao Institute of Marine Geology, 2019.
[57] Hu S Y, Wu H, Liang X J, et al. A preliminary study on the eco-environmental geological issue of in-situ oil shale mining by a physical model[J]. Chemosphere, 2021, doi: 10.1016/j.chemosphere.2021.131987.
[58] 何将启, 梁世友, 赵永强, 等. 北黄海盆地地质构造特征及其在油气勘探中的意义[J]. 海洋地质与第四纪地质, 2007, 27(2):101-105 HE Jiangqi, LIANG Shiyou, ZHAO Yongqiang, et al. Characteristics of geologic structures of the North Yellow Sea Basin: implications for petroleum explorations [J]. Marine Geology & Quaternary Geology, 2007, 27(2): 101-105.
[59] 张鹏辉, 梁杰, 陈建文, 等. 中国叠合盆地深部海相地层油气保存条件剖析[J]. 海洋地质前沿, 2019, 35(1):1-11 ZHANG Penghui,LIANG Jie, CHEN Jianwen, et al. Hydrocarbon preservation analysis for marine strata in superimposed basins of China [J]. Marine Geology Frontiers, 2019, 35(1): 1-11.
[60] 肖国林, 董贺平, 杨长清, 等. 我国近海非常规油气资源勘探态势及其地质有利性[J]. 海洋地质前沿, 2020, 36(7):73-76 XIAO Guolin,DONG Heping,YANG Changqing,et al. Exploration status and geological advantages of unconventional oil and gas resources in China Offshore [J]. Marine Geology Frontiers, 2020, 36(7): 73-76.
[61] 徐守立, 尤丽, 代龙, 等. 北部湾盆地涠西南凹陷灰岩潜山储层特征及分布规律[J]. 海洋地质与第四纪地质, 2020, 40(1):94-103 XU Shouli, YOU Li, DAI Long, et al. Characteristics of limestone buried-hills and their distribution in the Weixinan Depression of the Beibu Gulf Basin [J]. Marine Geology & Quaternary Geology, 2020, 40(1): 94-103.