中国海域基岩油气藏特征及未来勘探方向

王建强, 梁杰, 陈建文, 张银国, 赵青芳, 董贺平, 李双林, 孙晶

王建强, 梁杰, 陈建文, 张银国, 赵青芳, 董贺平, 李双林, 孙晶. 中国海域基岩油气藏特征及未来勘探方向[J]. 海洋地质与第四纪地质, 2021, 41(6): 151-162. DOI: 10.16562/j.cnki.0256-1492.2021031201
引用本文: 王建强, 梁杰, 陈建文, 张银国, 赵青芳, 董贺平, 李双林, 孙晶. 中国海域基岩油气藏特征及未来勘探方向[J]. 海洋地质与第四纪地质, 2021, 41(6): 151-162. DOI: 10.16562/j.cnki.0256-1492.2021031201
WANG Jianqiang, LIANG Jie, CHEN Jianwen, ZHANG Yinguo, ZHAO Qingfang, DONG Hepin, LI Shuanglin, SUN Jin. Characteristics of the recently bedrock hydrocarbon reservoir in China Seas and future exploration directions[J]. Marine Geology & Quaternary Geology, 2021, 41(6): 151-162. DOI: 10.16562/j.cnki.0256-1492.2021031201
Citation: WANG Jianqiang, LIANG Jie, CHEN Jianwen, ZHANG Yinguo, ZHAO Qingfang, DONG Hepin, LI Shuanglin, SUN Jin. Characteristics of the recently bedrock hydrocarbon reservoir in China Seas and future exploration directions[J]. Marine Geology & Quaternary Geology, 2021, 41(6): 151-162. DOI: 10.16562/j.cnki.0256-1492.2021031201

中国海域基岩油气藏特征及未来勘探方向

基金项目: 地质调查专项“崂山隆起构造沉积条件地质调查”(DD20190818),“重点海域油气调查”(DD20211353),“东海南部闽江-基隆凹陷中生界油气资源调查”(DD20190211),“深海调查——印度洋”(DD20191032);国家自然科学基金项目“南黄海崂山隆起中南部海底渗漏烃类源区示踪与运移路径重建”(41776075);山东省基金项目“南黄海盆地崂山隆起海底烃类渗漏成因及其三维模型构建”(ZR2019BD067)
详细信息
    作者简介:

    王建强(1985—),男,博士,高级工程师,从事石油地质和海域油气战略研究,E-mail:wangjianqiang163@163.com

    通讯作者:

    陈建文(1965—),男,博士,研究员,主要从事海域油气资源调查评价与研究,E-mail:jwchen2012@126.com

  • 中图分类号: P744

Characteristics of the recently bedrock hydrocarbon reservoir in China Seas and future exploration directions

  • 摘要: 基岩油气藏是一种特殊类型的油气藏。随着渤中19-6凝析气藏、永乐8-3-1基岩油气藏及渤中13-2油气田等取得重大突破,证实中国海域基岩油气藏具有巨大勘探潜力。截至目前,已在渤海盆地、北部湾盆地、琼东南盆地、珠江口盆地获得多个高产基岩油气田。中国海域基岩油气藏具有分布广泛、纵向层系多、岩性多、类型多样的特征,主要发育前寒武系变质岩和混合花岗岩、古生代碳酸盐岩、中生代火山岩以及花岗岩侵入体、中生代碎屑岩等4套储层,尤其以前寒武系变质岩和中生代花岗岩侵入体为主。研究表明基岩油气藏主要表现为新生古储,其形成主要受控于富烃凹陷、构造运动、储盖条件等多种控制因素的影响。在总结前人成果的基础上,指出了中国海域未来基岩油气藏勘探应重点关注6大勘探方向:渤海盆地残山,北黄海盆地东部坳陷东北部局部凸起,南黄海盆地凸起带,东海陆架盆地低凸起,北部湾盆地涠西南凹陷、珠江口盆地惠州凹陷和琼东南盆地松南低凸起,南海南部中建南盆地和万安盆地。
    Abstract: Great breakthroughs have been made recently in the exploration of hydrocarbon in bedrock reservoirs in China Seas, such as the Bozhong 19-6 condensate gas reservoir, the Yongle 8-3-1 bedrock oil and gas reservoir and the Bozhong 13-2 oil and gas field, which prove that bedrock oil and gas reservoirs have great potential in offshore China. Up to now, many high-yield bedrock oil and gas fields have been found in the Bohai Basin, Beibu Gulf Basin, Qiongdongnan Basin and Pearl River Mouth Basin. The bedrock hydrocarbon reservoirs in China's sea areas are characterized by wide distribution, multiple layers in vertical sequence, changing lithology and multiple types. As observed, there are four sets of major reservoirs: the Precambrian metamorphic rocks and migmatitic granite, the Paleozoic carbonate rocks, the Mesozoic volcanic rocks and granite intrusions and the Mesozoic clastic sequences, among which the Precambrian metamorphic rocks and Mesozoic granite intrusions dominate. The bedrock oil and gas reservoir is the kind of bedrock reservoir filled by later generated hydrocarbons, and their formation is controlled by many factors, such as source rocks, tectonic activities, reservoir properties and sealing conditions. On the basis of previous researches, it is suggested that the future exploration of bedrock oil and gas reservoirs in China's sea areas should focus more on the following six aspects: the residual mountains in the Bohai basin; the local uplift in the northeast of the eastern depression of the North Yellow Sea Basin; the uplifting belt of the South Yellow Sea Basin; the low uplift in the East China Sea shelf basin; the Weixi 'nan Sag in the Beibu Gulf Basin, the Huizhou Sag in the Pearl River Mouth Basin and the Songnan Low Uplift in Qiongdongnan Basin; and the Zhongjiannan Basin and Wan 'an Basin in the southern South China Sea.
  • 涨潮槽是全球河口普遍存在的重要地貌单元[1],其动力沉积过程直接关乎河口涨潮槽冲淤稳定与航运资源利用[2],亦可反映槽内径、潮流动力格局[3-4]。然而,近期高强度的流域-河口人类活动和由此叠加径、潮流动力转换,当前大部分河口的涨潮槽动力沉积已发生明显改变[5-7],进而引发河槽萎缩[8-10]。显然,开展涨潮槽动力沉积的研究对于维持河势稳定与保障航槽安全具有重要现实意义,并可为涨潮槽对于径、潮流动力转换响应的研究提供科学理论认识。

    近年来,国内不少学者对于涨潮槽表层沉积物粒度特征[11],沉积物输移趋势[12-14]、悬、底沙输移机制[15-16]及河槽内的沉积环境演变[17-19]等做了较多研究。然而,这些研究更多聚焦于自然驱动下的涨潮槽动力沉积过程。此外,亦有一些学者已经对自然与人类活动耦合作用下的涨潮槽表层沉积物的粒度特征和输移趋势进行了研究[14,20],但较少研究涉及大型河口涨潮槽在径、潮流转换下的动力沉积过程,尤其是长江口新桥水道的动力沉积过程。

    长江口一级分汊南支河段因扁担沙横亘其间而形成南支主槽和新桥水道。新桥水道位于崇明岛南侧,一般指扁担沙北侧上至庙港,下至堡镇港接北港的区域,其长度大约为40 km,平均宽度约为1~2 km[21]。已有研究表明,无论是洪季或枯季,新桥水道内整体展现涨潮流速、涨潮量大于落潮,呈涨潮流优势,且落潮转涨潮后流速迅速增加,这对于新桥水道内泥沙特性与运动可能具有重要影响[15]。在当前长江入海泥沙急剧减少、崇明岛南岸港工建设以及环崇明岛绿色海堤构建与河口涨潮动力有所增强的情景下[22],新桥水道的沉积环境可能会发生较大程度改变。基于此,本文以新桥水道近期采集的表层沉积物资料为基础,利用经验正交函数(EOF)分析研究新桥水道表层沉积物分布格局及其影响因素,为新桥水道开发与治理提供科学依据。

    为较全面和系统研究新桥水道动力沉积特征,课题组于2020年6月13—14日在新桥水道区域内进行表层沉积物采集(图1C),布点范围覆盖整个新桥水道,共计采集34个河床表层沉积物样品,采样期间潮汛为小潮。沉积物采用蚌式采泥器进行采集,采样的深度约为河床表层垂向向下5~10 cm。所采集的沉积物样品在实验室内均匀取 0.5~1 g 左右放入 50 mL离心管中,加 6~7 mL 浓度 30%的双氧水去除有机质并静置 24 h。随后,加入10 mL 36%~38%的浓盐酸去除碳酸钙物质并用玻璃棒搅拌使其充分反应。之后,再加蒸馏水静置 24 h 后,经离心机离心后,再吸去上层清液并重复该步骤使其pH值降至6~7。再加入 10 mL 偏磷酸钠溶液,经超声波震荡10~15 min使样品充分分散后,采用LS13320 激光粒度仪进行测试。根据美国地球物理学会(AGU)泥沙分类标准对沉积物进行粒度分类[23]。对所有样品均采用矩值法[24]计算其平均粒径(Mz)、分选系数(σ)、偏态(Sk)和峰态(Kg)4种粒度参数,并依据McManus [25]对沉积物的粒度参数进行分类分级,分析沉积物的总体特征。同时,依据Shepard分类方法对沉积物进行命名与分类[26]。此外,还收集了2020年的新桥水道海图(比例尺为1∶50 000)与南门潮位站、堡镇潮位站的逐小时实测潮位数据(2019年1月至2021年1月)。其中,海图来源为中华人民共和国海事局,潮位数据来源于上海市水文总站。

    图  1  研究区域(A,B)和采样点位置(C)
    Figure  1.  Study area (A, B) and sampling sites (C)

    经验正交函数分析方法,也称特征向量分析,其主要原理是分析矩阵数据中的结构特征,提取主要数据特征量。Lorenz[27]在1950s首次将其引入大气科学研究,至今已广泛应用于气象学、地理学与海洋学等[28-29]。任何复杂的原始数据都可借由EOF分解成一系列的时间和空间模态的线性组合。模态之间相互正交,并能够简洁巧妙地揭示一定的物理内涵,且通常前几个模态即可揭示原始场的主要信息。除此以外,它还不受空间站点、地理位置、区域范围限制,并且具有收敛快、效率高的优势。本文中EOF 分析具体计算步骤如下:

    设有实测粒度分布数据序列 Pij( i = 1,2,3,…,m; j =1,2,3,…,n) ; m 为空间采样点数,n 是粒度分级序列的长度。

    (1)对原始数据进行距平处理并整理成二维矩阵的形式,即Xm×n

    (2)基于X计算其相关系数矩阵:

    $$C_{m\times n}=\frac{1}{n}X\times X^T$$ (1)

    (3)利用雅可比方法求解计算矩阵Cm×n特征根λi和空间特征向量Vm×n[29]。一般将特征根λ按从大到小顺序排列,即λ1>λ2λ3>…>λm≥0。每一个特征根对应一组空间特征向量值,也称EOF模态。

    (4)依据Tm×n =$V^T_{m\times n} $×Xm×n,求取特征权重Tm×n

    (5)求取各模态对原始场的相对贡献率:

    $$ a_k=\frac{\lambda_k}{{\displaystyle\sum_{i=1}^m}\lambda_i}\times 100{\text{%}} $$ (2)

    (6)求取其累积贡献率,即,

    $$\beta_k={\mathop\sum\nolimits_{i=1}^k}a_k $$ (3)

    若前k个模态的累计贡献率βk超过了75%,那么这前k个模态便能反映原始场的主要信息[29]。本次研究中,将34个沉积物样品粒径数据构成34×13的矩阵[29],其中34为沉积物样品数量,13为样品中自极细黏土至极粗砂不同粒级百分比含量的级数。

    新桥水道主要受控于径、潮流相互作用[30],上溯潮流由于径流顶托作用与地形效应造成潮波变形[31],从而引发潮汐不对称(TA),这对泥沙净输运和沉积过程有显著影响[32]。潮汐不对称(TA)与潮差以及河槽断面深度密切相关[33],即TA~$\dfrac{a}{h} $,其中,a是潮差的一半,h是河槽断面平均深度,当a/h>0.3时,该河道为涨潮优势;当a/h<0.2时,该河道为落潮优势;当a/h处于0.2~0.3范围内时,取决于浅滩在高低潮位的体积差值与河道体积之比。在本文中,a的计算基于潮位站的逐时潮位数据。具体而言,先对水位进行5 min插值,然后采取27 h的时间窗口逐时取水位最高和最低值,两者的差值即为日均潮差,详细计算方法见Matte等[34]。为避免台风、风暴潮等对潮差的影响,本文对得到的日均潮差进行年平均,进而得到年均潮差。河槽断面平均深度h通过数字高程模型(DEM)获得,即在ArcGIS平台将2020年的水深数据校正至高斯克吕格投影下北京1954坐标系和理论深度基准面上,并利用Kriging方法对水深点进行插值,进而提取断面平均深度h。根据上述获得的ah,按照公式$\dfrac{a}{h} $可表征新桥水道潮汐不对称。本文自新桥水道上游至下游共选取6个断面,其中 计算S1、S2、S3剖面潮汐不对称性时a采用南门站潮位数据,而S4、S5、S6剖面a采用堡镇站潮位数据。

    沉积物类型及其区域分异反映水动力条件、物质来源及地貌类型等对于动力沉积过程的影响,并能在较大程度上反映河槽河床沉积变化特征[35-36]。基于粒度分析结果,绘成新桥水道河槽表层沉积物类型分布和谢帕德三角图(图2)。新桥水道沉积物主要类型共4种,砂占50%,其次是粉砂质砂占24%,剩余为砂质粉砂和黏土质粉砂,分别占14%和12%。根据沉积物类型分布特征与地形地貌可以将新桥水道分为上、中及下游3个沉积区:新桥水道上游河段,位于庙港至鸽笼港下游部分河段,沉积物主要为粉砂质砂与黏土质粉砂。新桥水道中游河段,位于南门港上游部分河段至张网港,沉积物全为砂。新桥水道下游河段,位于张网港至堡镇港河段,沉积物主要为砂、粉砂质砂及砂质粉砂。整体上,新桥水道表层沉积物分布在纵向上呈现“细-粗-细”的模式。

    图  2  新桥水道表层沉积物类型分布及Shepard三角分类
    Figure  2.  Sediments distribution map of the Xinqiao Channel based on Shepard classification

    表层沉积物粒度特征是反映水动力和沉积环境变迁的重要指标[37]。将新桥水道河槽表层沉积物的4种粒度参数绘制成图3。新桥水道表层沉积物的平均粒径为3~7Φ,平均值为4.32Φ(0.05 mm),总体上泥沙颗粒较粗(图3A)。新桥水道内,沉积物平均粒径存在明显区别:新桥水道下游近岸侧与新桥水道上游鸽笼港附近河段的沉积物粒径较其余河段要细,这和沉积物类型分布结果一致(图2 A)。沉积物分选系数为1~2.5, 其中约有41%的样品分选性较差,分选系数为1~2,其主要分布在新桥水道上游与新桥水道下游的近岸一侧,其余区域的分选系数为2~2.5,分选性差(图3B)。此外,所有样品偏态值均为正值,表明整个区域呈现正偏,说明沉积物中相对于平均粒径的较粗组分含量居多(图3C)。研究区域峰态值集中于2.25~4.25,属于宽峰型(图3D)。

    图  3  新桥水道表层沉积物粒度主要参数
    Figure  3.  Characteristics of grain-size parameters of the sediments from Xinqiao Channel

    概率累积曲线可较直观地辨别沉积物的搬运方式,反映沉积物与搬运营力的关系[38]。进一步绘制新桥水道沿程沉积物概率累积分布曲线(图4),发现新桥水道沉积物主要存在滚动、跃移、悬浮3种运动方式。新桥水道上游河段内,以站位33的沉积物概率累积曲线最为典型,表现出滚动组分缺失,存在双跃移组分,粗跃移组分含量多于细跃移组分,双跃移组分约占总含量的95%及以上,细跃移组分含量向下游先减少后增加,悬浮组分含量则相反。新桥水道中游河段内,以站位24沉积物的概率累积曲线为代表,滚动组分同样缺失,存在双跃移组分,粗跃移组分含量远高于细跃移组分含量,粗跃移组分含量向下游先增加后减小,细跃移组分含量向下游则相反;同时悬浮组分极少,不超过2%。新桥水道下游河段内,分别以站位12和站位4代表上下游不同的概率累积曲线,上游沉积物中含有少许滚动组分,滚动组分含量不超过1%,亦存在双跃移组分,滚动组分和跃移组分的截点在1~2Φ。新桥水道下游河段自上游到下游,细跃移和悬浮组分含量增加,并且下游细跃移组分含量超过粗跃移组分含量,约占总含量的60%。

    图  4  新桥水道沿程沉积物概率累积曲线
    Figure  4.  The probability cumulative frequency curves of the sediments from the Xinqiao Channel

    新桥水道表层沉积物样品粒径资料标准化处理后的34×13矩阵,经EOF分析,将其前3个特征值的贡献率绘制形成表1。如表1所示,前3个模态累计贡献率已经达到80%,超过75%。因此,前3个模态基本涵盖了新桥水道河槽表层沉积物变化的主要信息,由此绘制特征权重和空间特征向量分布图(图5)。

    表  1  EOF分析的前3个模态贡献率及其累计贡献率
    Table  1.  The cumulative contributions of the first three modes by EOF analysis
    标准化矩阵贡献率/ %累计贡献率/ %
    第一模态59%59%
    第二模态11%70%
    第三模态10%80%
    下载: 导出CSV 
    | 显示表格
    图  5  新桥水道表层沉积物粒度的前3个模态的特征权重与空间特征向量
    Figure  5.  Eigenweightings and eigenvectors of the first three modes of surface sediments of Xinqiao Channel

    表1,第一模态贡献率为59%,表征新桥水道主要沉积特征。由图5A可知,极细黏土至粗粉砂范围的特征权重为正值,极细砂至极粗砂为负值,其中极细黏土至中粉砂权重最大,为4~6,极细砂至细砂权重值最小,小于–4。相应第一模态的空间特征向量分布(图5B)显示,正值区域主要分布在新桥水道上游河段与新桥水道下游近岸侧,负值区域则主要分布在新桥水道中游河段。将图5B空间特征向量与图5A权重值相乘,结果表明正值区域沿新桥水道上中下游均有分布,其中上游和下游局部河段泥沙颗粒较细,而中游河段泥沙较粗,这与平均粒径分布图相一致(图3A)。同时,结合沉积物类型分布图(图2A)可知该模态主要表征以砂质粉砂与黏土质粉砂为主的新桥水道上游及下游局部河段沉积模式和以砂为主的新桥水道中游沉积模式。

    第二模态的贡献率为11%,表征新桥水道的次要沉积特征。据图5C,特征权重曲线上有一个正的峰值,主要表现为:极细粉砂至极细砂、极粗砂为正值,粗粉砂的权重值最大,接近4,其余均为负值,细砂的权重值最小,小于–3。相应第二模态的空间特征向量分布(图5D)显示,正值区域主要分布在老滧港至新河港河段,负值区域主要分布在新桥水道下游的新河港至堡镇港河段。将图5D空间特征向量与图5C权重值相乘,结果发现正值区域主要分布在新桥水道中、下游局部河段;同时,相较粗粉砂与极细砂,其余组分与空间向量相乘后均较小,因此正值区域主要为粉砂质砂区域。同时,在新桥水道中、下游河段内主要以粉砂质砂为主(图2A)。故该模式主要表明以粉砂质砂为主的新桥水道中、下游局部河段沉积模式。

    第三模态的贡献率为10%,由图5E可知,特征权重曲线上有两个正的峰值,主要表现为极细黏土至粗黏土、极细砂至细砂的范围为正且值偏小,其余粒径组分为负值且粗砂的权重值最小,小于–4。对应的空间特征向量分布(图5F)显示,正值区域仅分布在新桥水道下游的新河港至堡镇港河段,除此区域外,其余区域空间特征向量均为负值。将图5F空间特征向量与图5E权重值相乘,结果表明新桥水道上游、中游及下游上段主要是粗颗粒的砂沉积,而下游下段则是细、粗泥沙混合沉积,这与平均粒径分布图相一致(图3A)。故该模式主要表征以砂为主的新桥水道上、中及下游上段沉积模式与以粉砂质砂为主的新桥水道下游下段沉积模式。

    新桥水道作为长江口南支最大的涨潮槽[39],主要受到径流和潮流的共同作用。在新桥水道区域内,北港上溯的潮流由于径流的顶托作用与地形效应造成潮波变形,引起强烈的潮汐不对称性,从而对泥沙净输运产生重要影响[32],进而影响沉积物的分布。新桥水道的泥沙主要来自于随涨潮上溯所带来的细颗粒泥沙与长江下泄径流所携带的粗颗粒泥沙[21]。同时,可通过沉积物的概率累积曲线去印证宏观上沉积物粒径的变化[40-42]。新桥水道自下段到上段,涨潮优势不断增强,落潮优势不断减弱(图6)。向上游不断增强的涨潮优势有利于海域细颗粒泥沙向陆的净输运[43-44],同时由于涨潮流速受涨潮槽上游两侧地形束窄影响而减小[16],从而使其携带的细颗粒泥沙在新桥水道上游沉积下来,引起新桥水道上游河段内悬浮组分和细跃动组分呈现出向下游微弱地增加(图4E),并形成以砂质粉砂与黏土质粉砂为主的沉积格局(图2A),前述通过EOF分解得到的新桥水道上游河段沉积第一模态亦反映了此特征。显然,该模式明显受控于河槽径与潮流共同作用。

    图  6  新桥水道沿程潮汐不对称
    Figure  6.  Tidal asymmetry along the Xinqiao Channel

    新桥水道中游河段内因南支主槽径流从南门通道进入新桥水道,引起涨潮优势减弱(图6)。同时,加之南门通道地形束狭致使出流效应明显,流速加快,动力作用增强,细颗粒泥沙起动向下游输运。因此,中游床面沉积物变粗且形成分选相对较好并以砂为主的局部沉积区(图2A图3B)。而EOF分解得到的新桥水道中游河段第一模态中亦是以砂为主的沉积区(图5B),也就进一步揭示了第一模态主要由径、潮流共同作用而形成。

    新桥水道下游河段内,由于径流进一步通过下扁担沙窜沟进入新桥水道致使涨潮优势进一步减弱(图6),这就导致新桥水道下游河段上端沉积物出现滚动组分(图4E)。但流域来沙量减少[21]与三峡水库调控[45]引起海域泥沙向陆净输运的增加[22],导致沉积物搬运中细跃移组分和悬浮组分含量占比向下游不断上升;同时,细颗粒泥沙再悬浮的比例增大,容易在归槽流作用[46]进入河道下游河段北侧近岸区域沉积。故在新桥水道下游区域近岸侧河段形成以砂质粉砂与黏土质粉砂为主的沉积格局(图2A)。这也验证了根据EOF分析方法分解得到的第一模态中所表明的新桥水道下游近岸侧河段沉积格局(图5B)。此外,受流域来沙减少影响,进入河槽的水体相对挟沙能力得到增强[47],尤其是洪季时,大量径流进入新桥水道引发床面细颗粒泥沙难以长时间停留而再悬浮,随后进入水流中并向下游输运,床面沉积物因细颗粒物质悬浮输移而粒径变粗,因此EOF第三模态很可能表征了新桥水道在洪季径流影响的沉积格局(图5E—F)。

    扁担沙浅滩位于南支主槽和新桥水道之间,5 m等深线包络的区域,两者共同组成长江口典型的河道-浅滩系统[21]。受上游径流作用引起扁担沙沙体持续向下游迁移[48],从而束窄新桥通道引起新桥通道下泄径流动力增强,导致新桥水道下游下段表层沉积物中出现细跃移组分增多。同时,受洪水影响扁担沙发生冲刷并在滩面上形成窜沟与潮汐通道[48],为水流进入新桥水道提供了有利条件。加之,受滩-槽侧向环流影响,落潮时出现由滩至槽的泥沙净输运[49],因此新桥水道下游河段近扁担沙侧出现以砂为主的沉积。此外,南支过滩水流掏蚀扁担沙,新桥水道中游下段与下游河段中央从而出现粗粉砂与细砂的混合沉积,这和EOF分解表征的第二模态一致(图5D),即该模态反映了新桥水道下游在局部河势影响下的混合沉积模式。

    近几十年来,因围垦[10]、大坝建设[50]以及航道工程[51]等对长江口的沉积过程造成重大影响。故新桥水道的沉积过程不仅受控于自然驱动,而且也受到近期东风西沙水库构建的作用。水库修建于长江口南支上段北侧,新桥水道上段庙港附近河段(图1),其总有效库容达到890×103 m3,在2014年投入使用[52]。东风西沙水库投入使用后拦截原本由东风西沙北侧潮汐汊道进入新桥水道的径流;同时,水库构建后也引起东风西沙和扁担沙之间的汊道不断淤浅(图7,影像资料来源为Maxar高分辨率影像,崇明南门港潮位站参考水位为0.5~1 m,水位参考基面为上海吴淞城建基面),进一步减少径流进入新桥水道,因此造成新桥水道上段顶端沉积物较修建前变细[36]。此外,由于崇明南岸港工建设,如上海造船厂移建、华润大东船厂修建等已经对新桥水道沿岸动力沉积过程造成了一定的影响,促使新桥水道下游河段近岸侧形成平均粒径较细并以黏土质粉砂为主的沉积格局(图2A图3A)。

    图  7  东风西沙水库构建前后扁担沙-新桥水道Maxar高分辨率遥感影像对比
    Figure  7.  Pictures from Maxar remote sensing images showing the construction of Dongfeng Xisha Reservoir

    (1)新桥水道可分为3个沉积区,新桥水道上游河段,沉积物主要为粉砂质砂与黏土质粉砂,分选差;新桥水道中游河段沉积物由砂组成,分选较好;新桥水道下游河段沉积物主要为砂、粉砂质砂、砂质粉砂及黏土质粉砂,分选差。

    (2)新桥水道的沉积模式主要体现为:第一模式是在径流和潮流共同作用下,新桥水道上游及下游近岸侧河段形成以砂质粉砂与黏土质粉砂为主的沉积格局,并在新桥中游形成以砂为主的沉积格局;第二模式是受局部河势影响,新桥水道中、下游局部河段形成以粉砂质砂为主的沉积格局;第三模式是在洪季径流影响下,新桥水道形成以砂为主的沉积格局。

    (3) 新桥水道的动力沉积过程还经受扁担沙迁移和东风西沙水库构建的影响。扁担沙沙尾下移导致进入新桥水道径流增强引起表层沉积物变粗。东风西沙水库的建立拦蓄部分原本进入新桥水道的水体,进而导致新桥水道上段尖端动力减弱而沉积物变细。

  • 图  1   中国海域基岩油气藏分布图

    Figure  1.   Distribution map of basement rock hydrocarbon reservoirs in China Sea

    图  2   中国海域基岩油气藏模式

    Figure  2.   The model of bedrock hydrocarbon reservoir in China Sea

    表  1   全球主要基岩油气藏分布特征[1-2,12-13]

    Table  1   World distribution characteristics of important basement rock hydrocarbon reservoirs

    国家构造位置油气藏类型油气田名称盆地类型地层时代储层岩性
    埃及蔡特盆地油藏蔡特湾裂陷盆地火成岩+变质岩
    利比亚苏尔特盆地油藏拿法拉-奥季拉裂陷盆地花岗岩
    中国酒西盆地油气藏鸭儿峡前陆盆地S变质岩
    中国下辽河盆地油气藏兴隆台裂陷盆地Ar砾岩+花岗岩
    中国渤海湾盆地油气藏义和庄裂陷盆地O石灰岩
    中国辽河盆地油藏东胜堡裂陷盆地Ar变质岩
    中国渤海湾盆地油气藏任丘裂陷盆地Z白云岩
    中国渤海湾盆地油气藏渤中19-6裂陷盆地Ar变质岩
    中国渤海湾盆地油气藏渤中13-2裂陷盆地Ar变质岩
    中国海拉尔盆地油藏布达特群裂陷盆地Ar碎屑岩
    中国塔里木盆地油气藏轮南古隆起克拉通盆地O碳酸盐岩
    印度尼西亚贾提巴朗盆地油藏贾提巴朗弧后盆地E火成岩
    印度尼西亚巴里托盆地油藏丹戎前陆盆地E火成岩+变质岩
    越南湄公河盆地油气藏白虎、龙裂陷盆地花岗岩
    越南万安盆地油藏大熊裂陷盆地E花岗岩
    美国洛杉矶盆地油藏爱迪生走滑盆地J变质岩+火成岩
    美国堪萨斯隆起油藏克拉福特-普菩萨中央隆起灰岩+石英岩
    美国堪萨斯隆起油藏林华尔中央隆起石英岩
    美国洛杉矶盆地油藏威明顿断陷盆地J片岩
    委内瑞拉拉波开波盆地油藏拉巴斯-马拉前陆盆地K石灰岩
    阿尔及利亚三叠盆地油藏哈西迈萨乌德裂陷盆地石英砂岩
    下载: 导出CSV

    表  3   中国海域典型基岩油气藏[2,25-27]

    Table  3   Statistics of bedrock hydrocarbon reservoirs in offshore China [2,25-27]

    基岩油气藏构造岩性
    蓬莱9-1潜山油藏庙西北凸起中生界二长花岗岩
    锦州25-2S潜山油藏辽西北凸起太古界二长片麻岩、
    斜长片麻岩
    曹妃甸11-6潜山油藏沙垒田凸起混合化黑云母花岗岩
    曹妃甸18-2潜山凝析气藏沙垒田凸起二长花岗岩
    渤中26-2潜山凝析气藏渤海凸起英云闪长岩、
    花岗闪长岩
    锦州20-2凝析气藏辽西低凸起混合岩、碎屑岩
    渤中19-6凝析气藏渤中凹陷太古界变质岩
    渤中13-2油气田渤中凹陷太古界变质岩
    渤中28-1油气田渤南凸起古生界碳酸盐岩
    岐口17-9油气田岐口凹陷碎屑岩
    428W、428E油气田石臼坨凸起古生界碳酸盐岩
    曹妃甸2-1油气田沙垒田凸起古生界碳酸盐岩
    涠6-1、涠10-3N等油气田涠西南凹陷古生界碳酸盐岩
    惠州26-6油气田惠州凹陷中生界花岗岩
    永乐8-1油气田松南低凸起中生界花岗岩
    大熊油田万安盆地中生界花岗岩
    下载: 导出CSV
  • [1] 杨飞, 徐守余. 全球基岩油气藏分布及成藏规律[J]. 特种油气藏, 2011, 18(1):7-11 doi: 10.3969/j.issn.1006-6535.2011.01.002

    YANG Fei, XU Shouyu. Global distribution and hydrocarbon accumulation pattern of basement reservoirs [J]. Special Oil and Gas Reservoirs, 2011, 18(1): 7-11. doi: 10.3969/j.issn.1006-6535.2011.01.002

    [2] 龚再升. 继续勘探中国近海盆地花岗岩储层油气藏[J]. 中国海上油气, 2010, 22(4):213-220 doi: 10.3969/j.issn.1673-1506.2010.04.001

    GONG Zaisheng. Continued exploration of granitic-reservoir hydrocarbon accumulations in China offshore basins [J]. China Offshore Oil and Gas, 2010, 22(4): 213-220. doi: 10.3969/j.issn.1673-1506.2010.04.001

    [3] 施和生, 王清斌, 王军, 等. 渤中凹陷深层渤中19-6构造大型凝析气田的发现及勘探意义[J]. 中国石油勘探, 2019, 24(1):40-49

    SHI Hesheng, WANG Qingbin, WANG Jun, et al. Discovery and exploration significance of large condensate gas fields in BZ19-6 structure in deep Bozhong sag [J]. China Petroleum Exploration, 2019, 24(1): 40-49.

    [4] 杨辉, 文百红, 张研, 等. 准噶尔盆地火山岩油气藏分布规律及区带目标优选——以陆东—五彩湾地区为例[J]. 石油勘探与开发, 2009, 36(4):419-427 doi: 10.3321/j.issn:1000-0747.2009.04.002

    YANG Hui, WEN Baihong, ZHANG Yan, et al. Distribution of hydrocarbon traps in volcanic rocks and optimization for selecting exploration prospects and targets in Junggar Basin: Case study in Ludong-Wucaiwan area, NW China [J]. Petroleum Exploration and Development, 2009, 36(4): 419-427. doi: 10.3321/j.issn:1000-0747.2009.04.002

    [5] 李欣, 闫伟鹏, 崔周旗, 等. 渤海湾盆地潜山油气藏勘探潜力与方向[J]. 石油实验地质, 2012, 34(2):140-144+152 doi: 10.3969/j.issn.1001-6112.2012.02.007

    LI Xin, YAN Weipeng, CUI Zhouqi, et al. Prospecting potential and targets of buried-hill oil and gas reservoirs in Bohai Bay Basin [J]. Petroleum Geology & Experiment, 2012, 34(2): 140-144+152. doi: 10.3969/j.issn.1001-6112.2012.02.007

    [6] 陈建文, 梁杰, 张银国, 等. 中国海域油气资源潜力分析与黄东海海域油气资源调查进展[J]. 海洋地质与第四纪地质, 2019, 39(6):1-29

    CHEN Jianwen, LIANG Jie, ZHANG Yinguo, et al. Regional evaluation of oil and gas resources in offshore China and exploration of marine Paleo-Mesozoic oil and gas in the Yellow Sea and East China Sea [J]. Marine Geology & Quaternary Geology, 2019, 39(6): 1-29.

    [7] 谢玉洪, 高阳东. 中国海油近期国内勘探进展与勘探方向[J]. 中国石油勘探, 2020, 25(1):20-30 doi: 10.3969/j.issn.1672-7703.2020.01.003

    XIE Yuhong, GAO Yangdong. Recent domestic exploration progress and direction of CNOOC [J]. China Petroleum Exploration, 2020, 25(1): 20-30. doi: 10.3969/j.issn.1672-7703.2020.01.003

    [8]

    Walters R E. Oil production from fractured pre-Cambrian basement rocks in central Kansas [J]. AAPG Bull., 1953, 37(2): 300-313.

    [9] 吴伟涛, 高先志, 刘兴周, 等. 基岩油气藏的形成与分布[J]. 地质科技情报, 2014, 33(1):106-113

    WU Weitao, GAO Xianzhi, LIU Xingzhou, et al. Formation and distribution of basement rock reservoir [J]. Geological Science and Technology Information, 2014, 33(1): 106-113.

    [10] 陈发景, 李明诚. 基岩油藏的区域地质背景和特征[C]∥中国石油学会石油地质专业委员会. 基岩油气藏. 北京: 石油工业出版社, 1987: 15-22.

    CHEN Fajing, LI Mingcheng. Regional geological background and characteristics of basement rock reservoirs[C] // Petroleum Geology Professional Committee of China Petroleum Institute. Basement Rock Reservoirs. Beijing: Petroleum Industry Press, 1987: 15-22.

    [11] 甘克文. 基岩油藏的成因和分布与盆地的关系[C]∥中国石油学会石油地质专业委员会. 基岩油气藏. 北京: 石油工业出版社, 1987: 23-31.

    GAN Kewen. Relationship between genesis and distribution of basement rock reservoirs and basin[C] // Petroleum Geology Professional Committee of China Petroleum Institute. Basement Rock Reservoirs. Beijing: Petroleum Industry Press, 1987: 23-31.

    [12] 任丽华, 林承焰, 刘菊, 等. 海拉尔盆地苏德尔特构造带布达特群碎屑岩潜山油藏类型划分[J]. 中国石油大学学报: 自然科学版, 2007, 31(2):9-12

    REN Lihua, LIN Chengxian, LIU Ju, et al. Classification of reservoir types of Budate group in clastic buried hills of Sudeerte structural zone, Hailaer Basin [J]. Journal of China University of Petroleum, 2007, 31(2): 9-12.

    [13] 何君, 韩剑发, 潘文庆. 轮南古隆起奥陶系潜山油气成藏机理[J]. 石油学报, 2007, 28(2):44-48 doi: 10.3321/j.issn:0253-2697.2007.02.008

    HE Jun, HAN Jianfa, PAN Wenqing. Hydrocarbon accumulation mechanism in the giant buried hill of Ordovician in Lunnan paleohigh of Tarim Basin [J]. Acta Petrolei Sinica, 2007, 28(2): 44-48. doi: 10.3321/j.issn:0253-2697.2007.02.008

    [14] 朱伟林, 吴景富, 张功成, 等. 中国近海新生代盆地构造差异性演化及油气勘探方向[J]. 地学前缘, 2015, 22(1):88-101

    ZHU Weilin, WU Jingfu, ZHANG Gongcheng, et al. Discrepancy tectonic evolution and petroleum exploration in China offshore Cenozoic basins [J]. Earth Science Frontiers, 2015, 22(1): 88-101.

    [15] 吴庆勋, 高坤顺, 吴昊明, 等. 渤海海域前新生代基底特征及其油气勘探意义[J]. 现代地质, 2019, 33(4):802-810

    WU Qingxun, GAO Kunshun, WU Haoming, et al. Characteristics of Pre-Cenozoic basement in bohai sea and its significance in oil and gas exploration [J]. Geoscience, 2019, 33(4): 802-810.

    [16] 杨传胜, 李刚, 杨长清, 等. 东海陆架盆地及其邻域岩浆岩时空分布特征[J]. 海洋地质与第四纪地质, 2012, 32(3):125-133

    YANG Chuansheng, LI Gang, YANG Changqing, et al. Temporal and Spatial distribution of the igneous rocks in the east China Sea Shelf Basin and its adjacent regins [J]. Marine Geology & Quaternary Geology, 2012, 32(3): 125-133.

    [17] 徐发, 张建培, 张田, 等. 中国近海主要大中型含油气盆地形成条件类比研究[J]. 海洋石油, 2012, 32(3):1-8 doi: 10.3969/j.issn.1008-2336.2012.03.001

    XU Fa, ZHANG Jianpei, ZHANG Tian, et al. Comparison of the geologic conditions for forming of the main offshore petroliferous basins in china [J]. Offshore Oil, 2012, 32(3): 1-8. doi: 10.3969/j.issn.1008-2336.2012.03.001

    [18] 李伍志, 王璞珺, 张功成, 等. 珠江口盆地深部基底地层的地震时深转换研究[J]. 地球物理学报, 2011, 54(2):449-456 doi: 10.3969/j.issn.0001-5733.2011.02.023

    LI Wuzhi, WANG Pujun, ZHANG Gongcheng, et al. Researches on time-depth conversion of deep-seated basal strata of Pearl River Mouth Basin [J]. Chinese Journal of Geophysics, 2011, 54(2): 449-456. doi: 10.3969/j.issn.0001-5733.2011.02.023

    [19] 尤龙, 王璞珺, 吴景富, 等. 莺歌海盆地前新生代基底特征[J]. 世界地质, 2014, 33(3):511-523 doi: 10.3969/j.issn.1004-5589.2014.03.001

    YOU Long, WANG Pujun, WU Jingfu, et al. Basement characteristics of Yinggehai Basin in Pre-Cenozoic [J]. Global Geology, 2014, 33(3): 511-523. doi: 10.3969/j.issn.1004-5589.2014.03.001

    [20] 刘兵, 吴世敏, 龙根元, 等. 琼东南盆地基底特征及其构造演化[J]. 地球物理学进展, 2012, 27(4):1465-1475 doi: 10.6038/j.issn.1004-2903.2012.04.021

    LIU Bing, WU Shimin, LONG Genyuan, et al. Basement characteristics and tectonic evolition in Qingdongnan Basin [J]. Progress in Geophysics, 2012, 27(4): 1465-1475. doi: 10.6038/j.issn.1004-2903.2012.04.021

    [21] 董贺平, 肖国林, 何书峰, 等. 中国海域油气勘探开发数据库与形势图成果结题报告[R]. 青岛: 青岛海洋地质研究所, 2016.

    DONG Heping, XIAO Guolin, HE Shufeng. Completion report of oil and gas exploration and development database and situation map in China Sea[R]. Qingdao: Qingdao Institute of Marine Geology, 2016.

    [22] 徐长贵, 侯明才, 王粤川, 等. 渤海海域前古近系深层潜山类型及其成因[J]. 天然气工业, 2019, 39(1):21-32 doi: 10.3787/j.issn.1000-0976.2019.01.003

    XU Changgui, HOU Mingcai, WANG Yuechuan, et al. Type and genesis of Pre-Tertiary deep buried hills in the Bohai Sea area [J]. Natural Gas Industry, 2019, 39(1): 21-32. doi: 10.3787/j.issn.1000-0976.2019.01.003

    [23] 纪友亮, 杜金虎, 邹伟宏, 等. 渤海湾盆地剥蚀量恢复中的综合分析法[J]. 同济大学学报: 自然科学版, 2004, 32(5):617-621

    JI Youliang, DU Jinhu, ZOU Weihong, et al. Application of synthetical analysis method for seeking eroded strata thickness of Mesozoic in Bohai Bay Basin [J]. Journal of Tongji University: Natural Science, 2004, 32(5): 617-621.

    [24] 刘长江, 桑树勋, 陈世悦, 等. 渤海湾盆地石炭—二叠纪沉积作用与储层形成[J]. 天然气工业, 2008, 28(4):22-25 doi: 10.3787/j.issn.1000-0976.2008.04.006

    LIU Changjiang, SANG Shuxun, CHEN Shiyue, et al. Permo-Carboniferous sedimentation and reservoiring in the Bohai Bay Basin [J]. Natural Gas Industry, 2008, 28(4): 22-25. doi: 10.3787/j.issn.1000-0976.2008.04.006

    [25] 邓运华. 渤海大中型潜山油气田形成机理与勘探实践[J]. 石油学报, 2015, 36(3):253-261 doi: 10.7623/syxb201503001

    DENG Yunhua. Formation mechanism and exploration practice of large-medium buried-hill oil fields in Bohai Sea [J]. Acta Petrolei Sinica, 2015, 36(3): 253-261. doi: 10.7623/syxb201503001

    [26] 罗伟, 蔡俊杰, 万琼华, 等. 惠州凹陷花岗岩潜山储层条件分析及石油地质意义[J]. 海洋地质与第四纪地质, 2019, 39(4):126-135

    LUO Wei, CAI Junjie, WANG Qionghua, et al. Reservoir condition analysis of a buried granite hill in the Huizhou Depression and its petroleum geological significance [J]. Marine Geology & Quaternary Geology, 2019, 39(4): 126-135.

    [27] 田立新, 施和生, 刘杰, 等. 珠江口盆地惠州凹陷新领域勘探重大发现及意义[J]. 中国石油勘探, 2020, 25(4):22-30 doi: 10.3969/j.issn.1672-7703.2020.04.003

    TIAN Lixin, SHI Hesheng, LIU Jie, et al. Great discovery and signifi cance of new frontier exploration in Huizhou sag, Pearl River Mouth Basin [J]. China Petroleum Exploration, 2020, 25(4): 22-30. doi: 10.3969/j.issn.1672-7703.2020.04.003

    [28] 周心怀, 项华, 于水, 等. 渤海锦州南变质岩潜山油藏储集层特征与发育控制因素[J]. 石油勘探与开发, 2005(6):17-20 doi: 10.3321/j.issn:1000-0747.2005.06.004

    ZHOU Xinhuai, XIANG Hua, YU Shui, et al. Reservoir characteristics and development controlling factors of JZS Neo-Archean metamorphic buried hill oil pool in Bohai Sea [J]. Petroleum Exploration and Development, 2005(6): 17-20. doi: 10.3321/j.issn:1000-0747.2005.06.004

    [29] 孟卫工, 李晓光, 刘宝鸿. 辽河坳陷变质岩古潜山内幕油藏形成主控因素分析[J]. 石油与天然气地质, 2007, 28(5):584-589 doi: 10.3321/j.issn:0253-9985.2007.05.007

    MENG Weigong, LI Xiaoguang, LIU Baohong. Main factors controlling the formation of interior reservoirs in the metamorphic palaeo-buried hills of the Liaohe Depression [J]. Oil & Gas Geology, 2007, 28(5): 584-589. doi: 10.3321/j.issn:0253-9985.2007.05.007

    [30] 邓运华, 彭文绪. 渤海锦州25-1S混合花岗岩潜山大油气田的发现[J]. 中国海上油气, 2009, 21(3):145-150 doi: 10.3969/j.issn.1673-1506.2009.03.001

    DENG Yunhua, PENG Wenxu. Discovering large buried-hill oil and gas fields of migmatitic granite on Jinzhou 25-1S in Bohai sea [J]. China Offshore Oil and Gas, 2009, 21(3): 145-150. doi: 10.3969/j.issn.1673-1506.2009.03.001

    [31] 谢文彦, 孟卫工, 李晓光, 等. 辽河坳陷基岩油气藏[M]. 石油工业出版社, 2012.

    XIE Wenyan, MENG Weigong, LI Xiaoguang, et al. Reservoirs in Liaohe Depression[M]. Beijing: Petroleum Industry Press, 2012.

    [32] 降栓奇, 陈彦君, 赵志刚, 等. 二连盆地潜山成藏条件及油藏类型[J]. 岩性油气藏, 2009, 21(4):22-27 doi: 10.3969/j.issn.1673-8926.2009.04.004

    JIANG Shuanqi, CHEN Yanjun, ZHAO Zhigang, et al. Reservoir accumulation conditions and patterns of buried hill in Erlian Basin [J]. Lithologic Reservoirs, 2009, 21(4): 22-27. doi: 10.3969/j.issn.1673-8926.2009.04.004

    [33] 陈文玲, 周文. 含油气盆地重要勘探领域——基岩油气藏[J]. 西南石油大学学报: 自然科学版, 2012, 34(5):17-24

    CHEN Wenling, ZHOU Wen. Important exploration areas in petaliferous basins the basement hydrocarbon reservoirs [J]. Journal of Southwest Petroleum University: Science & Technology Edition, 2012, 34(5): 17-24.

    [34] 伍友佳, 刘达林. 中国变质岩火山岩油气藏类型及特征[J]. 西南石油学院学报, 2004, 26(4):1-4

    WU Youjia, LIU Dalin. The reservoir type and characterization of metamorphic and volcanic rock of China [J]. Journal of Southwest Petroleum Institute, 2004, 26(4): 1-4.

    [35] 赵贤正, 吴兆徽, 闫宝义, 等. 冀中坳陷潜山内幕油气藏类型与分布规律[J]. 新疆石油地质, 2010, 31(1):4-6

    ZHAO Xianzheng, WU Zhaohui, YAN Baoyi, et al. Distributionand types of buried hill oil-gas reservoir in Jizhong Depression [J]. Xinjiang Petroleum Geology, 2010, 31(1): 4-6.

    [36] 赵树栋. 任丘碳酸盐岩油藏[M]. 北京: 石油工业出版社, 1997.

    ZHAO Shudong. The Carbonate Reseroirs In Renqiu Oilfield[M]. Beijing: Petroleum Industry Press, 1997.

    [37] 郑荣才, 胡诚, 董霞. 辽西凹陷古潜山内幕结构与成藏条件分析[J]. 岩性油气藏, 2009, 12(4):10-18 doi: 10.3969/j.issn.1673-8926.2009.04.002

    ZHENG Rongcai, HU Cheng, DONG Xia, et al. Analysis of internal structure and reservoir-forming conditions of palaeo-buried hill, Western Liaohe Sag [J]. Lithologic Reservoirs, 2009, 12(4): 10-18. doi: 10.3969/j.issn.1673-8926.2009.04.002

    [38] 潘钟祥. 潘钟祥石油地质文选[M]. 北京: 石油工业出版社, 1989.

    PAN Zhongxiang. Selected Works of Pan Zhongxiang's Petroleum Geology[M]. Beijing: Petroleum Industry Press, 1989.

    [39] 李友川, 邓运华, 张功成. 中国近海海域烃源岩和油气的分带性[J]. 中国海上油气, 2012, 24(1):6-12 doi: 10.3969/j.issn.1673-1506.2012.01.002

    LI Youchuan, DENG Yunhua, ZHANG Gongcheng. Zoned distribution of source rocks and hydrocarbon offshore China [J]. China Offshore Oil and Gas, 2012, 24(1): 6-12. doi: 10.3969/j.issn.1673-1506.2012.01.002

    [40] 薛永安, 韦阿娟, 彭靖淞, 等. 渤海湾盆地渤海海域大中型油田成藏模式和规律[J]. 中国海上油气, 2016, 28(3):10-19

    XUE Yongan, WEI Ajuan, PENG Jingsong, et al. Accumulation models and regularities of large-middle scale oilfields in Bohai Sea, Bohai Bay Basin [J]. China Offshore Oil and Gas, 2016, 28(3): 10-19.

    [41] 肖述光, 吕丁友, 侯明才, 等. 渤海海域西南部中生代构造演化过程与潜山形成机制[J]. 天然气工业, 2019, 39(5):34-44 doi: 10.3787/j.issn.1000-0976.2019.05.004

    XIAO Shuguang, LV Dingyou, HOU Mingcai, et al. Mesozoic tectonic evolution and buried hill formation mechanism in the southwestern Bohai Sea [J]. Natural Gas Industry, 2019, 39(5): 34-44. doi: 10.3787/j.issn.1000-0976.2019.05.004

    [42] 赵顺兰, 赵亚卓, 杨希冰, 等. 北部湾盆地涠西南凹陷碳酸盐岩潜山储层特征与主控因素分析[J]. 海洋学报, 2018, 40(9):43-53

    ZHAO Shunlan, ZHAO Yazhuo, YANG Xibing, et al. An analysis on the characteristics and main controlling factors of reservoir in carbonate buried hill in the Weixi'nan Sag, Beibuwan Basin [J]. Haiyang Xuebao, 2018, 40(9): 43-53.

    [43] 周建生, 杨长春. 渤海湾地区前第三系构造样式分布特征研究[J]. 地球物理学进展, 2007, 22(5):1416-1426 doi: 10.3969/j.issn.1004-2903.2007.05.012

    ZHOU Jiansheng, YANG Changchun. A study of pre-tertiary structural characteristics and evolution in the Bohai bay region [J]. Progress in Geophysics, 2007, 22(5): 1416-1426. doi: 10.3969/j.issn.1004-2903.2007.05.012

    [44] 漆家福, 张一伟, 陆克政, 等. 渤海湾盆地新生代构造演化[J]. 石油大学学报: 自然科学版, 1995, 19(S1):1-6

    QI Jiafu, ZHANG Yiwei, LU Kezheng, et al. Genozoic Tectonic evolution in Bohai Bay Basin province [J]. Journal of the University of Petroleum, China, 1995, 19(S1): 1-6.

    [45] 蒋有录, 叶涛, 张善文, 等. 渤海湾盆地潜山油气富集特征与主控因素[J]. 中国石油大学学报: 自然科学版, 2015, 39(3):20-29

    JIANG Youlu, YE Tao, ZHANG Shanwen, et al. Enrichment characteristics and main controlling factors of hydrocarbon in buried hill of Bohai Bay Basin [J]. Journal of China University of Petroleum(Edition of Natural Science), 2015, 39(3): 20-29.

    [46] 何家雄, 张伟, 颜文, 等. 中国近海盆地幕式构造演化及成盆类型与油气富集规律[J]. 海洋地质与第四纪地质, 2014, 34(2):121-134

    HE Jiaxiong, ZHANG Wei, YAN Wen, et al. Episodic tectonic evolution, basin types and hydrocarbon accumulation in Chinese marginal basins [J]. Marine Geology & Quaternary Geology, 2014, 34(2): 121-134.

    [47] 赵贤正, 王权, 金凤鸣, 等. 冀中坳陷隐蔽型潜山油气藏主控因素与勘探实践[J]. 石油学报, 2012, 33(S1):71-79 doi: 10.7623/syxb2012S1009

    ZHAO Xianzheng, WANG Quan, JIN Fengming, et al. Main controlling factors and exploration practice of subtle buried-hill hydrocarbon reservoir in Jizhong depression [J]. Acta Petrolei Sinica, 2012, 33(S1): 71-79. doi: 10.7623/syxb2012S1009

    [48] 王拥军, 张宝民, 王政军, 等. 渤海湾盆地南堡凹陷奥陶系潜山油气地质特征与成藏主控因素[J]. 天然气地球科学, 2012, 23(1):51-59

    WANG Yongjun, ZHANG Baomin, WANG Zhengjun, et al. Geological characteristics of Ordovician buried hill and main factors of oil/ gas accumulation in Nanpu Sag, Bohai Bay Basin, China [J]. Natural Gas Geoscience, 2012, 23(1): 51-59.

    [49] 夏庆龙, 周心怀, 王昕, 等. 渤海蓬莱9-1大型复合油田地质特征与发现意义[J]. 石油学报, 2013, 34(S2):15-23 doi: 10.7623/syxb2013S2002

    XIA Qinglong, ZHOU Xinhuai, WANG Xin, et al. Geological characteristics and discovery significance of large scale and compound oilfield of Penglai 9-1 in Bohai [J]. Acta Petrolei Sinica, 2013, 34(S2): 15-23. doi: 10.7623/syxb2013S2002

    [50]

    Anirbid Sircar. Hydrocarb on production from fractured basement formations [J]. Current Science, 2004, 87(2): 147-15.

    [51] 陈更新, 王建功, 杜斌山, 等. 柴达木盆地尖北地区裂缝性基岩气藏储层特征[J]. 岩性油气藏, 2020, 32(4):36-47

    CHEN Gengxin, WANG Jiangong, DU Binshan, et al. Characteristics of fractured bedrock gas reservoir in Jianbei gas field, Qaidam Basin [J]. Lithologic Reservoirs, 2020, 32(4): 36-47.

    [52] 李尧, 张笑桀, 刘恭利, 等. 渤海油田渤中A构造太古宙潜山裂缝储层预测[J]. 物探与化探, 2021, 45(1):37-45

    LI Yao, ZHANG Xiaojie, LIU Gongli, et al. The prediction of Archean buried hill fracture reservoir in BZ-A structure of the Bohai oilfield [J]. Geophysical and Geochemical Exploration, 2021, 45(1): 37-45.

    [53] 刘华, 蒋有录, 陈涛. 东营凹陷辛东地区有效输导体系及成藏模式[J]. 中国石油大学学报: 自然科学版, 2008, 32(4):13-18

    Liu Hua, Jiang Youlu, Chen Tao. Effective migration pathways and Pool form model of Xindong area in Dongying Depression [J]. Journal of China University of Petroleum: Edition of Natural Science, 2008, 32(4): 13-18.

    [54] 何登发. 不整合面的结构与油气聚集[J]. 石油勘探与开发, 2007, 34(2):142-149+201 doi: 10.3321/j.issn:1000-0747.2007.02.003

    HE Dengfa. Structure of unconformity and its control on hydrocarbon accumulation [J]. Petroleum Exploration and Development, 2007, 34(2): 142-149+201. doi: 10.3321/j.issn:1000-0747.2007.02.003

    [55] 吴孔友, 邹才能, 査明, 等. 不整合结构对地层油气藏形成的控制作用研究[J]. 大地构造与成矿学, 2012, 36(4):518-524 doi: 10.3969/j.issn.1001-1552.2012.04.005

    WU Kongyou, ZHOU Caineng, CHA Ming, et al. Controls of unconformity on the formation of stratigraphic reservoirs [J]. Geotectonica et Metallogenia, 2012, 36(4): 518-524. doi: 10.3969/j.issn.1001-1552.2012.04.005

    [56] 王建强, 赵青芳, 董贺平, 等. 海域油气勘探开发形势分析与战略研究成果报告[R]. 青岛海洋地质研究所, 2019.

    WANG Jiangqiang, ZHAO Qingfang, DONG Heping, et al. Analysis of oil and gas exploration and development situation in offshore and report on strategic research results[R]. Qingdao Institute of Marine Geology, 2019.

    [57]

    Hu S Y, Wu H, Liang X J, et al. A preliminary study on the eco-environmental geological issue of in-situ oil shale mining by a physical model[J]. Chemosphere, 2021, doi: 10.1016/j.chemosphere.2021.131987.

    [58] 何将启, 梁世友, 赵永强, 等. 北黄海盆地地质构造特征及其在油气勘探中的意义[J]. 海洋地质与第四纪地质, 2007, 27(2):101-105

    HE Jiangqi, LIANG Shiyou, ZHAO Yongqiang, et al. Characteristics of geologic structures of the North Yellow Sea Basin: implications for petroleum explorations [J]. Marine Geology & Quaternary Geology, 2007, 27(2): 101-105.

    [59] 张鹏辉, 梁杰, 陈建文, 等. 中国叠合盆地深部海相地层油气保存条件剖析[J]. 海洋地质前沿, 2019, 35(1):1-11

    ZHANG Penghui,LIANG Jie, CHEN Jianwen, et al. Hydrocarbon preservation analysis for marine strata in superimposed basins of China [J]. Marine Geology Frontiers, 2019, 35(1): 1-11.

    [60] 肖国林, 董贺平, 杨长清, 等. 我国近海非常规油气资源勘探态势及其地质有利性[J]. 海洋地质前沿, 2020, 36(7):73-76

    XIAO Guolin,DONG Heping,YANG Changqing,et al. Exploration status and geological advantages of unconventional oil and gas resources in China Offshore [J]. Marine Geology Frontiers, 2020, 36(7): 73-76.

    [61] 徐守立, 尤丽, 代龙, 等. 北部湾盆地涠西南凹陷灰岩潜山储层特征及分布规律[J]. 海洋地质与第四纪地质, 2020, 40(1):94-103

    XU Shouli, YOU Li, DAI Long, et al. Characteristics of limestone buried-hills and their distribution in the Weixinan Depression of the Beibu Gulf Basin [J]. Marine Geology & Quaternary Geology, 2020, 40(1): 94-103.

  • 期刊类型引用(8)

    1. 关慧心,赵明辉,黄瑞芳,许鹤华. 海下地质储氢技术研究进展及挑战. 热带海洋学报. 2025(02): 1-17 . 百度学术
    2. 帕哈丁·麦麦提依力,韦波,李鑫,田继军,张紫昭. 沙帐断褶带巴山组火山岩储层特征及影响因素. 西南石油大学学报(自然科学版). 2025(02): 70-83 . 百度学术
    3. 何泽俊. 基于元素录井资料的潜山风化内幕带随钻划分新方法——以珠江口盆地陆丰7-9花岗岩类潜山为例. 化学工程与装备. 2024(05): 8-10+15 . 百度学术
    4. 陈建宏,肖菲,栾锡武. 东南亚地区裂谷作用对油气成藏组合的控制. 海洋地质前沿. 2023(03): 20-29 . 百度学术
    5. 汪锴,王根厚,贾庆军,张笑. 琼东南盆地深水区松南—宝岛凹陷的构造演化及其与油气成藏关系. 现代地质. 2023(02): 245-258 . 百度学术
    6. 陈建文,杨长清,张莉,钟广见,王建强,吴飘,梁杰,张银国,蓝天宇,薛路. 中国海域前新生代地层分布及其油气勘查方向. 海洋地质与第四纪地质. 2022(01): 1-25 . 本站查看
    7. 王建强,梁杰,陈建文,龚建明,董贺平,施剑,杨传胜,廖晶,孙晶,李森. 波斯湾地区油气田形成条件、勘探潜力及中国油公司发展对策. 地球科学与环境学报. 2022(02): 298-311 . 百度学术
    8. 刘曾勤. 东营凹陷南坡东段油气成藏模式及勘探潜力. 海洋地质前沿. 2022(07): 57-62 . 百度学术

    其他类型引用(3)

图(2)  /  表(4)
计量
  • 文章访问数:  24991
  • HTML全文浏览量:  919
  • PDF下载量:  134
  • 被引次数: 11
出版历程
  • 收稿日期:  2021-03-11
  • 修回日期:  2021-04-19
  • 网络出版日期:  2021-12-19
  • 刊出日期:  2021-12-27

目录

/

返回文章
返回