帕里西维拉海盆西缘中段铁锰结核的地球化学特征和成因类型

黄威, 胡邦琦, 徐磊, 宋维宇, 丁雪, 郭建卫, 崔汝勇, 虞义勇

黄威, 胡邦琦, 徐磊, 宋维宇, 丁雪, 郭建卫, 崔汝勇, 虞义勇. 帕里西维拉海盆西缘中段铁锰结核的地球化学特征和成因类型[J]. 海洋地质与第四纪地质, 2021, 41(1): 199-209. DOI: 10.16562/j.cnki.0256-1492.2020101501
引用本文: 黄威, 胡邦琦, 徐磊, 宋维宇, 丁雪, 郭建卫, 崔汝勇, 虞义勇. 帕里西维拉海盆西缘中段铁锰结核的地球化学特征和成因类型[J]. 海洋地质与第四纪地质, 2021, 41(1): 199-209. DOI: 10.16562/j.cnki.0256-1492.2020101501
HUANG Wei, HU Bangqi, XU Lei, SONG Weiyu, DING Xue, GUO Jianwei, Cui Ruyong, YU Yiyong. Geochemical characteristics and genesis of the ferromanganese nodules in the middle western margin of the Parece Vela Basin[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 199-209. DOI: 10.16562/j.cnki.0256-1492.2020101501
Citation: HUANG Wei, HU Bangqi, XU Lei, SONG Weiyu, DING Xue, GUO Jianwei, Cui Ruyong, YU Yiyong. Geochemical characteristics and genesis of the ferromanganese nodules in the middle western margin of the Parece Vela Basin[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 199-209. DOI: 10.16562/j.cnki.0256-1492.2020101501

帕里西维拉海盆西缘中段铁锰结核的地球化学特征和成因类型

基金项目: 国家自然科学基金面上项目“菲律宾海盆底层水体性质对中更新世气候转型的响应机制”(41976192);国家自然科学基金重点项目 “冲绳海槽海底冷泉—热液相互作用及资源效应”(91858208);中国地质调查局地质调查二级项目(DD20191010,DD20190581);青岛海洋科学与技术试点国家实验室海洋矿产资源评价与探测技术功能实验室自主课题“帕劳海脊两侧海盆锰结核的铂族元素和铼锇同位素记录的海脊形成演化事件”(MMRZZ201808)
详细信息
    作者简介:

    黄威(1981―),男,高级工程师,研究方向为海底成矿作用与物质循环,E-mail:huangw@mail.cgs.gov.cn

    通讯作者:

    胡邦琦(1983—),男,研究员,研究方向为海洋沉积与矿产资源,E-mail:bangqihu@gmail.com

  • 中图分类号: P736.4, P744

Geochemical characteristics and genesis of the ferromanganese nodules in the middle western margin of the Parece Vela Basin

  • 摘要: 深海铁锰结核能有效记录海域内重大地质事件和气候环境信息,且富含多种金属物质极具资源潜力,因而广受关注。通过对帕里西维拉海盆西侧边缘中段海域内新发现的12个站位铁锰结核的地球化学特征研究,发现与全球主要成矿区内的铁锰结核相比,Mn及主要赋存在锰氧化物中的Ni、Cu、Mo的含量较低(分别为8.20%~25.24%、0.11%~0.54%、0.08%~0.31%和0.01%~0.03%),主要由铁的羟基氧化物吸附的Ti,以及还会与钙磷酸盐发生耦合置换反应的REY的含量较高(分别为0.45%~1.88%、0.04%~0.19%),含量中等的Co(0.06%~0.27%)在铁锰相物质和硅酸盐相内核中分散分布。样品REY的标准化配分模式显示出明显一致的Ce正异常和Y负异常。铁锰结核从海水中捕获的Ce3+容易被氧化成难溶且不具有活性的Ce4+,Y则在结核内存在形式不稳定,容易发生解吸,致使Ce和Y分别呈现出相对于其他REY逐步富集和亏损的特征。研究区形成时间较晚,铁锰结核生长发育的时间不足,且四周地形较高,缺乏与外界连通的水道,阻碍了诸如来自南极的富氧底层流的大规模进入。区域内结核样品主要为水成型,成岩成因组分的供给太低,降低了主要有用组分的含量。以上诸多因素可能会导致区域内的铁锰结核难以富集成矿。
    Abstract: Deep-sea ferromanganese nodules have been widely recognized as important records of the geological events and the climatic and environmental changes of deep oceans. They are also commonly regarded as potential resources in near future for their richness in a variety of valuable metals. In this paper, 12 stations of ferromanganese nodule are newly discovered from the middle of western margin of the Parece Vela Basin and samples collected and analyzed for their geochemical characteristics. These ferromanganese nodules are low in Mn, Ni, Cu and Mo (8.20%~25.24%, 0.11%~0.54%, 0.08%~0.31% and 0.01%~0.03%, respectively), high in Ti, REY (0.45%~1.88% and 0.04%~0.19%, respectively)and moderate in Co (0.06%~0.27%) when compared to the high potential areas of the global oceans such as CCZ, CIOB, PB and CI. The Ni, Cu and Mo are strongly enriched in manganese oxides, but the Ti and REY are mainly absorbed from ocean water by the iron oxyhydroxides, and the REY3+ with a monovalent element of similar size are easily replaced through coupled substitution by Ca2+ from the Ca phosphates in the iron oxyhydroxides. The Ce and Y show pronounced positive and negative anomalies in the REYSN patterns, respectively. The Ce3+ oxidation and Ce4+ fixation occur easily on the surface of the ferromanganese nodules. Once the Ce3+ in the ferromanganese nodules is oxidized to Ce4+, it is usually less mobile and will participate less in exchange reactions with the surrounding seawater. With time, this oxidative scavenging of Ce results in the preferential accumulation of redox-sensitive Ce relative to the non-redox-sensitive REY, but part of the Y is desorbed easily from the ferromanganese nodule surface, which produces positive Ce anomalies and negative Y anomalies. The research area is relatively young, and the growth of the ferromanganese nodules is not sufficient. Moreover, the surrounding terrain of the Parece Vela Basin is relatively high and there are less gateways connecting with the outside, which prevents the large-scale entry of the cold, dense and dissolved oxygen-rich bottom water such as Antarctic bottom water. The ferromanganese nodules of the region is dominated by hydrogenetic precipitation. However, the supply of the diagenetic precipitation components is too low, which will reduce the contents of valuable metals in the research aera. Therefore, it is low in resource potential.
  • 厚层辫状河道储集层内部发育多种类型隔夹层,各隔夹层形态和规模相差大,而隔夹层展布的定量研究对厚层砂岩中骨架河道刻画和河道期次划分意义重大。近年来,国内外学者多侧重于露头和现代沉积的河流相储层构型研究,对地下储层构型的研究多集中于曲流河储层,有关辫状河道储层的定量表征研究较少[1-5]

    西湖凹陷A构造其花港组主力目的层H3砂层组发育厚层辫状河道砂岩,渗透率多为(0.1~10)×10−3 μm2,储层质量较差,为低渗—特低渗储层。多口井取心资料证实,物性整体随着埋深的加大而变差,横向及纵向非均质性强,因此,寻找优质储层发育区是产能释放、储量升级的攻关方向。

    前人定性评价认为强水动力、稳定、低摆动条件下的骨架河道砂体为优质储层发育区,但骨架河道的期次、连通性及其展布范围尚需进一步研究。因此,本文引入灰色理论进行半定量研究,通过隔夹层的识别,半定量划分河道砂体期次,再利用与工区构造、沉积背景相似地区的经验公式,计算单河道宽厚比和砂地比,明确河道连通性及展布范围,为下一步勘探开发指明方向[6-9]

    西湖凹陷位于东海陆架盆地东北部,是隶属于东海陆架盆地的次级构造单元,呈NNE向展布,东临钓鱼岛隆褶带,西临海礁隆起,北部为虎皮礁隆起。自西向东可划分出西斜坡、中央反转构造带以及东部断阶带[10-13]图1)。西湖凹陷新生代经历基隆运动、瓯江运动、玉泉运动、龙井运动和冲绳海槽运动,将新生代自下而上分为断陷期、拗陷期和区域沉降期3大构造演化阶段,发育始新统平湖组、渐新统花港组、中新统龙井组、玉泉组、柳浪组、上新统三潭组与更新统东海群等地层,其中本次研究的主要目的层位为渐新统花港组[13-17]表1)。花港组自下而上发育H12—H1砂层组,A构造气层分布在花港组H3—H9,H3为主力目的层。西湖凹陷花港组为东缘受强挤压的大型坳陷盆地充填沉积,并经历两期从坳陷冲积平原–大型轴向河流体系–湖泊三角洲体系–浅水湖泊充填演化过程。花港组下段为强坳陷次幕充填沉积,具“北高南低、北窄南宽、三源三汇多通道”的古构造地貌格局;花港组上段为裂后挤压I幕弱坳陷次幕充填沉积,该阶段继承了花下段沉积时的古构造地貌格局,但其沉积沉降中心逐渐移向坳陷中部,H5—H3砂组为低容纳空间背景下的多源汇聚大型轴向河道体系沉积;H2—H1砂组充填时为高容纳空间背景下的湖泊体系、湖泊三角洲体系沉积。

    图  1  西湖凹陷构造带位置及钻探井位
    Figure  1.  Regional tectonic pattern of the Xihu Sag

    隔夹层是沉积过程中河流水动力条件变化或沉积后成岩作用导致沉积物岩性差异而形成的,隔夹层与不同级次的构型界面相对应。一类是基准面下降晚期或上升早期,可容纳空间增量小于沉积物供给量,多见于岩性突变面,如各级冲刷面等;界面之上多发育大套泥岩隔层,测井曲线多位于基线附近,呈线形或微齿线形。另一类是基准面持续上升期,此时沉积物供给量小于可容纳空间增量,物源供给不足,沉积物以粉砂岩、泥岩等细粒为主,易形成落淤层夹层、钙质夹层等,测井曲线呈现小幅回返,自然伽马异常幅度小于1/3,电阻、声波曲线异常幅度1/3~2/3[18-19]

    西湖凹陷A构造已钻井揭示该区花港组砂层厚度大,录井资料显示H3砂层厚度可达100余米,岩性为多种粒径砂岩,稳定泥岩不发育,仅利用单一测井曲线难以准确识别隔夹层类型,严重制约了单砂体和单河道的划分,故而本文引入灰色理论,选取对泥岩敏感的GR、RT与DEN曲线值,计算各曲线的权重指数,从而拟合出表征隔夹层类型的综合评价指标IRE,同时可以看出IRE值与泥质含量有较好的对应关系(图2);通过对比取心段IRE值与隔夹层对应关系,确定工区隔夹层定量划分标准,进而得出全井段的隔夹层分布特征[20-21]

    图  2  IRE与泥质含量关系
    Figure  2.  Diagram of IRE vs mud content

    以A1井为例,通过计算可知,选取的三条曲线GR、RT、DEN权重指数分别为0.46、0.36和0.18,将原曲线值与权重指数分别相乘再求和,即可得到该井区指示隔夹层类型的综合评价指标IRE值。结合录井资料可知,H3顶部厚层泥岩隔层测井曲线回返幅度小,位于泥岩基线附近,且IRE值明显偏高,为51~110;中间砂砾岩发育段揭示落淤层夹层测井曲线回返显著,IRE值偏低,为24~45。对照IRE值,H3砂层组100 余米的厚砂岩可识别出3大套共10期河道砂体。其中渗透率在1×10−3 μm2以上的优质储层主要发育在H3b正旋回的中下部,其IRE值低,多为25~30,指示隔夹层均为落淤层,处在滞留沉积发育的上覆砂体之中,是在多次洪泛事件不断向下游移动过程中垂向加积而成的正向地貌,主要是一套以粗粒沉积为主的沉积物,岩相组合为强水动力条件下的大量含砾砂岩–中粗砂岩–中砂岩,其渗透率往往较高,可以达到1×10−3 μm2以上,判断为I类储层。H3c IRE值略高,集中在36~45,泥岩夹层逐渐增加,水动力条件减弱,岩相组合表现为少量砂质砾岩–少量块状层理中粗砂岩–大量块状及平行层理细砂岩,渗透率大于1×10−3 μm2的储层也相对减少,判断为II1类储层。而H3a IRE更高,隔夹层多泥岩层,多为洪水退却期水流波动在心滩顶部沉积物质;或者为局部动荡洪水期淹没心滩,形成类似于天然堤的沉积。由于水动力环境较弱,其沉积物粒度较细,代表弱水动力的细粒砂岩增多,物性更差,渗透率往往较低,多小于1×10−3 μm2,为II2类储层(图3表2

    图  3  A1井隔夹层识别与划分
    Figure  3.  Identification and division of barrier and interlayer in Well A1
    表  2  IRE与储层类型定量关系
    Table  2.  Quantitative relationship between IRE and reservoir type
    隔夹层类型IRE岩相组合水动力强弱渗透率/10−3 μm2储层类型
    落淤层24~37块状含砾砂岩–中粗砂岩–块状中砂岩高能水道0.3~79
    (均值 21)
    I类
    落淤层35~45少量砂质砾岩–少量块状中粗砂岩–大量块状细砂+平行细砂低能水道0.5~8
    (均值1.2)
    II1类
    泥岩层51~110平行中细砂岩–粉细砂低能水道0~1
    (均值0.4)
    II2类
    下载: 导出CSV 
    | 显示表格

    利用灰色理论对A构造其他各井进行划分与识别,并在储层隔夹层类型、厚度和频率认识的基础上,对隔夹层在剖面上的分布展开进一步的研究。在H3沉积早期,3口井隔夹层均发育较少;进入H3沉积中期,A5井和A4井隔夹层开始增多,其中A5井发育薄厚不等的隔夹层,A4井则发育厚层隔夹层;H3沉积晚期,各井的隔夹层开始丰富发育起来。但是各井间差异也尤为凸显,其中A5井的隔夹层发育频繁,纵向上反复切割砂体,且发育厚度较薄,使得储层的非均质性进一步加剧;A4井则发育大套厚层的隔层,储层基本不发育(表3图4)。

    表  3  A构造H3 IRE值与隔夹层类型划分
    Table  3.  The IRE value of A Structure and the corresponding interlayer type
    砂层期次12345678910
    A1井IRE36~4241~4554~7030~3926~3424~2927~3031~4234~4351~72
    隔夹层类型落淤层落淤层泥岩层落淤层落淤层落淤层泥岩层落淤层落淤层泥岩层
    A2井IRE37~4630~3344~7024~2927~3041~6031~4234~5341~5243~104
    隔夹层类型落淤层落淤层泥岩层落淤层落淤层泥岩层落淤层泥岩层泥岩层泥岩层
    A4井IRE43~4947~5342~8242~4731~4245~7741~7653~67
    隔夹层类型泥岩层泥岩层泥岩层落淤层落淤层泥岩层泥岩层泥岩层
    A5井IRE43~5036~5537~4538~4739~4343~5042~7152~6047~5643~92
    隔夹层类型落淤层落淤层泥岩层落淤层落淤层落淤层泥岩层落淤层泥岩层泥岩层
    下载: 导出CSV 
    | 显示表格
    图  4  A构造H3储层物性分布连井剖面
    Figure  4.  The crosswell profile of H3 reservoir physical distribution in the A Structure

    在单河道砂体识别划分的基础上,从井资料上读出各单河道的厚度,如果能得到工区河道宽厚比,就能进一步计算出单河道的展布范围。通过调研,本文建立了一套通过计算单河道满岸深度,定量刻画单河道展布规模的经验公式[22-24]

    首先通过岩心资料,统计出工区H3交错层系组的平均厚度h1为0.6 m,从而利用公式(1)、(2)计算出沙丘高度h2为1.76 m,再利用公式(3)得出单河道满岸深度h3为18.7 m,通过单河道满岸深度h3与单河道宽度wb的关系式(4),得到单河道宽度wb为726.8 m,最后得到工区宽厚比A为38.87,而该宽厚比与井上读出的各单河道砂体厚度的乘积即为各期河道横向展布范围。通过计算可知,A1井区单河道展布范围为1.1~2.3 km,符合辫状河三角洲河道宽度一般为1~3 km的经验数值。

    $$ \beta = h_{1} /1.8 $$ (1)
    $$ h_{ 2} = 5.3\beta + 0.001\beta $$ (2)
    $$ h_{3}= 11.6h_{2}^{0.84 } \quad(0.1\;{\rm m} {\text{<}} h_{3} {\text{<}} 100\;{\rm m}) $$ (3)
    $$ w_{\rm b}=11.413\times h_{3}^{1.4182 } $$ (4)
    $$ A=w_{\rm b}/h_{3 } $$ (5)

    根据野外露头研究,辫状河三角洲单河道砂体常叠置出现,并能进一步划分为叠拼式、侧拼式和孤立式3大类。各单砂体垂向厚度和砂地比与砂体横向连通性呈现正相关关系,垂向上的砂岩含量大致等于平面上单河道的密度,等于横向上砂体连通的概率,能够反映平面上单河道砂体连通的概率;单砂体垂向厚度越大,砂地比越高,单河道密度越高,横向连通概率越大[25-26]

    单河道砂体厚度大于10 m,砂地比大于80%时,GR曲线多表现为箱型,齿化程度低,单砂体连通性好,以叠拼式为主。单河道砂体厚度为5~10 m,砂地比多为50%~80%,GR曲线以钟型–齿化箱型为主,砂体连通性变差,多呈侧拼式出现。单河道砂体厚度小于5 m,砂地比小于50%时,砂体连通性更差,多为孤立砂体出现。通过统计西湖凹陷A构造砂体厚度和砂地比可知,A构造花港组H3砂层组单砂体厚度均大于10 m,最大可达25 m,多集中在15 m,砂地比均大于85%,所以认为该区砂体以叠拼式为主。

    在单井类比的基础上,我们基于“旋回对比、分级控制、厚度约束”的原则,对井间也进行了类比。以同一油气藏系统的A1井和A5井为例,A1井和A5井岩性组合自下而上共识别出10期砂体,这10期砂体表现出细—粗—细的特征,粗粒相带主要集中于4—6期砂体发育,反映河道早期稳定,晚期摆动的特征;测井相多表现为箱型,A5井齿化程度强,局部可见漏斗型;从地震相来看,两口井早期同相轴变化弱,中晚期同相轴向A5井逐渐发散。结合岩心相、测井相和地震相认为,A1井与A5井间距3.17 km,属同一复河道带之内,但处于不同的部位,A1井更靠近河道的中心部位,A5井处于河道侧缘。而两口井砂地比约84%,自下而上单砂体厚度逐渐减薄,延伸宽度逐渐减小,所以推测砂体为拼叠型展布,且平面上同一套砂体连通性逐渐变差(图5)。

    图  5  A5井与A1井砂体精细对比
    Figure  5.  Detailed comparison of sand bodies between well A5 and A1

    从A1、A2、A4井来看,依然可以划分出10期砂体,与A1井相比,A2井GR值更低,晚期粗粒更为发育,地震相变化规律相似,优质储层占比略高,由于不属同一油气藏系统,认为A2井处于另一条分流河道的中心部位;A1井与A4井相比,A4井晚期河道不发育且自然伽马齿化程度增高,且不属于同一油气藏系统,因此认为A4井处于另一条分流河道的侧缘(图6)。

    图  6  A2井—A1井—A4井砂体精细对比
    Figure  6.  Fine comparison of sand bodies among wells A2-A1-A4

    优质储层的形成和发育受到两个方面因素的制约,其中沉积作用起决定性作用,构造和成岩作用是对沉积物改造的作用,一定程度上受沉积作用制约。综合构造、沉积与成岩作用等多方面的研究,认为在沉积卸载区内,高砂地比发育区,稳定、低摆动、强水动力条件、低泥质含量条件下的粗粒相带,后期易于受溶蚀改造的分流河道砂岩控制优质储层的发育。结合常规地震复合微相、瞬时地层切片、沉积微相及强溶蚀区分布,对优质储层发育的优势相带展开预测。

    A构造H3古地貌呈现北高南低的趋势,使得南块成为有利的汇水聚砂地区(图7a)。地震相显示,在A构造南块同相轴数量增加,前积特征显著(图7b、c),发育多期顶平底凸下切河道,多期河道呈纵向叠置横向交切发育(图7d)。因此,认为南块所处的沉积卸载区控制古水流向南在地势低洼区内汇聚,使得多期厚层辫状化分流河道的主体砂岩储层在该块发育,这一背景同样有利于高砂地比区在南块发育。

    图  7  A构造H3古地貌及地震复合微相河道识别
    Figure  7.  The paleogeomorphology of H3 in the A Structure and channel microfacies identification from seismic profile

    在H3沉积时期,西湖凹陷A构造主要受西部侧向和轴向物源影响,其中A1井与A5井处于同一条分流河道带之内,但分处不同部位,A1井区位于分流河道带多期叠置的中心部位,而A5井区则位于分流河道带侧缘部位,且分流河道由北向南有变好的趋势;A4井位于另一条分流河道之内,且受到轴向物源和侧向挤压应力影响,优质储层不发育(图8a)。

    图  8  H3沉积微相及粗粒相带分布图
    Figure  8.  Sedimentary microfacies and the distribution of coarse-grain facies in H3

    结合优质储层主控因素,粗粒相带是控制优质储层发育的关键,经过梳理发现砂地比与粗粒相带发育呈正相关。因此借助反演数据体,对平面砂地比进行预测,结合前期分流河道带的展布规模与范围刻画,形成H3粗粒相带的预测分布图,A构造南块处于粗粒相带的发育区(图8b)。

    A构造花港组H3储集空间类型为原生孔+次生溶蚀孔+少量微裂缝,溶蚀作用对砂体物性的改善是另一优质储层控制因素(图9)。中成岩A期主要受有机酸溶蚀,其主要来源为下伏平湖组烃源岩,因此,有效的供酸断裂体系及长时间的酸性环境,是形成强溶蚀区的关键。

    图  9  A构造花港组溶蚀面孔率与物性关系
    Figure  9.  Relationship between the porosity ratio in dissolution surface and the physical property in Huagang Formation of the A Structure

    在明确溶蚀作用控制优质储层发育的基础上,对强溶蚀区进行了平面预测。强溶蚀区主要分布在通源主控断裂F1两侧,由于南块通源断裂更为发育,南块的强溶蚀区范围也更大(表4图10a)。在沉积微相、粗粒相带、强溶蚀区预测的基础上,将三图进行叠合,认为A构造南块为优质储层发育的有利区(图10b)。

    表  4  强溶蚀区划分依据
    Table  4.  Identification criterion for the division of diagenetic facies in strong dissolution area
    成岩储集相A相B相C相D相
    岩石类型中、粗砂岩
    含砾砂岩
    中–细砂岩
    含砾砂岩
    细砂岩粉–细砂岩、泥砾砂岩、钙质砂岩
    沉积微相辫状河道主体河道侧缘
    泥质杂基/%0~42~51~71~13
    孔隙度/%6~115~103.5~102.2~9
    渗透率/10−3 μm2>10.5~10.2~0.5<0.2
    视压实率/%85~9980~9440~9540~93
    视胶结率/%<61~8.51~171~68
    视溶蚀率/%4~202.3~100.5~90~8
    DTS/(μs/ft)95~10590~115
    GR/API≤55>55
    RT/(Ω·m)≥45<45
    ZDEN/(g/cm)≤2.52>2.52
    储集性能较好致密
    下载: 导出CSV 
    | 显示表格
    图  10  A构造H3强溶蚀区分布及有利区带叠合图
    Figure  10.  Distribution of strong dissolution area in A Structure H3 and the superimposition map with promising reservoir

    (1)H3厚层砂岩储集层内发育2种类型隔夹层:落淤层夹层和泥岩层隔层。其中物性最好的中部低IRE值段,隔夹层均为落淤层,为I类储层;而上部IRE高,隔夹层多泥岩层,物性差,为II2类储层。

    (2)工区内单河道宽厚比为38.87,结合单砂体厚度,折算出各期河道展布范围为1.1~2.3 km。A构造H3砂地比多在70%以上,所以认为该区砂体多呈现叠拼型,垂向上连通性有所变化。

    (3)基于前期建立的河道发育模式,在地震复合微相指导下,对H3早期河道进行识别和追踪,认为复合河道带向南交汇增多,水动力更强,更利于优质储层发育。最后结合沉积微相、粗粒相带及成岩相分布特征,认为A构造南部有利储层更为发育。

  • 图  1   帕里西维拉海盆及周边海域内铁锰结核的分布

    前人发现的铁锰结核分布信息源自文献[5-15]。

    Figure  1.   Locations of the ferromanganese nodules in the Parece Vela Basin and adjacent oceans

    The distribution information of the ferromanganese nodules previously discovered is from the references [5-15].

    图  2   铁锰结核REY的PAAS标准化配分模式

    为便于显示,将海水的REY值扩大106倍;PAAS的稀土元素含量引自文献[28]。海水的REY含量数据选择与本研究区邻近且水深层位相近的海水的值,其中REE数据引自文献[40],采样区域为本研究区东面的西太平洋,水深5 660 m;Y数据引自文献[41],采样区域为西南太平洋东加罗林海盆,水深5 149 m。

    Figure  2.   Shale normalized rare earth elements and yttrium contents of the ferromanganese nodules from the research aera

    To facilitate the display in the diagram, the REY contents of the seawater are expanded by 106 times; PAAS data is from the reference [28]. The REY data of the seawater is from the reference [40], the sampling area with the water depth of 5 660 m is in the western Pacific Ocean close the study area, which is similar to the distribution depth of the samples in this paper. Y data of the seawater is from the reference [41], and the sampling area is in the east Caroline Basin of the southwest Pacific Ocean, with the water depth of 5 149 m.

    图  3   铁锰结核REY成因类型判别

    底图引自文献[34, 42]。

    Figure  3.   Discriminating between different genetic types of the ferromanganese nodules from the research aera based on rare earth elements and yttrium

    Discrimination plots are modified from the references [34,42].

    图  4   本文研究区与全球主要成矿区内铁锰结核的主要有用组分平均含量对比

    CCZ、CIOB、PB和CI铁锰结核样品的成分数据引自文献[2]。

    Figure  4.   Mean contents of the valuable metals in the ferromanganese nodules from the research aera and the high potential areas of the global ocean

    The contents of the valuable metals in the ferromanganese nodules from the CCZ, CIOB, PB and CI are from the reference [2].

    表  1   铁锰结核内主量元素及主要有用组分间的相关系数矩阵

    Table  1   Pearson correlation coefficient matrix for major and valuable metal elements contained in the studied ferromanganese nodules

    AlCaFeKMgMnNaSiTiPCoCuMo
    Ca0.01
    Fe−0.120.91
    K0.57−0.42−0.54
    Mg−0.24−0.77−0.610.22
    Mn−0.780.170.30−0.500.33
    Na0.27−0.32−0.380.690.52−0.01
    Si0.60−0.59−0.710.670.05−0.850.13
    Ti−0.100.850.88−0.56−0.600.23−0.25−0.68
    P−0.290.850.91−0.64−0.480.43−0.29−0.830.92
    Co−0.51−0.17−0.09−0.380.190.190.00−0.250.250.25
    Cu−0.61−0.49−0.35−0.210.790.670.21−0.33−0.38−0.140.32
    Mo−0.550.230.27−0.580.260.89−0.06−0.800.270.410.120.60
    Ni−0.53−0.28−0.17−0.480.620.580.01−0.44−0.060.120.530.840.66
    下载: 导出CSV

    表  2   铁锰结核内REY与主量元素间的相关系数矩阵

    Table  2   Pearson correlation coefficient matrix for REY and major elements contained in the studied ferromanganese nodules

    AlCaFeKMgMnNaPSiTi
    La−0.150.920.93−0.63−0.660.29−0.360.95−0.730.97
    Ce−0.140.890.92−0.58−0.680.22−0.350.93−0.670.98
    Pr−0.130.920.93−0.63−0.680.25−0.390.95−0.700.96
    Nd−0.120.920.94−0.62−0.670.27−0.370.95−0.710.96
    Sm−0.080.940.95−0.60−0.680.25−0.380.95−0.700.94
    Eu−0.120.920.94−0.62−0.630.28−0.340.96−0.730.96
    Gd−0.100.940.96−0.60−0.670.28−0.360.95−0.720.95
    Tb−0.090.940.95−0.60−0.650.29−0.360.95−0.720.94
    Dy−0.090.930.93−0.61−0.620.31−0.330.95−0.740.94
    Y0.000.940.91−0.55−0.660.26−0.320.91−0.690.90
    Ho−0.070.940.94−0.58−0.630.32−0.320.93−0.740.92
    Er−0.090.940.93−0.59−0.620.34−0.320.93−0.750.92
    Tm−0.110.930.92−0.61−0.580.36−0.300.95−0.770.93
    Yb−0.090.930.92−0.60−0.590.36−0.300.94−0.760.92
    Lu−0.110.920.91−0.62−0.570.36−0.300.94−0.770.93
    ΣREY−0.130.920.94−0.60−0.680.25−0.350.95−0.700.98
    下载: 导出CSV
  • [1]

    Hein J R, Koschinsky A. Deep-ocean ferromanganese crusts and nodules[M]//Holland H D, Turekian K K. Treatise on Geochemistry. 2nd ed. Oxford: Elsevier, 2014: 273-291.

    [2]

    Hein J R, Koschinsky A, Kuhn T. Deep-ocean polymetallic nodules as a resource for critical materials [J]. Nature Reviews Earth & Environment, 2020, 1(3): 158-169.

    [3]

    Kuhn T, Wegorzewski A, Rühlemann C, et al. Composition, formation, and occurrence of polymetallic nodules[M]//Sharma R. Deep-Sea Mining: Resource Potential, Technical and Environmental Considerations. Cham: Springer International Publishing, 2017: 23-63.

    [4]

    Mukhopadhyay R, Ghosh A K, Iyer S D. The Indian Ocean Nodule Field: Geology and Resource Potential[M]. 2nd ed. Oxford: Elsevier, 2018: 1-413.

    [5]

    Flint J M. Description of manganese nodules collected by the U. S. S. NERO during survey for a trans-pacific cable[Z]. PANGAEA, https://doi.org/10.1594/PANGAEA.847719.

    [6]

    Bezrukov P L, Skornyakova N S, Murdmaa I O, et al. (Appendix) Chemical composition of Fe-Mn nodules from the Pacific Ocean[Z]. PANGAEA, https://doi.org/10.1594/PANGAEA.735163.

    [7]

    Glockhoff C. Annotated record of the detailed examination of Mn deposits from ANTIPODE Expedition stations[Z]. PANGAEA, https://doi.org/10.1594/PANGAEA.858155.

    [8]

    Party S S. Annotated record of the detailed examination of Mn deposits from PROA Expedition stations[Z]. Scripps Institution of Oceanography, UC San Diego, PANGAEA, https://doi.org/10.1594/PANGAEA.860231.

    [9]

    Skornyakova N S, Zenkevich N L. (Table 2) Abundance of nodules on the bottom surface, data from grab samples[Z]. P. P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, PANGAEA, https://doi.org/10.1594/PANGAEA.734939.

    [10]

    Tomoda Y. Description of manganese nodules and crust collected from the Hakuho Maru Cruise KH-71-1, January-March, 1971, East Mariana, Caroline and Philippine Basins[Z]. PANGAEA, https://doi.org/10.1594/PANGAEA.857960.

    [11]

    NOAA. (National Oceanic and Atmospheric Administration, USA). Index to marine and lacustrine geological samples[Z]. http://www.ngdc.noaa.gov/geosamples/showsample.jspimlgs=imlgs0201090;0201089;0201079;0150668;0146610;0146609;0146605.

    [12] 陈穗田, Stüben D. 菲律宾海的锰结壳和锰结核[J]. 海洋学报, 1997, 19(4):109-116. [CHEN Suitian, Stüben D. Manganese crusts and nodules in the Philippine Sea [J]. Acta Oceanologica Sinica, 1997, 19(4): 109-116.
    [13] 何良彪. 马里亚纳海脊-西菲律宾海盆铁锰结核的地球化学[J]. 科学通报, 1991, 36(14):1190-1193. [HE Liangbiao. Geochemical characteristics of Fe-Mn nodules and crusts from the Mariana ridge and the west Philippine basin [J]. Chinese Science Bulletin, 1991, 36(14): 1190-1193.
    [14]

    Usui A, Graham I J, Ditchburn R G, et al. Growth history and formation environments of ferromanganese deposits on the Philippine Sea Plate, northwest Pacific Ocean [J]. Island Arc, 2007, 16(3): 420-430. doi: 10.1111/j.1440-1738.2007.00592.x

    [15]

    Party Shipboard Scientific. Initial reports of the deep sea drilling project leg 59: 4 site449: west side of the parece vela basin[R]. 1981.

    [16] 吴时国, 范建柯, 董冬冬. 论菲律宾海板块大地构造分区[J]. 地质科学, 2013, 48(3):677-692. [WU Shiguo, FAN Jianke, DONG Dongdong. Discussion on the tectonic division of the Philippine Sea Plate [J]. Chinese Journal of Geology, 2013, 48(3): 677-692. doi: 10.3969/j.issn.0563-5020.2013.03.008
    [17]

    Sdrolias M, Roest W R, Müller R D. An expression of Philippine Sea plate rotation: the Parece Vela and Shikoku Basins [J]. Tectonophysics, 2004, 394(1-2): 69-86. doi: 10.1016/j.tecto.2004.07.061

    [18]

    Okino K, Ohara Y, Fujiwara T, et al. Tectonics of the southern tip of the Parece Vela Basin, Philippine Sea Plate [J]. Tectonophysics, 2009, 466(3-4): 213-228. doi: 10.1016/j.tecto.2007.11.017

    [19] 殷征欣, 李正元, 沈泽中, 等. 西太平洋帕里西维拉海盆不对称性发育特征及其成因[J]. 吉林大学学报: 地球科学版, 2019, 49(1):218-229. [YIN Zhengxin, LI Zhengyuan, SHEN Zezhong, et al. Asymmetric geological developments and their geneses of the Parece Vela Basin in Western Pacific Ocean [J]. Journal of Jilin University: Earth Science Edition, 2019, 49(1): 218-229.
    [20]

    Tani K, Dunkley D J, Ohara Y. Termination of backarc spreading: zircon dating of a giant oceanic core complex [J]. Geology, 2011, 39(1): 47-50. doi: 10.1130/G31322.1

    [21] 张臻, 李三忠. 雅浦沟-弧体系构造演化过程[J]. 海洋地质与第四纪地质, 2019, 39(5):138-146. [ZHANG Zhen, LI Sanzhong. Tectonic evolution of the Yap trench-arc system [J]. Marine Geology & Quaternary Geology, 2019, 39(5): 138-146.
    [22]

    Yamashita M, Tsuru T, Takahashi N, et al. Fault configuration produced by initial arc rifting in the Parece Vela Basin as deduced from seismic reflection data [J]. Island Arc, 2007, 16(3): 338-347. doi: 10.1111/j.1440-1738.2007.00594.x

    [23]

    Lee I, Ogawa Y. Bottom-current deposits in the Miocene–Pliocene Misaki Formation, Izu forearc area, Japan [J]. Island Arc, 1998, 7(3): 315-329. doi: 10.1111/j.1440-1738.1998.00192.x

    [24]

    Xiong Z F, Li T G, Algeo T, et al. Paleoproductivity and paleoredox conditions during late Pleistocene accumulation of laminated diatom mats in the tropical West Pacific [J]. Chemical Geology, 2012, 334: 77-91. doi: 10.1016/j.chemgeo.2012.09.044

    [25] 中国大洋矿产资源调查研究开发协会. GB/T 17229-1998 大洋多金属结核矿产勘查规程[S]. 北京: 中国标准出版社, 1998.

    China Ocean Mineral Resources Investigation, Research and Development Association. GB/T 17229-1998 The expertise for oceanic polymetallic nodules survey[S]. Beijing: China Standard Press, 1998.

    [26] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 20260-2006 海底沉积物化学分析方法[S]. 北京: 中国标准出版社, 2006.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB/T 20260-2006 Chemcial analysis methods for marine sediment[S]. Beijing: China Standard Press, 2006.

    [27]

    Paul S A L, Volz J B, Bau M, et al. Calcium phosphate control of REY patterns of siliceous-ooze-rich deep-sea sediments from the central equatorial Pacific [J]. Geochimica et Cosmochimica Acta, 2019, 251: 56-72. doi: 10.1016/j.gca.2019.02.019

    [28]

    Mclennan S M. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes [J]. Reviews in Mineralogy and Geochemistry, 1989, 21(1): 169-200.

    [29]

    Broecker W S. A need to improve reconstructions of the fluctuations in the calcite compensation depth over the course of the Cenozoic [J]. Paleoceanography, 2008, 23(1): PA1204.

    [30]

    Van Andel T H. Mesozoic/Cenozoic calcite compensation depth and the global distribution of calcareous sediments [J]. Earth and Planetary Science Letters, 1975, 26(2): 187-194. doi: 10.1016/0012-821X(75)90086-2

    [31]

    Banerjee R, Roy S, Dasgupta S, et al. Petrogenesis of ferromanganese nodules from east of the Chagos Archipelago, Central Indian Basin, Indian Ocean [J]. Marine Geology, 1999, 157(3-4): 145-158. doi: 10.1016/S0025-3227(98)00156-X

    [32]

    Bonatti E, Kraemer T, Rydell H. Classification and genesis of submarine iron-manganese deposits[M]//Horn D R. Ferromanganese Deposits on the Ocean Floor. Washington: National Science Foundation, 1972.

    [33]

    Halbach P, Scherhag C, Hebisch U, et al. Geochemical and mineralogical control of different genetic types of deep-sea nodules from the Pacific Ocean [J]. Mineralium Deposita, 1981, 16(1): 59-84.

    [34]

    Bau M, Schmidt K, Koschinsky A, et al. Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium [J]. Chemical Geology, 2014, 381: 1-9. doi: 10.1016/j.chemgeo.2014.05.004

    [35]

    Josso P, Pelleter E, Pourret O, et al. A new discrimination scheme for oceanic ferromanganese deposits using high field strength and rare earth elements [J]. Ore Geology Reviews, 2017, 87: 3-15. doi: 10.1016/j.oregeorev.2016.09.003

    [36]

    Bau M. Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect [J]. Geochimica et Cosmochimica Acta, 1999, 63(1): 67-77. doi: 10.1016/S0016-7037(99)00014-9

    [37]

    Bau M, Koschinsky A, Dulski P, et al. Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater [J]. Geochimica et Cosmochimica Acta, 1996, 60(10): 1709-1725. doi: 10.1016/0016-7037(96)00063-4

    [38]

    Halbach P, Friedrich G, Von Stackelberg U. The Manganese Nodule Belt of the Pacific Ocean–Geological Environment Nodule Formation, and Mining Aspects[M]. Stuttgart: Ferdinand Enke Verlag, 1988: 254.

    [39]

    Jung H S, Lee C B. Growth of diagenetic ferromanganese nodules in an oxic deep-sea sedimentary environment, northeast equatorial Pacific [J]. Marine Geology, 1999, 157(3-4): 127-144. doi: 10.1016/S0025-3227(98)00154-6

    [40]

    Deng Y N, Ren J B, Guo Q J, et al. Rare earth element geochemistry characteristics of seawater and porewater from deep sea in western Pacific [J]. Scientific Reports, 2017, 7: 16539. doi: 10.1038/s41598-017-16379-1

    [41]

    Zhang J, Nozaki Y. Rare earth elements and yttrium in seawater: ICP-MS determinations in the East Caroline, Coral Sea, and South Fiji basins of the western South Pacific Ocean [J]. Geochimica et Cosmochimica Acta, 1996, 60(23): 4631-4644. doi: 10.1016/S0016-7037(96)00276-1

    [42]

    Hein J R, Spinardi F, Okamoto N, et al. Critical metals in manganese nodules from the Cook Islands EEZ, abundances and distributions [J]. Ore Geology Reviews, 2015, 68: 97-116. doi: 10.1016/j.oregeorev.2014.12.011

    [43] 姜学钧, 姚德, 翟世奎. 过渡金属元素Cu、Co、Ni在铁锰结核(壳)中富集的控制因素[J]. 海洋地质与第四纪地质, 2004, 24(3):41-48. [JIANG Xuejun, YAO De, ZHAI Shikui. Factors controlling the concentration of the transition metals Cu, Co and Ni in the ferromanganese deposits: an overview [J]. Marine Geology & Quaternary Geology, 2004, 24(3): 41-48.
    [44]

    Foster A L, Klofas J M, Hein J R, et al. Speciation of energy critical elements in marine ferromanganese crusts and nodules by principal component analysis and least-squares fits to XAFS spectra[C]//American Geophysical Union, Fall Meeting 2011.2011.

    [45]

    Wasylenki L E, Weeks C L, Bargar J R, et al. The molecular mechanism of Mo isotope fractionation during adsorption to birnessite [J]. Geochimica et Cosmochimica Acta, 2011, 75(17): 5019-5031. doi: 10.1016/j.gca.2011.06.020

    [46]

    Peacock C L, Sherman D M. Crystal-chemistry of Ni in marine ferromanganese crusts and nodules [J]. American Mineralogist, 2007, 92(7): 1087-1092. doi: 10.2138/am.2007.2378

    [47]

    Bau M, Koschinsky A. Oxidative scavenging of cerium on hydrous Fe oxide: evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts [J]. Geochemical Journal, 2009, 43(1): 37-47. doi: 10.2343/geochemj.1.0005

    [48]

    Marcus M A, Toner B M, Takahashi Y. Forms and distribution of Ce in a ferromanganese nodule [J]. Marine Chemistry, 2018, 202: 58-66. doi: 10.1016/j.marchem.2018.03.005

    [49] 姜学钧, 林学辉, 姚德, 等. 稀土元素在水成型海洋铁锰结壳中的富集特征及机制[J]. 中国科学: 地球科学, 2011, 54(2):197-203. [JIANG Xuejun, LIN Xuehui, YAO De, et al. Enrichment mechanisms of rare earth elements in marine hydrogenic ferromanganese crusts [J]. Science China Earth Sciences, 2011, 54(2): 197-203. doi: 10.1007/s11430-010-4070-4
    [50]

    Azami K, Hirano N, Machida S, et al. Rare earth elements and yttrium (REY) variability with water depth in hydrogenetic ferromanganese crusts [J]. Chemical Geology, 2018, 493: 224-233. doi: 10.1016/j.chemgeo.2018.05.045

    [51]

    Liao J L, Sun X M, Li D F, et al. New insights into nanostructure and geochemistry of bioapatite in REE-rich deep-sea sediments: LA-ICP-MS, TEM, and Z-contrast imaging studies [J]. Chemical Geology, 2019, 512: 58-68. doi: 10.1016/j.chemgeo.2019.02.039

    [52]

    Petersen S, Krätschell A, Augustin N, et al. News from the seabed – Geological characteristics and resource potential of deep-sea mineral resources [J]. Marine Policy, 2016, 70: 175-187. doi: 10.1016/j.marpol.2016.03.012

    [53]

    Dutkiewicz A, Judge A, Müller R D. Environmental predictors of deep-sea polymetallic nodule occurrence in the global ocean [J]. Geology, 2020, 48(3): 293-297. doi: 10.1130/G46836.1

    [54]

    Xiao C H, Wang Y H, Lin J. Constraints of magnetostratigraphic and mineralogical data on the provenance of sediments in the Parece Vela Basin of the western Pacific [J]. Journal of Asian Earth Sciences, 2020, 196: 104373. doi: 10.1016/j.jseaes.2020.104373

    [55] 许东禹. 大洋矿产地质学[M]. 北京: 海洋出版社, 2013.

    XU Dongyu. Ocean Mineral Geology[M]. Beijing: Ocean Press, 2013.

    [56] 袁良榕, 张恩. 大洋多金属结核的矿物学特征与南极底流(AABW)活动[J]. 矿物学报, 2018, 38(5):481-489. [YUAN Liangrong, ZHANG En. Mineralogical characteristics of oceanic polymetallic nodules and the activities of the Antarctic bottom water (AABW) [J]. Acta Mineralogica Sinica, 2018, 38(5): 481-489.
  • 期刊类型引用(7)

    1. 吴潇平,赵广涛,徐翠玲,来志庆. 东南太平洋秘鲁海盆DEA区浅层埋藏型铁锰结核的矿物学和地球化学特征及成因类型. 中国海洋大学学报(自然科学版). 2023(02): 94-106 . 百度学术
    2. 丁雪,胡邦琦,赵京涛,王飞飞,黄威,李攀峰,刘佳,郭建卫,崔汝勇. 九州-帕劳海脊南段及邻近海域表层沉积物元素地球化学特征及其地质意义. 海洋地质与第四纪地质. 2023(01): 61-70 . 本站查看
    3. 杨叶飘,韩宗珠,来志庆,龙时迈,顾伟,窦连想. 西盘古海盆锰结核的元素地球化学特征及生长机制. 海洋地质前沿. 2023(09): 35-45 . 百度学术
    4. 丁雪,刘佳,杨慧良,赵京涛,黄威,李攀峰,宋维宇,郭建卫,虞义勇,崔汝勇,胡邦琦. 九州-帕劳海脊南段铁锰结壳物质组成特征及成因机制. 海洋地质与第四纪地质. 2023(04): 105-115 . 本站查看
    5. 黄威,胡邦琦,宋维宇,赵京涛,路晶芳,孟祥君,江云水,崔汝勇,丁雪. 九州-帕劳海脊南部13°20′N海山铁锰结壳关键金属富集规律及制约因素. 海洋地质与第四纪地质. 2022(05): 137-148 . 本站查看
    6. 宋维宇,李超,孟祥君,黄威,赵京涛,陆凯,徐磊,胡邦琦,虞义勇,孙建伟,李阳,周吉祥,胡刚,原晓军. 九州-帕劳海脊南段共生多金属结核与富钴结壳地球化学特征及其资源意义. 海洋地质与第四纪地质. 2022(05): 149-157 . 本站查看
    7. 季虹. 浅谈第四系“姜结石、铁锰结核”形成与分布的关系. 中国金属通报. 2021(11): 112-113 . 百度学术

    其他类型引用(1)

图(4)  /  表(2)
计量
  • 文章访问数:  2069
  • HTML全文浏览量:  483
  • PDF下载量:  56
  • 被引次数: 8
出版历程
  • 收稿日期:  2020-10-14
  • 修回日期:  2020-11-25
  • 网络出版日期:  2021-02-28
  • 刊出日期:  2021-02-27

目录

/

返回文章
返回