西太平洋帕劳砗磲高分辨率氧同位素记录及其指示的气候环境变化

文汉锋, 赵楠钰, 刘成程, 周鹏超, 王国桢, 晏宏

文汉锋, 赵楠钰, 刘成程, 周鹏超, 王国桢, 晏宏. 西太平洋帕劳砗磲高分辨率氧同位素记录及其指示的气候环境变化[J]. 海洋地质与第四纪地质, 2021, 41(1): 1-13. DOI: 10.16562/j.cnki.0256-1492.2020101101
引用本文: 文汉锋, 赵楠钰, 刘成程, 周鹏超, 王国桢, 晏宏. 西太平洋帕劳砗磲高分辨率氧同位素记录及其指示的气候环境变化[J]. 海洋地质与第四纪地质, 2021, 41(1): 1-13. DOI: 10.16562/j.cnki.0256-1492.2020101101
WEN Hanfeng, ZHAO Nanyu, LIU Chengcheng, ZHOU Pengchao, WANG Guozhen, YAN Hong. High-resolution oxygen isotope records of Tridacna gigas from Palau, Western Pacific and its climatic and environmental implications[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 1-13. DOI: 10.16562/j.cnki.0256-1492.2020101101
Citation: WEN Hanfeng, ZHAO Nanyu, LIU Chengcheng, ZHOU Pengchao, WANG Guozhen, YAN Hong. High-resolution oxygen isotope records of Tridacna gigas from Palau, Western Pacific and its climatic and environmental implications[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 1-13. DOI: 10.16562/j.cnki.0256-1492.2020101101

西太平洋帕劳砗磲高分辨率氧同位素记录及其指示的气候环境变化

基金项目: 国家自然科学基金“利用砗磲重建南海北部小时分辨率气候变化初探”(41877399),“地质新时代的人类世:时限、特征与影响”(41991250);中国科学院战略性先导科技专项B类(XDB40000000);中国科学院“西部之光”人才培养引进计划
详细信息
    作者简介:

    文汉锋(1995―),男,硕士研究生,研究方向为砗磲地球化学,E-mail:whfloess2019@163.com

    通讯作者:

    晏宏(1986―),男,研究员,主要从事热带-亚热带气候环境变化研究,E-mail:yanhong@ieecas.cn

  • 中图分类号: P532,P736.4

High-resolution oxygen isotope records of Tridacna gigas from Palau, Western Pacific and its climatic and environmental implications

  • 摘要: 砗磲是海洋中最大的双壳类贝壳,其碳酸盐壳体通常具有年纹层和天纹层,是一种理想的高分辨率古气候研究载体。氧同位素是砗磲古气候研究中最常用的指标之一,但在将其应用于古气候重建之前,通常需要对其现代地球化学过程进行准确的校准。帕劳群岛位于西太平洋暖池西北边缘,其珊瑚礁盘具有丰富的砗磲壳体资源,为开展古气候研究提供了丰富的材料。在本次研究中,对采自帕劳群岛的现代活体库氏砗磲(Tridacna gigas)PL-1的内层壳体进行了高分辨率氧同位素分析,同时利用该砗磲较为清晰的天生长纹层对氧同位素的年代学框架进行了标定。结果表明,该砗磲壳体的氧同位素没有明显的变化趋势,说明砗磲个体的生命效应对氧同位素没有显著影响;砗磲壳体氧同位素没有清晰的年周期变化,常出现不规则的毛刺状峰值。结合现代器测资料分析发现,帕劳砗磲内层壳体的氧同位素记录了热带太平洋ENSO活动对该区域水文气候变化的影响。该研究结果表明,帕劳砗磲内层壳体天生长纹层和氧同位素,具有用于开展高分辨率古气候研究的潜力。
    Abstract: Tridacna gigas is the largest marine bivalve, and its hard and dense aragonite shells usually have annual and daily growth lines, which have been demonstrated to be an ideal material for high-resolution paleoclimate research. The oxygen isotope has been widely used in Tridacna paleoclimate studies. However, the oxygen isotope of Tridacna shells must be accurately calibrated by modern geochemical process before paleoclimate reconstructions. Palau is located in the northwestern edge of the Western Pacific Warm Pool. Long-lived Tridacna spp. is a common species in the coral reefs of Palau Islands, which may provide abundant materials for paleoclimate reconstructions. In this study, we present a high-resolution oxygen isotope profile from the inner shell of a modern living T. gigas specimen PL-1 from Palau. The high-resolution chronology of the oxygen isotope profile is determined by the clear daily growth layers in the inner shell. The result suggests that the δ18Oc profile of the T. gigas shell has no obvious trend, indicating that the vital effects have no significant influence on the oxygen isotope of shell. Combining with the instrumental data, we found that the ENSO activities in the tropical Pacific had impacts on the regional hydro-climate changes of Palau, and left some fingerprint in the oxygen isotope of Tridacna shell. This study indicates that the daily growth layer and the oxygen isotope in the inner shell of Tridacna from Palau have the potential for high-resolution paleoclimate research.
  • 图  1   西北太平洋2月(最冷月)与6月(最暖月)平均SST分布(1955—2017年)和帕劳位置示意图

    图中白色标记点为帕劳,SST数据来自WOA:http://odv.awi.de/data/ocean/

    Figure  1.   The monthly average SST of February (coldest month) and June (warmest month) in the northwestern Pacific (1955—2017) and the location of Palau

    The location of the Palau is marked by white point , SST data is obtained from WOA: http://odv.awi.de/data/ocean/

    图  2   帕劳器测资料和ENSO指数的对比(1995—2015年)

    a. 帕劳月平均SST记录,b. 帕劳月平均SSS记录,c. MEI记录,d. ONI记录,e. 帕劳月平均降水记录;图中a、b、c中的粗实线均为12点滑动平均曲线,图d中红色和蓝色虚线分别为El Niño事件(0.5 ℃)和La Niña事件(−0.5 ℃)的检测阈值,淡红色阴影表示El Niño事件。

    Figure  2.   The comparison of instrumental data of Palau with indices of ENSO (1995—2015)

    a. monthly average SST of Palau, b. monthly average SSS of Palau, c. MEI, d. ONI, e. monthly average Precipitation of Palau. The thick lines in Fig.2a, b and c are the 12-point moving average curves; The red and blue dotted lines in the Fig.2d mark the threshold value for El Niño event (0.5 ℃) and La Niña event (−0.5 ℃), respectively. The light red shading represents El Niño event.

    图  3   1995—2015年帕劳多年月平均SSS(a)、SST(b)和降水(c)

    Figure  3.   The multi-a monthly average SSS (a), SST (b) and Precipitation (c) of Palau (1995—2015)

    图  4   帕劳砗磲PL-1壳体(a)、内层薄片(b)及内层激光共聚焦图像(c)

    Figure  4.   Photograph of T. gigas PL-1(a), slab of PL-1(b), and laser scanning confocal image of inner shell(c)

    图  5   PL-1内层δ18Oc(a)、δ18Oc年龄模型(b)、12点插值的δ18Oc(c)、内层壳体的年生长速率(d)

    Figure  5.   The δ18Oc profile (a), the chronology of δ18Oc profile (b), the 12-point profile of δ18Oc (c) and the annual growth rate of inner shell of PL-1 (d)

    图  6   PL-1 δ18Oc年振幅和年生长速率的相关性

    Figure  6.   The correlation between the δ18Oc annual amplitude and annual growth rate of PL-1

    图  7   格点SST和SODA SSS(a)、实测SST和δ18Ow(b)对δ18Oc年振幅的贡献

    Figure  7.   The contributions of instrumental SST and SODA SSS (a), suit SST and suit δ18Ow (b) to the annual amplitude of δ18Oc

    图  8   12点δ18Oc与SST(a),SSS(b),降水(c)之间的对比

    蓝色实线为12点插值的δ18Oc,红色实线为SST,黄色实线为SSS,绿色实线为降水。

    Figure  8.   The comparison of 12-point profile of δ18Oc with SST (a), SSS (b), and Precipitation (c)

    The blue solid line is the 12-point profile of δ18Oc, the red solid line is SST, the yellow solid line is SSS, the green solid line is Precipitation.

    图  9   δ18OA(a)与SSTA(b)、降水异常(c)、SSSA(d)、MEI(e)、SOI(f)的对比

    图中粗实线均为1年滑动平均曲线;蓝色和红色阴影分别代表由ONI指示的La Niña与El Niño事件,带斜杠的蓝色阴影代表δ18OA未检测出的La Niña;δ18OA、SSSA、MEI的纵轴为逆序坐标。

    Figure  9.   The comparison of δ18OA (a) with SSTA (b), Precipitation anomaly (c), SSSA (d), MEI (e), SOI (f)

    All of the thick solid lines in the figure are the 1-a moving average curves; the blue and red shadings represent the La Niña and El Niño events indicated by ONI, respectively; the blue bar with slashes represents the La Niña event that is not detected by δ18OA; the vertical axes of δ18OA, SSSA and MEI are reversed.

  • [1]

    Andreasson F P, Schmitz B. Temperature seasonality in the early middle Eocene North Atlantic region: Evidence from stable isotope profiles of marine gastropod shells [J]. GSA Bulletin, 2000, 112(4): 628-640. doi: 10.1130/0016-7606(2000)112<628:TSITEM>2.0.CO;2

    [2]

    Yan H, Sun L G, Shao D, et al. Seawater temperature seasonality in the South China Sea during the late Holocene derived from high-resolution Sr/Ca ratios of Tridacna gigas [J]. Quaternary Research, 2015, 83(2): 298-306. doi: 10.1016/j.yqres.2014.12.001

    [3] 林而达, 许吟隆, 蒋金荷, 等. 气候变化国家评估报告(Ⅱ): 气候变化的影响与适应[J]. 气候变化研究进展, 2006, 2(2):51-56 doi: 10.3969/j.issn.1673-1719.2006.02.001

    LIN Erda, XU Yinlong, JIANG Jinhe, et al. National Assessment Report of Climate Change (Ⅱ): Climate change impacts and adaptation [J]. Advances in Climate Change Research, 2006, 2(2): 51-56. doi: 10.3969/j.issn.1673-1719.2006.02.001

    [4]

    Collins M, An S I, Cai W J, et al. The impact of global warming on the tropical Pacific Ocean and El Niño [J]. Nature Geoscience, 2010, 3(6): 391-397. doi: 10.1038/ngeo868

    [5]

    Guo Y P, Tan Z M. The Hadley circulation regime change: Combined effect of the Western Pacific warming and increased ENSO amplitude [J]. Journal of Climate, 2018, 31(23): 9739-9751. doi: 10.1175/JCLI-D-18-0306.1

    [6]

    Hongo C, Kurihara H, Golbuu Y. Coral boulders on Melekeok reef in the Palau Islands: An indicator of wave activity associated with tropical cyclones [J]. Marine Geology, 2018, 399: 14-22. doi: 10.1016/j.margeo.2018.02.004

    [7]

    Schöne B R, Castro A D F, Fiebig J, et al. Sea surface water temperatures over the period 1884-1983 reconstructed from oxygen isotope ratios of a bivalve mollusk shell (Arctica islandica, southern North Sea) [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 212(3-4): 215-232. doi: 10.1016/j.palaeo.2004.05.024

    [8]

    Patterson W P, Dietrich K A, Holmden C, et al. Two millennia of North Atlantic seasonality and implications for Norse colonies [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(12): 5306-5310. doi: 10.1073/pnas.0902522107

    [9]

    Yamanashi J, Takayanagi H, Isaji A, et al. Carbon and oxygen isotope records from Tridacna derasa shells: toward establishing a reliable proxy for sea surface environments [J]. PLoS ONE, 2016, 11(6): e0157659. doi: 10.1371/journal.pone.0157659

    [10]

    Xu J, Kuhnt W, Holbourn A, et al. Indo-Pacific warm pool variability during the Holocene and Last Glacial Maximum [J]. Paleoceanography, 2010, 25(4): PA4230.

    [11] 孙有斌, 郭飞. 中国黄土记录的季风快速变化[J]. 第四纪研究, 2017, 37(5):963-973 doi: 10.11928/j.issn.1001-7410.2017.05.04

    SUN Youbin, GUO Fei. Rapid monsoon changes recorded by Chinese loess deposits [J]. Quaternary Sciences, 2017, 37(5): 963-973. doi: 10.11928/j.issn.1001-7410.2017.05.04

    [12]

    Greenland Ice-core Project (GRIP) Members. Climate instability during the last interglacial period recorded in the GRIP ice core [J]. Nature, 1993, 364(6434): 203-207. doi: 10.1038/364203a0

    [13]

    Neukom R, Steiger N, Gómez-Navarro J J, et al. No evidence for globally coherent warm and cold periods over the preindustrial Common Era [J]. Nature, 2019, 571(7766): 550-554. doi: 10.1038/s41586-019-1401-2

    [14]

    Jones D S, Williams D F, Romanek C S. Life history of symbiont-bearing giant clams from stable isotope profiles [J]. Science, 1986, 231(4733): 46-48. doi: 10.1126/science.231.4733.46

    [15]

    Rosewater J. The Family Tridacnidae in the Indo-Pacific[M]. The Philippines: Department of Mollusks, Academy of Natural Sciences of Philadelphia, 1965: 374-396.

    [16]

    Jameson S C. Early life history of the giant clams Tridacna crocea Lamarck, Tridacna maxima (Roding), and Hippopus hippopus (Linnaeus) [J]. Pacific Science, 1976, 30(3): 219-233.

    [17]

    Aharon P, Chappell J, Compston W. Stable isotope and sea-level data from New Guinea supports Antarctic ice-surge theory of ice ages [J]. Nature, 1980, 283(5748): 649-651. doi: 10.1038/283649a0

    [18]

    Driscoll R E. PaleoENSO reconstructions of the Holocene and Last Glacial Period[D]. Doctor Dissertation of University of Edinburgh, 2015.

    [19]

    Gannon M E, Pérez-Huerta A, Aharon P, et al. A biomineralization study of the Indo-Pacific giant clam Tridacna gigas [J]. Coral Reefs, 2017, 36(2): 503-517. doi: 10.1007/s00338-016-1538-5

    [20] 晏宏, 刘成程. 砗磲地球化学与古气候学研究进展[J]. 第四纪研究, 2017, 37(5):1077-1090 doi: 10.11928/j.issn.1001-7410.2017.05.15

    YAN Hong, LIU Chengcheng. Review on Tridacna geochemistry and paleoclimate research [J]. Quaternary Sciences, 2017, 37(5): 1077-1090. doi: 10.11928/j.issn.1001-7410.2017.05.15

    [21] 梅衍俊, 邵达, 刘文齐, 等. 南海砗磲壳体成分及生物有机特征分析[J]. 中国科学技术大学学报, 2018, 48(7):550-559 doi: 10.3969/j.issn.0253-2778.2018.07.005

    MEI Yanjun, SHAO Da, LIU Wenqi, et al. Analysis of the components and biological organic characteristics of Tridacna spp. shells from South China Sea [J]. Journal of University of Science and Technology of China, 2018, 48(7): 550-559. doi: 10.3969/j.issn.0253-2778.2018.07.005

    [22] 晏宏, 邵达, 王玉宏, 等. 南海西沙大砗磲高分辨率Sr/Ca温度计及其意义[J]. 地球环境学报, 2011, 2(2):381-386

    YAN Hong, SHAO Da, WANG Yuhong, et al. High resolution Sr/Ca profile of Tridacna gigas from Xisha Islands of South China Sea and its potential application on sea surface temperature reconstruction [J]. Journal of Earth Environment, 2011, 2(2): 381-386.

    [23]

    Aharon P, Chappell J. Carbon and oxygen isotope probes of reef environment histories[M]//Barnes D J. Perspectives on Coral Reefs. Townsville, Australia: Brian Clouston, 1983: 1-15.

    [24]

    Yoshimura T, Tamenori Y, Suzuki A, et al. Element profile and chemical environment of sulfur in a giant clam shell: Insights from μ-XRF and X-ray absorption near-edge structure [J]. Chemical Geology, 2013, 352: 170-175. doi: 10.1016/j.chemgeo.2013.05.035

    [25]

    Aubert A, Lazareth C E, Cabioch G, et al. The tropical giant clam Hippopus hippopus shell, a new archive of environmental conditions as revealed by sclerochronological and δ18O profiles [J]. Coral Reefs, 2009, 28(4): 989-998. doi: 10.1007/s00338-009-0538-0

    [26]

    Warter V, Erez J, Müller W. Environmental and physiological controls on daily trace element incorporation in Tridacna crocea from combined laboratory culturing and ultra-high resolution LA-ICP-MS analysis [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 496: 32-47. doi: 10.1016/j.palaeo.2017.12.038

    [27]

    Watanabe T, Oba T. Daily reconstruction of water temperature from oxygen isotopic ratios of a modern Tridacna shell using a freezing microtome sampling technique [J]. Journal of Geophysical Research: Oceans, 1999, 104(C9): 20667-20674. doi: 10.1029/1999JC900097

    [28]

    Duprey N, Lazareth C E, Dupouy C, et al. Calibration of seawater temperature and δ18Oseawater signals in Tridacna maxima’s δ18Oshell record based on in situ data [J]. Coral Reefs, 2015, 34(2): 437-450. doi: 10.1007/s00338-014-1245-z

    [29]

    Komagoe T, Watanabe T, Shirai K, et al. Geochemical and microstructural signals in giant clam Tridacna maxima recorded typhoon events at Okinotori Island, Japan [J]. Journal of Geophysical Research: Biogeosciences, 2018, 123(5): 1460-1474. doi: 10.1029/2017JG004082

    [30]

    Bayer S, Beierlein L, Morán G A, et al. Late Quaternary climatic variability in northern Patagonia, Argentina, based on δ18O of modern and fossil shells of Amiantis purpurata (Bivalvia, Veneridae) [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 560: 110012. doi: 10.1016/j.palaeo.2020.110012

    [31]

    Watanabe T, Suzuki A, Kawahata H, et al. A 60-year isotopic record from a mid-Holocene fossil giant clam (Tridacna gigas) in the Ryukyu Islands: physiological and paleoclimatic implications [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 212(3-4): 343-354. doi: 10.1016/S0031-0182(04)00358-X

    [32]

    Ayling B F, Chappell J, Gagan M K, et al. ENSO variability during MIS 11 (424-374 ka) from Tridacna gigas at Huon Peninsula, Papua New Guinea [J]. Earth and Planetary Science Letters, 2015, 431: 236-246. doi: 10.1016/j.jpgl.2015.09.037

    [33]

    Yan H, Shao D, Wang Y H, et al. Sr/Ca profile of long-lived Tridacna gigas bivalves from South China Sea: A new high-resolution SST proxy [J]. Geochimica et Cosmochimica Acta, 2013, 112: 52-65. doi: 10.1016/j.gca.2013.03.007

    [34]

    Hori M, Sano Y, Ishida A, et al. Middle Holocene daily light cycle reconstructed from the strontium/calcium ratios of a fossil giant clam shell [J]. Scientific Reports, 2015, 5: 8734. doi: 10.1038/srep08734

    [35]

    Yan H, Liu C C, An Z S, et al. Extreme weather events recorded by daily to hourly resolution biogeochemical proxies of marine giant clam shells [J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(13): 7038-7043. doi: 10.1073/pnas.1916784117

    [36]

    Schwartzmann C, Durrieu G, Sow M, et al. In situ giant clam growth rate behavior in relation to temperature: A one-year coupled study of high-frequency noninvasive valvometry and sclerochronology [J]. Limnology and Oceanography, 2011, 56(5): 1940-1951. doi: 10.4319/lo.2011.56.5.1940

    [37]

    Aharon P, Chappell J. Oxygen isotopes, sea level changes and the temperature history of a coral reef environment in New Guinea over the last 105 years [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1986, 56(3-4): 337-379. doi: 10.1016/0031-0182(86)90101-X

    [38]

    Grossman E L, Ku T L. Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects [J]. Chemical Geology, 1986, 59: 59-74. doi: 10.1016/0168-9622(86)90057-6

    [39]

    Welsh K, Elliot M, Tudhope A, et al. Giant bivalves (Tridacna gigas) as recorders of ENSO variability [J]. Earth and Planetary Science Letters, 2011, 307(3-4): 266-270. doi: 10.1016/j.jpgl.2011.05.032

    [40]

    Arias-Ruiz C, Elliot M, Bézos A, et al. Geochemical fingerprints of climate variation and the extreme La Niña 2010-11 as recorded in a Tridacna squamosa shell from Sulawesi, Indonesia [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 487: 216-228. doi: 10.1016/j.palaeo.2017.08.037

    [41]

    Duprey N, Galipaud J C, Cabioch G, et al. Isotopic records from archeological giant clams reveal a variable climate during the southwestern Pacific colonization ca. 3.0 ka BP [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 404: 97-108. doi: 10.1016/j.palaeo.2014.04.002

    [42]

    Yan H, Liu C C, Zhang W C, et al. ENSO variability around 2000 years ago recorded by Tridacna gigas δ18O from the South China Sea [J]. Quaternary International, 2017, 452: 148-154. doi: 10.1016/j.quaint.2016.05.011

    [43]

    Hu Y, Sun X M, Cheng H, et al. Evidence from giant-clam δ18O of intense El Ninõ-Southern Oscillation-related variability but reduced frequency 3700 years ago [J]. Climate of the Past, 2020, 16(2): 597-610. doi: 10.5194/cp-16-597-2020

    [44]

    Conroy J L, Noone D, Cobb K M, et al. Paired stable isotopologues in precipitation and vapor: A case study of the amount effect within western tropical Pacific storms [J]. Journal of Geophysical Research: Atmospheres, 2016, 121(7): 3290-3303. doi: 10.1002/2015JD023844

    [45]

    Dansgaard W. Stable isotopes in precipitation [J]. Tellus, 1964, 16(4): 436-468. doi: 10.3402/tellusa.v16i4.8993

    [46]

    Ma X L, Yan H, Fei H B, et al. A high-resolution δ18O record of modern Tridacna gigas bivalve and its paleoenvironmental implications [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 554: 109800. doi: 10.1016/j.palaeo.2020.109800

    [47]

    Colin P L. Ocean Warming and the Reefs of Palau [J]. Oceanography, 2018, 31(2): 126-135.

    [48]

    Bruno J, Siddon C, Witman J, et al. El Niño related coral bleaching in Palau, Western Caroline Islands [J]. Coral Reefs, 2001, 20(2): 127-136. doi: 10.1007/s003380100151

    [49]

    Martin L E, Dawson M N, Bell L J, et al. Marine lake ecosystem dynamics illustrate ENSO variation in the tropical western Pacific [J]. Biology Letters, 2006, 2(1): 144-147. doi: 10.1098/rsbl.2005.0382

    [50]

    Colin P L. Marine Environments of Palau[M]. San Diego: Indo-Pacific Press, 2009: 15-25.

    [51]

    Golbuu Y, Bauman A, Kuartei J, et al. The state of coral reef ecosystems of Palau [J]. The state of coral reef ecosystems of the United States and Pacific freely associated states, 2005, 2005: 488-507.

    [52]

    Hardy J T, Hardy S A. Ecology of Tridacna in Palau [J]. Pacific Science, 1969, XXIII: 467-472.

    [53]

    Colin P L. Marine Environments of Palau[M]. San Diego: Indo-Pacific Press, 2009: 365-366.

    [54]

    Grottoli A G. Monthly resolved stable oxygen isotope record in a Palauan sclerosponge Acanthocheatetes wellsi for the period of 1977-2001[C]//Proceedings of the 10th International Coral Reef Symposium. Okinawa, Japan, 2006: 572-579.

    [55]

    Iijima H, Kayanne H, Morimoto M, et al. Interannual sea surface salinity changes in the western Pacific from 1954 to 2000 based on coral isotope analysis [J]. Geophysical Research Letters, 2005, 32(4): L04608.

    [56]

    Osborne M C, Dunbar R B, Mucciarone D A, et al. Regional calibration of coral-based climate reconstructions from Palau, West Pacific Warm Pool (WPWP) [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 386: 308-320. doi: 10.1016/j.palaeo.2013.06.001

    [57]

    Wu H C, Grottoli A G. Stable oxygen isotope records of corals and a sclerosponge in the Western Pacific warm pool [J]. Coral Reefs, 2010, 29(2): 413-418. doi: 10.1007/s00338-009-0576-7

    [58]

    Osborne M C, Dunbar R B, Mucciarone D A, et al. A 215-yr coral δ18O time series from Palau records dynamics of the West Pacific Warm Pool following the end of the Little Ice Age [J]. Coral Reefs, 2014, 33(3): 719-731. doi: 10.1007/s00338-014-1146-1

    [59]

    Grottoli A G, Adkins J F, Panero W R, et al. Growth rates, stable oxygen isotopes (δ18O), and strontium (Sr/Ca) composition in two species of Pacific sclerosponges (Acanthocheatetes wellsi and Astrosclera willeyana) with δ18O calibration and application to paleoceanography [J]. Journal of Geophysical Research: Oceans, 2010, 115(C6): C06008.

    [60]

    Pätzold J, Heinrichs J P, Wolschendorf K, et al. Correlation of stable oxygen isotope temperature record with light attenuation profiles in reef-dwelling Tridacna shells [J]. Coral Reefs, 1991, 10(2): 65-69. doi: 10.1007/BF00571825

    [61]

    Jew N P, Dodrill T, Fitzpatrick S M. Evaluating the efficacy of the mollusc Tridacna crocea for reconstructing ancient sea-surface temperatures in the Rock Islands of Palau, Micronesia [J]. Archaeology in Oceania, 2019, 54(2): 107-119. doi: 10.1002/arco.5182

    [62]

    Dodrill T N, Lassuy M G, Jew N P, et al. Stable Oxygen Isotope (δ18O) Analyses and Paleoenvironmental Reconstructions from Mollusks in Palau, Micronesia[C]//Proceedings of the 81st Annual Meeting of the Society for American Archaeology. Orlando, FL, 2016.

    [63]

    Maes C. Salinity variability in the equatorial Pacific Ocean during the 1993-98 period [J]. Geophysical Research Letters, 2000, 27(11): 1659-1662. doi: 10.1029/1999GL011261

    [64]

    Barkley H C, Cohen A L. Skeletal records of community-level bleaching in Porites corals from Palau [J]. Coral Reefs, 2016, 35(4): 1407-1417. doi: 10.1007/s00338-016-1483-3

    [65]

    Elliot M, Welsh K, Chilcott C, et al. Profiles of trace elements and stable isotopes derived from giant long-lived Tridacna gigas bivalves: Potential applications in paleoclimate studies [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 280(1-2): 132-142. doi: 10.1016/j.palaeo.2009.06.007

    [66]

    Romanek C S, Grossman E L. Stable Isotope Profiles of Tridacna maxima as Environmental Indicators [J]. Palaios, 1989, 4(5): 402-413. doi: 10.2307/3514585

    [67]

    Morimoto M, Abe O, Kayanne H, et al. Salinity records for the 1997-98 El Niño from Western Pacific corals [J]. Geophysical Research Letters, 2002, 29(11): 35-1-35-4.

    [68]

    Warter V, Müller W. Daily growth and tidal rhythms in Miocene and modern giant clams revealed via ultra-high resolution LA-ICPMS analysis - A novel methodological approach towards improved sclerochemistry [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 465: 362-375. doi: 10.1016/j.palaeo.2016.03.019

    [69]

    Yan H, Wang Y H, Sun L G. High resolution oxygen isotope and grayscale records of a medieval fossil giant clam (Tridacna gigas) in the South China Sea: physiological and paleoclimatic implications [J]. Acta Oceanologica Sinica, 2014, 33(8): 18-25. doi: 10.1007/s13131-014-0399-4

    [70]

    Romanek C S, Jones D S, Williams D F, et al. Stable isotopic investigation of physiological and environmental changes recorded in shell carbonate from the giant clam Tridacna maxima [J]. Marine Biology, 1987, 94(3): 385-393. doi: 10.1007/BF00428244

    [71]

    Fairbanks R G, Evans M N, Rubenstone J L, et al. Evaluating climate indices and their geochemical proxies measured in corals [J]. Coral Reefs, 1997, 16(5): S93-S100. doi: 10.1007/s003380050245

    [72] 洪阿实, 洪鹰, 王庆春, 等. 1994年夏季南海东北部海水氧同位素分布特征[J]. 热带海洋, 1997, 16(2):82-90

    HONG Ashi, HONG Ying, WANG Qingchun, et al. Distributive characteristics of O isotope of the northeastern South China Sea in the summer of 1994 [J]. Tropic Oceanology, 1997, 16(2): 82-90.

    [73]

    Diaz H F, Hoerling M P, Eischeid J K. ENSO variability, teleconnections and climate change [J]. International Journal of Climatology, 2001, 21(15): 1845-1862. doi: 10.1002/joc.631

    [74]

    Bellenger H, Guilyardi E, Leloup J, et al. ENSO representation in climate models: from CMIP3 to CMIP5 [J]. Climate Dynamics, 2014, 42(7-8): 1999-2018. doi: 10.1007/s00382-013-1783-z

    [75]

    Versteegh E A A, Vonhof H B, Troelstra S R, et al. Seasonally resolved growth of freshwater bivalves determined by oxygen and carbon isotope shell chemistry [J]. Geochemistry, Geophysics, Geosystems, 2010, 11(8): Q08022.

    [76]

    Woodroffe C D, Beech M R, Gagan M K. Mid-late Holocene El Niño variability in the equatorial Pacific from coral microatolls [J]. Geophysical Research Letters, 2003, 30(7): 1358.

  • 期刊类型引用(5)

    1. 李彦杰,朱友生,陈冠军,王姝,王微微. 基于AUV观测数据的南海东沙北部浅表层精细地质特征及其灾害因素分析. 热带海洋学报. 2023(01): 114-123 . 百度学术
    2. 杨天宇,邹立,赵彦彦,宋晓帅,权永峥,贾永刚. 南海东北部上层沉积物有机碳的沉积特征. 海洋环境科学. 2022(01): 16-23 . 百度学术
    3. 王大伟,曾凡长,王微微,孙悦. 海底冲沟——深水沉积输运系统的“毛细血管”. 地球科学进展. 2022(04): 331-343 . 百度学术
    4. Xishuang Li,Chengyi Zhang,Baohua Liu,Lejun Liu. Mounded seismic units in the modern canyon system in the Shenhu area, northern South China Sea: Sediment deformation, depositional structures or the mixed system?. Acta Oceanologica Sinica. 2022(09): 107-116 . 必应学术
    5. 龚广传,李磊,何旺,张威,高毅凡,程琳燕,杨志鹏. 块体搬运沉积顶面沉积过程模拟--以南海北部坡为例. 海洋地质前沿. 2022(12): 75-83 . 百度学术

    其他类型引用(0)

图(9)
计量
  • 文章访问数:  3471
  • HTML全文浏览量:  823
  • PDF下载量:  133
  • 被引次数: 5
出版历程
  • 收稿日期:  2020-10-10
  • 修回日期:  2020-11-06
  • 网络出版日期:  2021-02-28
  • 刊出日期:  2021-02-27

目录

    /

    返回文章
    返回