Variation and influencing factors of δ13C and δ18O in the inner and outer layers of modern Tridacna squamosa from the Xisha Islands, South China Sea
-
摘要:
砗磲具有清晰的生长纹层,是记录热带海洋气候变化的良好载体,其壳体δ18O、δ13C已广泛应用于第四纪古气候研究。然而,目前大多数研究主要集中在内层壳体,关于外层壳体的研究十分稀少。本研究通过对采自南海西沙群岛浪花礁一个现代鳞砗磲的内外层壳体进行月分辨率δ18O、δ13C测试和内壳日生长纹层扫描,分析内外层壳体δ18O和δ13C的变化特征及其影响因素。结果显示该砗磲外壳δ18O比内壳δ18O更加偏正,但是两者都具有十分相似的变化特征,主要受到海表面温度的控制,表明砗磲内外层壳体δ18O能够可靠地指示气候环境的变化。砗磲内外层壳体δ13C存在较大的差异,其中内壳δ13C具有明显的年周期变化。通过对比分析砗磲内壳δ13C与日生长速率、气候环境参数,发现内壳δ13C的季节变化主要与初级生产力和砗磲自身生命活动有关。砗磲外壳δ13C相对于内壳δ13C较为偏负,表现出持续下降的趋势,且无季节性变化,这可能是由采样路径偏离最大生长轴导致的。
Abstract:Tridacna shells, known for their distinct growth bands, serve as excellent proxies for recording tropical marine climate changes. The δ18O and δ13C in Tridacna shells have been applied in the Quaternary paleoclimate research. However, most previous researches focused on the inner layer, while the outer layer received less attention. We conducted a comprehensive analysis at a monthly resolution δ18O, δ13C tests on both the inner and outer layers, as well as daily growth band scans on the inner layer of modern Tridacna squamosa from the Xisha Islands in the South China Sea. Results reveal that the outer layer exhibited higher δ18O values than the inner layer. In addition, both shells displayed similar variation patterns, being primarily influenced by sea surface temperature (SST), and indicating that the δ18O of the outer layer could reliably indicate climate and environmental changes. In contrast, significant differences in δ13C value were observed between the inner and outer layers. The inner layer displayed a noticeable annual cycle in δ13C value. By comparing the inner layer δ13C, climatic and environmental parameters, and daily growth rate (DGR), we determined that the seasonal variations in inner layer δ13C were linked to the primary productivity and the life activities of Tridacna. Meanwhile, the δ13C of the outer layer, which is relatively negative compared to the inner layer, exhibited a continuous downward trend without seasonal changes. This discrepancy may be attributed to the sampling path deviating from the maximum growth axis.
-
Keywords:
- Tridacna /
- δ13C /
- δ18O /
- climate change /
- South China Sea
-
俯冲带是地球上最复杂的构造部位,是软流圈、岩石圈、水圈、大气和生物圈之间质量和能量交换的动态场所。地表大多数突发性地质现象均发生于此,包括爆发性的火山活动、强地震、快速的地貌演变和复杂的造山过程等[1-2],对地球表面和内部的演化具有重要意义。同时,它维持着地球内部和外部之间长期的物质-能量收支平衡[3]。沉积物的成岩作用以及流体活动是理解俯冲带各种地质过程的关键因素,它控制了俯冲带的几何形状[4]、俯冲带类型[5],并影响俯冲带界面的力学性质和地震发生的深度[6-7]。
在板块俯冲初始的阶段,沉积物受到挤压发生压实脱水,伴随发生的低温成岩作用主要包括离子吸附和解吸附、火山灰蚀变、有机质降解等。随着俯冲深度的增加,开始出现能够显著改变俯冲带压力场的含水矿物的脱水,主要包括A型蛋白石向CT型蛋白石以及蒙脱石向伊利石的转变[8-9]。这些成岩反应能够显著改变流体和岩石(沉积物)的物理化学性质,如火山灰蚀变可能会引起硅质胶结物的形成,从而影响沉积物孔隙度、渗透率和抗剪强度[10-11]。大量石英胶结物的形成改变岩石的摩擦特性,可能导致板片俯冲速度的减弱。同时,这些力学性质增强的沉积物可能还会影响进入俯冲带内板块边界和增生楔的变形特征[12]。而水岩反应过程释放的流体不仅对俯冲带板块界面的机械耦合程度有直接影响[13],同时也会改变俯冲带的热结构,进而促进成岩和变质作用的发生[6, 14]。
慢滑移事件形成于俯冲界面摩擦性质的亚稳态区域,很多学者认为高的孔隙流体压力是引发慢滑移事件的重要因素。海洋沉积物快速埋藏、构造加载以及矿物脱水均可导致高孔隙流体压力的形成。研究发现,板块界面上的慢滑移事件源区通常伴随异常低的地震波速和高的P波与S波比值(VP/VS),这就意味着高孔隙流体压力可能是由于俯冲板片脱水和流体活动所导致,孔隙空间流体的聚集能够大幅降低有效应力,从而促进慢滑移事件的发生[15-17]。因此,认识俯冲带沉积物所发生的成岩作用对于理解俯冲过程的温压场变化和沉积物(岩石)变形特征有着重要作用。
放射性Sr同位素(87Sr/86Sr)是海洋沉积物水岩作用的敏感示踪剂。海洋沉积物中的不同组分物质,如陆源碎屑、生物成因方解石、火山碎屑及洋壳具有差别很大的Sr含量和同位素组成,它们与水之间的水岩反应能够显著改变孔隙流体Sr含量及其同位素组成。陆源碎屑物质具有典型的放射性成因的高87Sr/86Sr值(87Sr/86Sr约0.7119~0.7133),而火山碎屑(87Sr/86Sr约0.706)和洋壳(87Sr/86Sr约0.703)则呈现典型非放射性成因的低87Sr/86Sr值,生物成因方解石则基本记录古海水的Sr同位素组成(87Sr/86Sr约0.7075~0.7092)[18]。卡斯卡迪亚增生楔ODP 889、892、1244、1251站位除了发现典型黏土矿物脱水导致的孔隙流体淡化的现象外,放射性Sr同位素还显示来自深部的、与俯冲洋壳反应后流体的贡献[19-20]。受青藏高原大量陆源风化剥蚀产物输入的影响,苏门答腊俯冲板块片上的IODP 1480站位研究发现,强烈的陆源硅酸盐矿物风化使得海底以下1 000 m内孔隙流体87Sr/86Sr显著升高(高达0.7132),而1 000 m以下受基底洋壳蚀变的影响,87Sr/86Sr明显降低[21]。此外,沉积物中碳酸盐矿物重结晶会释放出大量Sr,这些Sr基本反映的是地质历史时期略低于现代海水的古海水87Sr/86Sr组成[22-23]。因此,孔隙流体87Sr/86Sr通常记录的是现代海水(87Sr/86Sr约0.70917)与不同端元物质间的水岩作用产物的混合。
为了揭示慢滑移事件成因机制,国际大洋发现计划(IODP)375航次于2018年3月在新西兰Hikurangi俯冲带北部执行钻探和安装海底井控观测装置(CORK)。通过刻画俯冲板块、靠近变形前缘活动逆冲断层以及慢滑移事件源区的上覆板块的物理和化学性质、水文地质和构造特征以及热结构,揭示慢滑移事件的成因机制。
本文通过对Hikurangi俯冲带分别位于俯冲的太平洋板块站位(U1520)和变形前缘逆冲断层站位(U1518)的孔隙流体的放射性Sr同位素(87Sr/86Sr)研究,结合孔隙流体的主量元素分析,识别沉积物发生的主要成岩作用,刻画俯冲板块的水文地质特征,有助于认识Sr在俯冲带的循环过程,并为阐明俯冲带慢滑移事件的成因机制提供重要参考。
1. 研究区概况
在新西兰Hikurangi俯冲带北部,太平洋板块以4.5~5.5 cm/a的速度沿Hikurangi海槽向西俯冲进入新西兰北岛的下方[24](图1)。俯冲块体主要由白垩纪海底高原(大火成岩省)组成,洋壳厚度为12~15 km,面积约为3.6×106 km2,平均深度为2 500~4 000 m。高原位于Hikurangi海槽轴线的外侧,上面覆盖有约1 km厚的中生代至新生代的沉积层,被认为部分由陆源沉积物组成,在南部增加到大于5 km厚[25]。Hikurangi俯冲带北部大部分是非增生型汇聚边缘,俯冲板片上发育多个海山,形成了一个粗糙的俯冲界面,且局部由于海山俯冲,呈现前缘剥蚀的特征[25]。近几十年来GPS观测结果显示Hikurangi北部的慢滑移事件频发,约每18~24个月发生一次。最近的一项海底大地测量实验表明,在IODP 375航次钻探区的海底以下小于2 km发生了慢滑移,并一直延伸到海沟海底[26]。
2. 材料与方法
本文研究的孔隙流体样品通过2018年3月IODP 375航次在新西兰Hikurangi俯冲带北部钻探获得,选取位于太平洋俯冲板块的U1520站位和变形前缘逆冲断层的U1518站位共173个孔隙流体样品开展研究(图1)。孔隙流体样品通过钛合金压榨装置收集,利用0.2 μm的滤膜过滤后保存待测。
孔隙流体中的SO42−、Ca2+、Mg2+和Sr2+含量均在JOIDES Resolution钻探船上地球化学实验室测试。孔隙流体SO42−含量用3.2 mM Na2CO3和1.0 mM NaHCO3混合液作为淋洗液,25 mM H2SO4为再生液,由瑞士万通Metrohm 850型离子色谱仪测定。将国际标准海水(IAPSO)稀释不同倍数后建立标准曲线,测试误差小于1%。孔隙流体Ca2+、Mg2+和Sr2+含量用ICP-OES(Agilent 5110 ICP-OES)测定。Ca2+、Mg2+测试误差小于1%,Sr2+测试误差小于2%。放射性Sr同位素测试在美国俄勒冈州立大学完成,取约4 mL孔隙流体,先经离子交换树脂对Sr进行分离纯化,然后利用多接收电感耦合等离子质谱(MS-ICP-MS,Nu Plasma II)对87Sr/86Sr进行测定,样品87Sr/86Sr用美国国家标准局标准物质NBS 987(87Sr/86Sr=0.710245)标准化矫正。
3. 结果
3.1 主要岩性特征
U1518站位划分了3个岩性地层单元(图2a),地层年龄均属于第四纪。岩性单元I(Unit I)又划分出两个次级单元(Unit IA和IB)。岩性单元IA(0~197.7 mbsf)主要为含砂质泥岩、粉质砂岩以及极细的砂,顶部有火山灰层。岩性单元IB(197.7~304.5 mbsf)主要为稀薄的泥岩和极细的粉砂岩。岩性单元Ⅱ(Unit Ⅱ)(304.5~370.4 mbsf)主要为浅绿灰色泥岩与薄层粉砂岩、砂质粉砂岩交替出现。在岩性单元Ⅱ中存在两个断层带分别是304.5~322.4 mbsf处的Pāpaku断层带和351.2~361.7 mbsf的次级断层带。岩性单元Ⅲ(Unit Ⅲ)(370.4~492.4 mbsf)可分为两个次级单元(Unit IIIA和Unit IIIB),由泥岩组成,含粉砂岩和砂质粉砂岩的薄层,最显著的特点是出现大量块体搬运沉积,IIIB中块体搬运沉积出现的频率比IIIA明显要少[28]。
U1520站位岩性较为复杂,可划分为6个岩性地层单位,地层年龄从白垩纪至全新世。岩性单元Ⅰ(Unit I)(0~110.5 mbsf)主要为绿灰色半深海泥,夹有丰富的深灰色泥岩和砂岩层。岩性单元Ⅱ(Unit Ⅱ)(110.5~222.0 mbsf)主要为半深海泥与泥岩互层。岩性单元Ⅲ(Unit Ⅲ)(222.0~509.8 mbsf)主要为粉砂质黏土—黏土质泥岩,常见火山灰层。岩性单元Ⅳ(Unit Ⅳ)(509.8~848.5 mbsf)主要为碳酸盐岩相沉积,包括浅绿—灰色泥灰岩、浅棕灰色钙质泥岩和浅棕色白垩岩。岩性单元Ⅴ(Unit Ⅴ)(848.5~1 016.2 mbsf)主要为颗粒状的火山碎屑岩。岩性单元 Ⅵ(Unit Ⅵ)(1 016.2~1 045.8 mbsf)主要为交替出现的火山碎屑砾岩、玄武岩和泥岩,颜色呈深蓝灰色—绿灰色[29]。
3.2 孔隙流体SO42-、Ca2+、Mg2+、Sr2+浓度以及87Sr/86Sr随深度变化
U1518站位孔隙流体SO42−浓度从顶部的28.1 mM迅速下降至8 mbsf的0 mM,该深度为U1518站位的硫酸盐甲烷转换带(SMTZ),随后SO42−浓度始终为0。孔隙流体中Ca2+浓度从海底附近的10.4 mM迅速下降到SMTZ之下的3.1 mM,达到最低值后开始缓慢增加,在74.9 mbsf处增加到5.12 mM。之后Ca2+浓度变化相对较小,且始终低于6 mM。Mg2+浓度的整体变化趋势与Ca2+浓度相似,从海底附近的海水值迅速下降到SMTZ之下的25 mM,随着深度的增加Mg2+浓度始终保持在25 mM左右相对恒定。U1520站位孔隙流体中SO42−浓度从3 mbsf的19.7 mM迅速下降至27.8 mbsf处的0 mM,该位置为U1520站位的SMTZ深度。在446 mbsf以下,SO42−浓度开始增加,在523 mbsf处达到21 mM,540~848 mbsf处SO42−浓度先略微降低后又缓慢回升至近海水值,848 mbsf之下的火山碎屑岩层中,其浓度基本保持不变。Ca2+和Mg2+浓度在浅层均随深度的增加而降低。Ca2+浓度在123 mbsf之下开始缓慢增加,以463.6 mbsf为转折点开始Ca2+浓度大幅度增加,在725.3 mbsf处达到最大值(27.8 mM),随后开始下降,在884 mbsf降低至15 mM,在此之下Ca2+浓度有小幅度增加。而Mg2+浓度则持续降低,在474.5 mbsf处出现与Ca2+浓度变化呈镜像的大幅度降低,在690 mbsf处达到最小值(14.6 mM),随后开始大幅升高,至863.4 mbsf处达到42.6 mM后Mg2+浓度基本保持恒定。
U1518站位Sr2+浓度在0~66 mbsf随深度增加快速增大,66~200 mbsf处趋于平稳。伴随着Sr2+浓度的增加,87Sr/86Sr则由海水值(0.70917)快速减小至60.7 mbsf处的0.70871,在200 mbsf以下,Sr2+浓度和87Sr/86Sr随深度均呈现小范围波动,变化范围分别为100~134 μM和0.7087~0.7089。
U1520站位中的Sr2+浓度在0~40 mbsf处随深度增加而增大,随后基本稳定在110 μM左右。而87Sr/86Sr在0~40 mbsf处显著降低,之后随着深度的增加至0.709并趋于稳定。在509.8 mbsf以下的岩性单元IV,Sr2+浓度开始出现急剧增加,并且在568.3~751.3 mbsf处始终保持较高的浓度(1 300 μM左右),751.3 mbsf之下的Sr2+浓度迅速降至134 μM,随后浓度随深度保持稳定并略微增加。在岩性单元IV内伴随着Sr2+浓度的显著增加,87Sr/86Sr并未出现明显的变化。直到848.5 mbsf之下的岩性单元Ⅴ,87Sr/86Sr随深度的增加而大幅降低,达到最小值(0.7063)。
4. 讨论
4.1 火山灰蚀变
U1518和U1520站位岩心观察显示有广泛的灰色火山灰层和深灰色的火山碎屑发育(图3a、b),同时,在显微镜下也观察到大量无色透明的火山玻璃(图3c-e)。U1518站位孔隙流体中Ca2+浓度随沉积物深度的增加先急剧下降,随后缓慢增加。而Mg2+浓度随深度增加整体呈降低趋势,但不同深度Mg2+浓度减小的梯度有明显差别(图2a)。在15.8~44.2 mbsf处孔隙流体中Ca2+和Mg2+浓度变化呈负相关(图4a)。U1520站位的Ⅱ和Ⅲ单元的孔隙流体Ca2+和Mg2+浓度变化幅度较小,但与U1518站位相似,也呈现负相关关系。这种Ca2+和Mg2+的负相关特征在多个OPD/IODP钻探站位均有发现,通常认为与硅酸盐矿物蚀变并伴随自生黏土矿物形成有关[30-36]。火山成因物质的蚀变,如正长石、火山玻璃蚀变会释放Ca2+,同时伴随自生黏土矿物的形成,促使Mg2+从孔隙流体中移出进入自生黏土矿物相。由于U1518站位和U1520站位的上部沉积物中富含火山灰,故Ca2+浓度的增加伴随Mg2+浓度减少的现象可能是由火山物质蚀变驱动。与此相类似的特征在四国盆地的ODP C0012站位、日本海沟ODP 1150站位也显示了由火山物质蚀变导致的Ca2+-Mg2+浓度负相关的特征[37]。
87Sr/86Sr与1/Sr相关图显示U1518和U1520站位岩性单元I−III孔隙流体呈现典型低放射性成因Sr端元与海水Sr端元的混合(图5)。结合Ca2+和Mg2+浓度变化趋势以及沉积物中广泛分布的火山灰,这一低放射性成因Sr应是由火山灰蚀变所导致。尽管基底玄武岩蚀变同样可以引起类似的Ca2+、Mg2+、Sr2+含量以及87Sr/86Sr的变化特征,但考虑到浅部沉积物距离基底较远,基底玄武岩蚀变的Sr同位素信号很难影响到浅部。在小安德列斯火山弧的多个站位沉积物孔隙流体中的87Sr/86Sr也显示了受火山物质蚀变导致的Sr含量增加而87Sr/86Sr降低的特征[22]。但是,U1520站位894 mbsf以下87Sr/86Sr值降低更为显著,这是由于在岩性单元V内的玄武岩蚀变释放的低放射性成因Sr,通过扩散作用影响到上覆岩性单元的放射性Sr同位素组成。类似地,在加勒比海东部ODP 625站位和西部ODP 1001站位也存在基底玄武岩蚀变的现象[38-39]。
4.2 碳酸盐沉淀和重结晶
海洋沉积物中有机质硫酸盐还原和甲烷厌氧氧化耦合硫酸盐还原作用,生成碳酸氢根(HCO3−),增加周围孔隙流体的碱度,促进自生碳酸盐岩的沉淀[32, 40-43]。U1518和U1520站位孔隙流体SO42-基本随深度增加而线性降低,分别在14.3和37.3 mbsf的硫酸盐-甲烷转换带(SMTZ)降至为0,Ca2+和Mg2+浓度在对应深度范围内也逐渐降低,且Ca2+浓度在SMTZ降至最低值,表明发生了次生碳酸盐矿物沉淀,消耗了大量孔隙流体Ca2+、Mg2+。
在U1520站位岩性单元IV中,Ca2+浓度快速增加,并伴随着Mg2+浓度大幅降低,且Ca2+增加与Mg2+降低的比例基本为1∶1(图4b)。一般来说,沉积物孔隙流体Ca2+-Mg2+浓度呈负相关的趋势是由于低温火山灰/玄武岩蚀变或者碳酸盐矿物的重结晶作用所引起[30, 44]。考虑到岩性单元IV是以碳酸钙含量很高的灰岩为主,故认为这种近1∶1的Ca2+-Mg2+浓度呈负相关的变化可能是由于碳酸盐矿物发生重结晶作用导致。生物成因文石被埋藏后,发生重结晶,Mg2+代替Ca2+进入方解石晶格中转变为高镁方解石,引起孔隙水Ca2+显著增加和Mg2+显著降低。同样在翁通爪哇海台ODP 807站位的富碳酸盐岩层位也观测到重结晶导致的Mg2+从孔隙流体中移除,而Ca2+被释放到孔隙流体中的现象[45]。因此,Higgins和Schrag提出在利用有孔虫Mg/Ca恢复古海水温度时,若不考虑成岩作用引起的碳酸盐沉积物中Mg含量的增加,有可能会高估了古温度的估算结果[45]。
另外,海相碳酸盐岩中87Sr/86Sr基本记录了当时海水的放射性Sr同位素组成,U1520站位岩性单元IV在600~769 mbsf处Sr浓度迅速升高至1 096~1 297 μM,而87Sr/86Sr的值基本未发生明显变化(图2b),呈现比现代海水略低的古海水的特征,这也是生物成因方解石发生重结晶作用的证据。
4.3 岩性和成岩作用不均一性对俯冲过程的影响
沉积物的物理性质与岩性、成岩作用程度(胶结、压实、固结)以及流体含量与孔隙流体压力密切相关[6, 46-47]。位于俯冲板块上的U1520站位所发生的成岩作用能够使孔隙度、渗透率等出现变化。目前在实验室岩石物理模拟结果推测慢滑移事件发生的部位大致位于U1520站位500~700 mbsf处的碳酸盐层,孔隙流体中的Ca2+和Mg2+浓度以及87Sr/86Sr值的变化特征均表明该处存在显著的碳酸盐重结晶作用。沉积物经过碳酸盐重结晶作用后能够降低碳酸盐原生和次生孔隙度,使沉积物变得更加致密,进而可能对俯冲活动造成影响。在重结晶作用过程中,如果碳酸盐胶结发生在较深的沉积剖面位置,胶结物也会改变沉积物的力学性质,对其渗透性有显著的影响,从而影响流体的流动[43]。
U1520站位下部岩性单元V为厚层的火山碎屑岩,该层位的火山玻璃和火山碎屑的蚀变可形成性质更为稳定的黏土矿物[48],同时,蚀变过程还伴随有硅质胶结物的形成。胶结作用能够改变沉积物的力学性质,少量的成岩胶结物便可以影响沉积物强度,抑制变形和保持孔隙度的力学特性[10, 49-52]。在俯冲带内,沉积物胶结作用可能影响板块边界演化,因为进入俯冲带的沉积物强度控制着沉积物变形的性质和分布,进而影响进入俯冲带后板片的变形特征[49]。岩性单元V内的硅质胶结物使沉积物免受进一步压实作用而保持较为恒定的孔隙度,导致该深度拥有异常高的孔隙度和渗透率,这为流体的横向运动创造了良好的条件。U1520站位孔隙流体中SO42−、Ca2+、Mg2+、Sr2+浓度在750~1100 mbsf处均比较接近海水值,表明火山碎屑沉积层具有足够的渗透性以容纳流体流动,使得海水沿火山碎屑层发生横向流动。与此类似,在DSDP的417站位钻探结果也发现海水沿着基底玄武岩发生横向流动的现象[53]。这些含流体的沉积层进入俯冲带后遭受挤压,若流体不能及时排出,则可形成异常高的流体压力,可能对俯冲界面的慢滑移或地震行为产生重要影响。
由于发生了碳酸盐重结晶作用,U1520站位500~700 mbsf处的碳酸盐层变得尤为致密,而被大量火山碎屑岩充填的下部则出现异常高的渗透率,导致海水灌入并发生横向流动。以上两种现象叠加作用将对U1520站位下部的孔隙流体压力的分布和变化有着重要影响,尤其在进入俯冲带后遭受挤压,可能形成异常高的孔隙流体压力。目前有学者认为俯冲带慢滑移事件与高孔隙流体压力有关[15-17],因此,U1520站位岩性和成岩作用的不均一性可能与希库朗伊慢滑移事件的形成存在紧密的联系。
5. 结论
(1)Hikurangi俯冲带沉积物成岩作用主要有火山灰/火山碎屑的蚀变作用伴随自生黏土矿物形成,以及碳酸盐沉淀与重结晶作用。
(2)俯冲板块上的U1520站位岩性单元IV(509.8~848.5 mbsf)发生强烈的碳酸盐矿物重结晶作用,使得沉积物结构变得致密。
(3)岩性单元V(848.5~1 016.2 mbsf)的火山碎屑岩具有高渗透性,可导致海水沿着该层位发生横向流动。
(4)俯冲板块上岩性和成岩作用的强烈不均一性,可能使得进入俯冲带后形成异常高的孔隙流体压力,进而可能与Hikurangi俯冲带频发的慢滑移事件有关。
致谢:感谢IODP 375航次所有船员、科学家和技术人员在样品采集和分析测试过程中给予的帮助。感谢IODP中国办公室提供的航行资助。
-
图 1 砗磲样品及其地理位置
a:浪花礁位置示意图(红点)(图片来源:Ocean Data View);b:现代鳞砗磲LHJ-2壳体(黑色虚线为壳体最大生长轴);c:外壳取样路径(红色虚线),黑色虚线为内层、外层和转换层的分界线;d:内壳日生长纹层,e:内壳取样路径(红色实线)。
Figure 1. Tridacna samples and the geographical location
a: A schematic diagram of the location of the Bombay Reef (red dot) (Photo source: Ocean Data View); b: the modern Tridacna shell LHJ-2 (the black dotted line represents the maximum growth axis of the shell); c: outer layer sampling path (red dotted line). The black dotted line is the boundary between the inner layer and the hinge and outer layer; d: daily growth layer of the inner layer; e: inner layer sampling path (red solid line).
图 2 2013—2018年砗磲的月平均碳、氧同位素记录、日生长速率与当地气候环境参数对比
a:海表面温度,b:日照时数,c:太阳辐射,d:海表风速,e:叶绿素浓度,f:降水量,g:内壳δ18OIL,h:外壳δ18OOL,i:内壳δ13CIL,j:外壳δ13COL,k:内壳月均日生长速率。
Figure 2. Comparison among the monthly average carbon and oxygen isotope records, daily growth rate of Tridacna, and local environmental parameters from 2013 to 2018
a: Sea surface temperature, b: sunlight durations, c: solar radiation, d:sea surface wind speed, e: chlorophyll concentration, f: rainfall, g: inner layer δ18OIL, h: outer layer δ18OOL, i: inner layer δ13CIL, j: outer layer δ13COL, k: average daily growth rate of the inner layer in every month.
图 3 砗磲日生长速率(DGR)和太阳辐射的关系
a:2018-12-18—2019-2-28的太阳辐射与最后30个DGR的滑动平均相关性分析,红色条形柱代表的日期为2018-12-18,相关系数为 r = 0.47, p < 0.5, n = 73;b: 2018-11-19—2018-12-18的太阳辐射和DGR的对比。
Figure 3. The relationship between the daily growth rate (DGR) of Tridacna and solar radiation
a: The sliding correlation analysis of the last 30 values of DGR and corresponded solar radiation from 18 December 2018 to 28 February 2019. The date represented by the red bar column is 18 December 2018, and the correlation coefficients are r = 0.47, p<0.5, n = 73; b: comparison between solar radiation and DGR from 19 November 2018 to 18 December 2018.
图 4 样品LHJ-2 内外层壳体δ18O、SST以及δ18OSW之间的关系
a:内壳δ18OIL(红色圆圈)和外壳δ18OOL(黑色圆圈),b:海表盐度,c:海水δ18OSW,d:(δ18OIL−δ18OSW)(绿色圆圈)、SST(灰色圆圈),e:(δ18OOL−δ18OSW)(紫色圆圈),SST(灰色圆圈),f:SST与(δ18OIL−δ18OSW)的线性关系,g: 2013—2018年月平均δ18OIL(红色圆圈)、(δ18OIL−δ18OSW)(绿色圆圈)和δ18OSW(蓝色圆圈),h: SST与(δ18OOL−δ18OSW)的线性关系,i: 2013—2018年月平均δ18OOL(黑色圆圈)、(δ18OOL−δ18OSW)(紫色圆圈)和δ18OSW(蓝色圆圈)。
Figure 4. The relationship among δ18O, SST and δ18OSW in the inner and outer layers of the sample LHJ-2
a: Inner layer δ18OIL (red circle) and outer layer δ18OOL (black circle), b: sea surface salinity, c: seawater δ18OSW, d: (δ18OIL−δ18OSW) (green circle), SST(grey circle), e: (δ18OOL−δ18OSW) (purple circle), SST(grey circle), f: the linear relationship between SST and (δ18OIL−δ18OSW), g: the monthly average of δ18OIL (red circle), (δ18OIL−δ18OSW) (green circle) and δ18OSW (blue circle) from 2013 to 2018, h: the linear relationship between SST and (δ18OOL−δ18OSW), i: the monthly average of δ18OOL (black circle), (δ18OOL−δ18OSW) (purple circle) and δ18OSW (blue circle) from 2013 to 2018.
图 5 2013—2018年西沙群岛环境参数与样品LHJ-2壳体δ13C的对比
a: SST,b:日照时数,c:内壳日生长速率,d:内外层壳体年生长速率,e:海表风速,f:叶绿素浓度,g: 内壳δ13C(黑色实心圆圈)、外壳δ13C(黑色空心圆圈)。
Figure 5. The comparison of environmental parameters with δ13C of LHJ-2 shell in Xisha Islands from 2013 to 2018
a: SST, b: sunlight durations, c: the daily growth rate of the inner layer, d: the annual growth rate of the inner and outer layers, e: sea surface wind speed, f: chlorophyll concentration, g: the δ13C of inner layer (black solid circle), the δ13C of outer layer (black hollow circle).
图 6 样品LHJ-2内壳δ13CIL、日生长速率以及各环境参数之间的相关性
a: δ13CIL与SST,b: δ13CIL与日照时数,c: δ13CIL与叶绿素浓度,d: δ13CIL与海表风速,e: δ13CIL与日生长速率,f:日生长速率与SST,g: 日生长速率与太阳辐射,h: 日生长速率与日照时数,i:春夏季的δ13CIL与日生长速率,j:秋冬季的δ13CIL与日生长速率,k:春夏季的δ13CIL与叶绿素浓度,l:秋冬季的δ13CIL与叶绿素浓度。
Figure 6. The correlations of δ13CIL and daily growth rate of the LHJ-2 inner layer to the environmental parameters
a:δ13CIL and SST, b: δ13CIL and sunlight durations, c: δ13CIL and chlorophyll concentration, d: δ13CIL and sea surface wind speed, e: DGR and δ13CIL, f: DGR and SST, g: DGR and solar radiation, h: DGR and sunlight durations, i: δ13CIL and DGR in spring and summer, j: δ13CIL and DGR in autumn and winter, k: δ13CIL and chlorophyll concentration in spring and summer, l: δ13CIL and chlorophyll concentration in autumn and winter.
图 7 样品LHJ-2外壳δ13COL与pCO2及其δ13C的对比
a:大气CO2浓度,b:大气CO2的δ13C,c: δ13COL,d: δ13COL与pCO2的相关性,e: δ13COL与大气CO2的δ13C的相关性。
Figure 7. Comparison among δ13COL in the LHJ-2 outer layer, pCO2, and δ13C of atmosphere
a: pCO2, b: δ13C of atmospheric CO2, c: δ13COL, d: the correlation between δ13COL and pCO2, e: the correlation between δ13COL and δ13C in atmospheric CO2.
-
[1] Bonham K. Growth rate of giant clam Tridacna gigas at Bikini Atoll as revealed by radioautography[J]. Science, 1965, 149(3681):300-302. doi: 10.1126/science.149.3681.300
[2] Rosewater J. The family tridacnidae in the Indo-Pacific[J]. Indo-Pacific Mollusca, 1965, 1:347-396.
[3] Neo M L, Eckman W, Vicentuan K, et al. The ecological significance of giant clams in coral reef ecosystems[J]. Biological Conservation, 2015, 181:111-123. doi: 10.1016/j.biocon.2014.11.004
[4] Watanabe T, Suzuki A, Kawahata H, et al. A 60-year isotopic record from a mid-Holocene fossil giant clam (Tridacna gigas) in the Ryukyu Islands: physiological and paleoclimatic implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 212(3-4):343-354. doi: 10.1016/S0031-0182(04)00358-X
[5] Elliot M, Welsh K, Chilcott C, et al. Profiles of trace elements and stable isotopes derived from giant long-lived Tridacna gigas bivalves: potential applications in paleoclimate studies[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 280(1-2):132-142. doi: 10.1016/j.palaeo.2009.06.007
[6] Yan H, Shao D, Wang Y H, et al. Sr/Ca profile of long-lived Tridacna gigas bivalves from South China Sea: a new high-resolution SST proxy[J]. Geochimica et Cosmochimica Acta, 2013, 112:52-65. doi: 10.1016/j.gca.2013.03.007
[7] Ayling B F, Chappell J, Gagan M K, et al. ENSO variability during MIS 11 (424–374 ka) from Tridacna gigas at Huon Peninsula, Papua New Guinea[J]. Earth and Planetary Science Letters, 2015, 431:236-246. doi: 10.1016/j.jpgl.2015.09.037
[8] Gannon M E, Pérez-Huerta A, Aharon P, et al. A biomineralization study of the Indo-Pacific giant clam Tridacna gigas[J]. Coral Reefs, 2017, 36(2):503-517. doi: 10.1007/s00338-016-1538-5
[9] Yan H. Daily growth bands of giant clam shell: a potential paleoweather recorder[J]. Solid Earth Sciences, 2020, 5(4):249-253. doi: 10.1016/j.sesci.2020.10.001
[10] Yan H, Liu C C, An Z S, et al. Extreme weather events recorded by daily to hourly resolution biogeochemical proxies of marine giant clam shells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(13):7038-7043.
[11] Lin A Y M, Meyers M A, Vecchio K S. Mechanical properties and structure of Strombus gigas, Tridacna gigas, and Haliotis rufescens sea shells: a comparative study[J]. Materials Science and Engineering: C, 2006, 26(8):1380-1389. doi: 10.1016/j.msec.2005.08.016
[12] Norton J H, Jones G W. The Giant Clam: An Anatomical and Histological Atlas[M]. Canberra, Australia: Australian Centre for International Agricultural Research, 1992.
[13] Aharon P. Recorders of reef environment histories: stable isotopes in corals, giant clams, and calcareous algae[J]. Coral Reefs, 1991, 10(2):71-90. doi: 10.1007/BF00571826
[14] Sano Y, Kobayashi S, Shirai K, et al. Past daily light cycle recorded in the strontium/calcium ratios of giant clam shells[J]. Nature Communications, 2012, 3(1):761. doi: 10.1038/ncomms1763
[15] Aharon P. 140, 000-yr isotope climatic record from raised coral reefs in New Guinea[J]. Nature, 1983, 304(5928):720-723. doi: 10.1038/304720a0
[16] Grossman E L, Ku T L. Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects[J]. Chemical Geology: Isotope Geoscience section, 1986, 59:59-74. doi: 10.1016/0168-9622(86)90057-6
[17] Watanabe T, Oba T. Daily reconstruction of water temperature from oxygen isotopic ratios of a modern Tridacna shell using a freezing microtome sampling technique[J]. Journal of Geophysical Research: Oceans, 1999, 104(C9):20667-20674. doi: 10.1029/1999JC900097
[18] Aubert A, Lazareth C E, Cabioch G, et al. The tropical giant clam Hippopus hippopus shell, a new archive of environmental conditions as revealed by sclerochronological and δ18O profiles[J]. Coral Reefs, 2009, 28(4):989-998. doi: 10.1007/s00338-009-0538-0
[19] Duprey N, Lazareth C E, Dupouy C, et al. Calibration of seawater temperature and δ 18Oseawater signals in Tridacna maxima’s δ 18Oshell record based on in situ data[J]. Coral Reefs, 2015, 34(2):437-450. doi: 10.1007/s00338-014-1245-z
[20] Wang G Z, Yan H, Liu C C, et al. Oxygen isotope temperature calibrations for modern Tridacna shells in western Pacific[J]. Coral Reefs, 2022, 41(1):113-130. doi: 10.1007/s00338-021-02208-5
[21] Pätzold J, Heinrichs J P, Wolschendorf K, et al. Correlation of stable oxygen isotope temperature record with light attenuation profiles in reef-dwelling Tridacna shells[J]. Coral Reefs, 1991, 10(2):65-69. doi: 10.1007/BF00571825
[22] Killam D, Thomas R, Al‐Najjar T, et al. Interspecific and intrashell stable isotope variation among the red sea giant clams[J]. Geochemistry, Geophysics, Geosystems, 2020, 21(7):e2019GC008669. doi: 10.1029/2019GC008669
[23] Jones D S, Williams D F, Romanek C S. Life history of symbiont-bearing giant clams from stable isotope profiles[J]. Science, 1986, 231(4733):46-48. doi: 10.1126/science.231.4733.46
[24] Yamanashi J, Takayanagi H, Isaji A, et al. Carbon and oxygen isotope records from Tridacna derasa shells: toward establishing a reliable proxy for sea surface environments[J]. PLoS One, 2016, 11(6):e0157659. doi: 10.1371/journal.pone.0157659
[25] Arias-Ruiz C, Elliot M, Bézos A, et al. Geochemical fingerprints of climate variation and the extreme La Niña 2010–11 as recorded in a Tridacna squamosa shell from Sulawesi, Indonesia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 487:216-228. doi: 10.1016/j.palaeo.2017.08.037
[26] Yang Z K, Shao D, Mei Y J, et al. The controlling mechanism of mid- to late Holocene carbon isotopic variations of Tridacnidae in the South China Sea[J]. Marine Geology, 2019, 415:105958. doi: 10.1016/j.margeo.2019.06.003
[27] Romanek C S, Jones D S, Williams D F, et al. Stable isotopic investigation of physiological and environmental changes recorded in shell carbonate from the giant clam Tridacna maxima[J]. Marine Biology, 1987, 94(3):385-393. doi: 10.1007/BF00428244
[28] Suess H E. Natural radiocarbon and the rate of exchange of carbon dioxide be-tween the atmosphere and the sea[J]. Nuclear Processes in Geologic Settings, 1953, 43:52-56.
[29] Keeling C D. The Suess effect: 13Carbon-14Carbon interrelations[J]. Environment International, 1979, 2(4-6):229-300. doi: 10.1016/0160-4120(79)90005-9
[30] Swart P K, Greer L, Rosenheim B E, et al. The 13C Suess effect in scleractinian corals mirror changes in the anthropogenic CO2 inventory of the surface oceans[J]. Geophysical Research Letters, 2010, 37(5):L05604.
[31] Deng W F, Chen X F, Wei G J, et al. Decoupling of coral skeletal δ13C and solar irradiance over the past millennium caused by the oceanic Suess effect[J]. Paleoceanography, 2017, 32(2):161-171. doi: 10.1002/2016PA003049
[32] Dassié E P, Lemley G M, Linsley B K. The Suess effect in Fiji coral δ13C and its potential as a tracer of anthropogenic CO2 uptake[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 370:30-40. doi: 10.1016/j.palaeo.2012.11.012
[33] Yan H, Soon W, Wang Y H. A composite sea surface temperature record of the northern South China Sea for the past 2500years: a unique look into seasonality and seasonal climate changes during warm and cold periods[J]. Earth-Science Reviews, 2015, 141:122-135. doi: 10.1016/j.earscirev.2014.12.003
[34] Warter V, Müller W. Daily growth and tidal rhythms in Miocene and modern giant clams revealed via ultra-high resolution LA-ICPMS analysis: a novel methodological approach towards improved sclerochemistry[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 465:362-375. doi: 10.1016/j.palaeo.2016.03.019
[35] Agbaje O B A, Thomas D E, Dominguez J G, et al. Biomacromolecules in bivalve shells with crossed lamellar architecture[J]. Journal of Materials Science, 2019, 54(6):4952-4969. doi: 10.1007/s10853-018-3165-8
[36] Zhao N Y, Yan H, Yang Y J, et al. A 23.7-year long daily growth rate record of a modern giant clam shell from South China Sea and its potential in high-resolution paleoclimate reconstruction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 583:110682. doi: 10.1016/j.palaeo.2021.110682
[37] Zhao N Y, Yan H, Luo F, et al. Daily growth rate variation in Tridacna shells as a record of tropical cyclones in the South China Sea: palaeoecological implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 615:111444. doi: 10.1016/j.palaeo.2023.111444
[38] Warter V, Erez J, Müller W. Environmental and physiological controls on daily trace element incorporation in Tridacna crocea from combined laboratory culturing and ultra-high resolution LA-ICP-MS analysis[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 496:32-47. doi: 10.1016/j.palaeo.2017.12.038
[39] Aharon P, Chappell J. Oxygen isotopes, sea level changes and the temperature history of a coral reef environment in New Guinea over the last 105 years[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1986, 56(3-4):337-379. doi: 10.1016/0031-0182(86)90101-X
[40] 洪阿实, 洪鹰, 王庆春, 等. 1994年夏季南海东北部海水氧同位素分布特征[J]. 热带海洋, 1997, 16(2):82-90 HONG Ashi, HONG Ying, WANG Qingchun, et al. Distributive characteristics of O isotope of the northeastern South China Sea in the summer of 1994[J]. Tropic Oceanology, 1997, 16(2):82-90.]
[41] Yan H, Shao D, Wang Y H, et al. Sr/Ca differences within and among three Tridacnidae species from the South China Sea: implication for paleoclimate reconstruction[J]. Chemical Geology, 2014, 390:22-31. doi: 10.1016/j.chemgeo.2014.10.011
[42] Romanek C S, Grossman E L. Stable isotope profiles of Tridacna maxima as environmental indicators[J]. Palaios, 1989, 4(5):402-413. doi: 10.2307/3514585
[43] 文汉锋, 赵楠钰, 刘成程, 等. 西太平洋帕劳砗磲高分辨率氧同位素记录及其指示的气候环境变化[J]. 海洋地质与第四纪地质, 2021, 41(1):1-13 WEN Hanfeng, ZHAO Nanyu, LIU Chengcheng, et al. High-resolution oxygen isotope records of Tridacna gigas from Palau, Western Pacific and its climatic and environmental implications[J]. Marine Geology & Quaternary Geology, 2021, 41(1):1-13.]
[44] Trofimova T, Milano S, Andersson C, et al. Oxygen isotope composition of Arctica islandica aragonite in the context of shell architectural organization: implications for paleoclimate reconstructions[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(2):453-470. doi: 10.1002/2017GC007239
[45] Cusack M, Parkinson D, Freer A, et al. Oxygen isotope composition in Modiolus modiolus aragonite in the context of biological and crystallographic control[J]. Mineralogical Magazine, 2008, 72(2):569-577. doi: 10.1180/minmag.2008.072.2.569
[46] 殷建平, 王友绍, 徐继荣, 等. 海洋碳循环研究进展[J]. 生态学报, 2006, 26(2):566-575 doi: 10.3321/j.issn:1000-0933.2006.02.033 YIN Jianping, WANG Youshao, XU Jirong, et al. Adavances of studies on marine carbon cycle[J]. Acta Ecologica Sinica, 2006, 26(2):566-575.] doi: 10.3321/j.issn:1000-0933.2006.02.033
[47] McConnaughey T. 13C and 18O isotopic disequilibrium in biological carbonates: I. Patterns[J]. Geochimica et Cosmochimica Acta, 1989, 53(1):151-162. doi: 10.1016/0016-7037(89)90282-2
[48] McConnaughey T A, Burdett J, Whelan J F, et al. Carbon isotopes in biological carbonates: respiration and photosynthesis[J]. Geochimica et Cosmochimica Acta, 1997, 61(3):611-622. doi: 10.1016/S0016-7037(96)00361-4
[49] Lorrain A, Paulet Y M, Chauvaud L, et al. δ13C variation in scallop shells: increasing metabolic carbon contribution with body size?[J]. Geochimica et Cosmochimica Acta, 2004, 68(17):3509-3519. doi: 10.1016/j.gca.2004.01.025
[50] Ma X L, Yan H, Ma W T, et al. Symbiotic zooxanthellae drive the δ13C changes of Tridacna gigas shell in the southern South China Sea[J]. Journal of Geophysical Research: Biogeosciences, 2023, 128(6):e2022JG007337. doi: 10.1029/2022JG007337
[51] Klein R T, Lohmann K C, Thayer C W. SrCa and 13C12C ratios in skeletal calcite of Mytilus trossulus: covariation with metabolic rate, salinity, and carbon isotopic composition of seawater[J]. Geochimica et Cosmochimica Acta, 1996, 60(21):4207-4221. doi: 10.1016/S0016-7037(96)00232-3
[52] McConnaughey T A, Gillikin D P. Carbon isotopes in mollusk shell carbonates[J]. Geo-Marine Letters, 2008, 28(5-6):287-299. doi: 10.1007/s00367-008-0116-4
[53] McConnaughey T A. Sub-equilibrium oxygen-18 and carbon-13 levels in biological carbonates: carbonate and kinetic models[J]. Coral Reefs, 2003, 22(4):316-327. doi: 10.1007/s00338-003-0325-2
[54] Chauvaud L, Lorrain A, Dunbar R B, et al. Shell of the great scallop Pecten maximus as a high-frequency archive of paleoenvironmental changes[J]. Geochemistry, Geophysics, Geosystems, 2005, 6(8):Q08001.
[55] Grottoli A G, Wellington G M. Effect of light and zooplankton on skeletal δ13C values in the eastern Pacific corals Pavona clavus and Pavona gigantea[J]. Coral Reefs, 1999, 18(1):29-41. doi: 10.1007/s003380050150
[56] Gillikin D P, Lorrain A, Meng L, et al. A large metabolic carbon contribution to the δ13C record in marine aragonitic bivalve shells[J]. Geochimica et Cosmochimica Acta, 2007, 71(12):2936-2946. doi: 10.1016/j.gca.2007.04.003
[57] Heikoop J M, Dunn J J, Risk M J, et al. Separation of kinetic and metabolic isotope effects in carbon-13 records preserved in reef coral skeletons[J]. Geochimica et Cosmochimica Acta, 2000, 64(6):975-987. doi: 10.1016/S0016-7037(99)00363-4
[58] Soo P, Todd P A. The behaviour of giant clams (Bivalvia: Cardiidae: Tridacninae)[J]. Marine Biology, 2014, 161(12):2699-2717. doi: 10.1007/s00227-014-2545-0
[59] SWart P K. Carbon and oxygen isotope fractionation in scleractinian corals: a review[J]. Earth-Science Reviews, 1983, 19(1):51-80. doi: 10.1016/0012-8252(83)90076-4
[60] Lucas J S, Nash W J, Crawford C M, et al. Environmental influences on growth and survival during the ocean-nursery rearing of giant clams, Tridacna gigas (L. )[J]. Aquaculture, 1989, 80(1-2):45-61. doi: 10.1016/0044-8486(89)90272-X
[61] Jantzen C, Wild C, El-Zibdah M, et al. Photosynthetic performance of giant clams, Tridacna maxima and T. squamosa, Red Sea[J]. Marine Biology, 2008, 155(2):211-221. doi: 10.1007/s00227-008-1019-7
[62] Rossbach S, Saderne V, Anton A, et al. Light-dependent calcification in Red Sea giant clam Tridacna maxima[J]. Biogeosciences, 2019, 16(13):2635-2650. doi: 10.5194/bg-16-2635-2019
[63] Blidberg E, Elfwing T, Plantman P, et al. Water temperature influences on physiological behaviour in three species of giant clams (Tridacnidae)[C]//Proceedings of the 9th International Coral Reef Symposium. Bali, 2000.
[64] Elfwing T, Plantman P, Tedengren M, et al. Responses to temperature, heavy metal and sediment stress by the giant clam Tridacna squamosa[J]. Marine and Freshwater Behaviour and Physiology, 2001, 34(4):239-248. doi: 10.1080/10236240109379077
[65] Huang C Y, Wu S F, Zhao M X, et al. Surface ocean and monsoon climate variability in the South China Sea since the last glaciation[J]. Marine Micropaleontology, 1997, 32(1-2):71-94. doi: 10.1016/S0377-8398(97)00014-5
[66] Liu Y, Liu W G, Peng Z C, et al. Instability of seawater pH in the South China Sea during the mid-late Holocene: evidence from boron isotopic composition of corals[J]. Geochimica et Cosmochimica Acta, 2009, 73(5):1264-1272. doi: 10.1016/j.gca.2008.11.034
[67] Guo Y R, Deng W F, Wei G J, et al. Exploring the temperature dependence of clumped isotopes in modern Porites corals[J]. Journal of Geophysical Research: Biogeosciences, 2020, 125(1):e2019JG005402. doi: 10.1029/2019JG005402
[68] Linsley B K, Messier R G, Dunbar R B. Assessing between-colony oxygen isotope variability in the coral Porites lobata at clipperton atoll[J]. Coral Reefs, 1999, 18(1):13-27. doi: 10.1007/s003380050148
[69] Böhm F, Joachimski M M, Lehnert H, et al. Carbon isotope records from extant Caribbean and South Pacific sponges: evolution of δ13C in surface water DIC[J]. Earth and Planetary Science Letters, 1996, 139(1-2):291-303. doi: 10.1016/0012-821X(96)00006-4
[70] 陈法锦, 陈建芳, 金海燕, 等. 南海表层沉积物与沉降颗粒物中有机碳的δ13C对比研究及其古环境再造意义[J]. 沉积学报, 2012, 30(2):340-345 CHEN Fajin, CHEN Jianfang, JIN Haiyan, et al. Correlation of δ13Corg in surface sediments with sinking particulate matter in South China Sea and implication for reconstructing paleo-environment[J]. Acta Sedimentologica Sinica, 2012, 30(2):340-345.]