Composition of glycerol dibiphytanyl glycerol tetraethers (GDGTs) and its responses to paleotemperature and monsoon changes since 31ka in northern South China Sea
-
摘要: 南海因受到高纬度气候、低纬度大洋以及东亚季风等多种因素的影响而成为研究古温度和季风变化的理想区域。本文通过研究QH-CL11柱状沉积物的GDGTs组成、含量变化特征及其延伸的86个碳原子的四醚指标(TEXH86),分析南海北部GDGTs来源,并定量计算QH-CL11柱状沉积物记录的海洋表面温度(SST),从而探讨31 ka以来南海北部古温度变化的驱动机制。通过甲烷指数和支链/异戊二烯类指标等,确定isoGDGTs主要来自于奇古菌,适用于古温度重建。TEXH86温度显示出明显的冰期—间冰期旋回,与南海北部有孔虫和UK’37 SSTs具有很好的相似性。出现在TEXH86 SST中的海因里希冷事件(H1-3)和Bølling–Allerød暖期之前的温度大幅度上升事件(14.6 ka)反映了高纬度气候对南海的影响。南海SSTs和北太平洋MD01-2421 UK’37 SST的差异(ΔSSTs)可以用来反映东亚冬季风强度的变化。ΔSSTs显示东亚冬季风强度在Bølling–Allerød暖期前增加,在新仙女木时期达到最大值,在全新世早期再次下降,然后在全新世中晚期缓慢增加,这与前人对东亚冬季风强度的认识具有很好的一致性。该方法对重建长周期东亚冬季风强度具有重要的指导意义。
-
关键词:
- 异戊二烯甘油二烷基甘油四醚类 /
- TEXH86 /
- 海洋表面温度 /
- 东亚冬季风强度 /
- 南海北部
Abstract: The South China Sea (SCS), under the control of multiple climate patterns, is an ideal region for studies of paleo-climate and the East Asian monsoon. In this paper, we studied the composition and characteristics of isoGDGTs to further identify their sources and used the outspread TEXH86 index to reconstruct the sea surface temperature (SST) of the northern SCS for the past 31 ka quantificationally. By calculating the Methane Index and BIT indexes, we found that the isoGDGTs mainly came from Thaumarchaeota, and are suitable for TEXH86 appliance. TEXH86 temperatures exhibit distinct glacial–interglacial cycles, and is very similar to the SSTs from foraminifera and UK'37 in the northern SCS. TEXH86 SSTs showed a decline trend during the Heinrich events (H1-3) and an abrupt rise at 14.6 kaBP before Bølling–Allerød (BA) warming, suggesting a tight climate teleconnection between the northern SCS and the North Atlantic region in last Deglaciation. The SST differences (ΔSSTs) between the SCS and the core MD01-2421 in the North Pacific was calculated and used to reveal the intensity of East Asian Winter monsoon. ΔSSTs showed that the EAWM intensity firstly increased before the BA warming, reached a maximum in the Younger Dryas period, decreased again in early Holocene and slowly increased in Late and Middle Holocene. The ∆SSTs results coincide with previous findings on the EAWM variations and constitute a feasible means of long-term EAWM intensity reconstruction. -
自新生代以来,印度板块向北俯冲,造成青藏高原的剧烈隆升[1]。青藏高原的隆升不仅对自身及周边区域的地貌和自然环境产生影响,也影响着全球气候变化,同时全球气候变化也不断影响着青藏高原的地貌形态[2-4]。祁连山位于青藏高原东北缘,受青藏高原向北挤压和变形的影响,是中国西北活动构造变形特征最敏感、构造活动和地震运动最剧烈的地区之一[5, 6]。祁连山的抬升形成了众多层状地貌,如夷平面、阶地和洪积扇等[7-9]。构造活动和气候变化是影响洪积扇发育的主要因素[10-12],构造抬升的影响表现在控制河流差异下切的幅度,而气候变化主要通过影响河流流量和泥沙供给量来控制河流下切或堆积[13, 14]。洪积扇对于构造活动或气候变化反应十分灵敏,使其成为研究构造活动和气候变化的重要物质载体[15-18]。
永昌南山位于河西走廊东段,北麓洪积扇发育,但相关研究缺乏。本文通过卫星影像、野外调查、无人机航测、光释光测年等方法来分析洪积扇形成时间、期次、对应气候变化以及丰乐断裂垂直滑动速率,对于弥补祁连山东北缘区域研究薄弱环节和服务区域发展有着重要意义。
1. 研究区概况
1.1 地质地貌背景
河西走廊位于祁连山构造带与阿拉善地块之间(图 1),南侧发育祁连山北缘断裂带,北侧山麓发育多条南缘断裂[1]。河西走廊南缘的多组逆冲断裂及其NNW向构造隆起将河西走廊盆地分割成4个次级盆地,自西向东依次为酒西盆地、酒东盆地、张掖盆地和武威盆地。祁连山北缘山麓地带广泛发育洪积扇,前人已做过许多研究[15, 19-23]。Hu等[19]利用光释光测年法获得金塔河阶地T2年龄为(34±3)ka;Pan等[15]利用光释光测年法获得黄羊河阶地T3年龄为(28.1±3.0)ka;Palumbo等[20]利用10Be测年法获得榆木山中部阶地T1年龄为(15.5±2.3)ka,洪积扇T2年龄为(35.1±2.3)ka;Hetzel等[21]利用10Be测年法获得张掖断裂东段洪积扇年龄为(31±5)ka;杨海波[22]利用10Be测年法获得丰乐河阶地T3年龄为(16.33±0.30)ka;李安等[23]利用10Be测年法获得玉门断裂东段洪积扇T2年龄为(26.5±2.9)ka。杨海波[22]统计发现祁连山北缘在(38±7)ka和(15±3)ka普遍发育两期地貌面。
前人对位于祁连山北缘的断裂开展了很多研究[23-31]。闵伟等[25]和李安等[23]得到玉门断裂全新世以来的垂直滑动速率为0.25~0.49mm/a。杨海波等[26]获得佛洞庙-红崖子断裂垂直滑动速率约为1.1mm/a。郑文俊等[27]和Palumbo等[20]获得榆木山断裂全新世以来垂直滑动速率0.5~0.8mm/a。艾晟等[28]获得全新世以来武威盆地南缘断裂垂直滑动速率约为0.44mm/a。雷惊昊等[29]得出晚更新世以来民乐-大马营断裂滑动速率约为0.91mm/a。统计分析,祁连山北缘断裂带晚更新世以来的运动学速率,在空间分布上展现中间大、两端小的特点[18, 30, 31]。
丰乐断裂是一条位于永昌南山北麓的逆冲断裂,为祁连山北缘断裂带向北部盆地扩展的前锋带。丰乐断裂晚第四纪活动地表行迹西起西大河,向东延伸,经新城子镇、杜家团庄、周家庄、石家园子至西营河,长度约80km(图 2)。永昌南山北麓主要发育3期洪积扇,最新一期为现代洪积扇。丰乐断裂错断永昌南山北麓普遍发育的两期早期洪积扇。Champagnac等[32]计算得丰乐断裂30ka以来垂直滑动速率约为2.8mm/a。Hu等[19]认为滑动速率偏大,可能是地貌年龄偏大所致。Hetzel[33]认为是Champagnac实测断层陡坎高度偏大导致。本文通过卫星影像解译、无人机航测、年代样品测试和断层剖面测量等工作来厘定丰乐断裂晚更新世以来的垂直滑动速率。
1.2 气候背景
前人的研究认为河西走廊西段主要受西风带控制,而河西走廊东段可受亚洲夏季风的影响[34]。武威盆地属温带大陆性干旱气候,气候干燥,夏季太阳辐射较为强烈,日照时间长,昼夜温差大,降雨集中在每年6—9月,8月最多。武威年平均气温7.7℃,平均气温年较差29.4℃,年平均蒸发量2163.6mm,年平均降水量212.2mm。由于蒸发量远大于降水量,武威盆地的水资源主要来源于祁连山区降水和冰雪融水补给。区域内的主要河流有东大河、西营河、石羊河等河流,其他河流大多源近流短,出山后消失在冲、洪积扇附近。
姚檀栋等[35]根据古里雅冰心,将末次间冰期以来的气候分为5个阶段,分别是MIS5末次间冰期125~75ka、MIS4早冰盛期75~58ka、MIS3间冰期58~31ka、MIS2末次冰盛期31~16ka、MIS1冰消期约15ka至今,通过与格陵兰冰心和南极冰心对比,认为重大气候事件是全球范围发生,而不同地区气温变化幅度可能不尽相同。郑绵平等[36]通过对青藏高原湖区研究,认为在约40~30ka青藏高原及以北腾格里沙漠都出现高湖面,存在特强的南亚夏季风。在末次冰盛期气候相对干冷,进入15~13ka,气候波状回升,湿度较高,冰雪融水增加[37, 38]。
2. 材料与方法
2.1 样品采集及测定
在东大河阶地T3和杜家团庄洪积扇T1砾石层与上覆黄土层交界部位采集黄土样品(图 2)。采样前先剥去剖面至少30cm厚度的黄土,然后在20cm×5cm的钢管一端塞上黑色塑料袋并与剖面接触,从另一端用锤将钢管垂直砸入新鲜剖面中,取出钢管时用黑色塑料袋塞紧里端,然后用锡箔纸包裹两端,最后用胶带封紧。
样品光释光分析测试按照前处理、光释光等效剂量(ED)和环境剂量率测试、数据处理4个部分进行,由地壳动力学重点实验室(中国地震局地壳应力研究所)完成。
2.2 DEM获取
利用Phantom 4 Pro四旋翼无人机系统对杜家团庄、周家庄洪积扇和西营河出山口阶地进行数据采集。该无人机系统相机配备1英寸2000万像素影像传感器,保证了影像分辨率高、畸变小以及色彩还原度高的特性。在开始采集影像数据之前,在每个测图区域均匀布设了9~11个地面控制点,之后使用Trimble Geo7X差分GPS进行了实测,浮动测量精度在厘米级。航测在晴朗弱风的天气下进行,以保证飞机的稳定性并更好地保留地物的光学纹理特性[39]。室内处理步骤:①将航拍影像导入Photoscan软件,剔除模糊、光照不佳的照片,对齐照片;②导入地面控制点坐标,并对照片中自动检测出的控制点标志位置进行校正,再次对齐照片;③生成密集点云;④生成网格;⑤生成DEM和DOM。本文所采集的三个地区DEM数据中,杜家团庄区域9个控制点的平均高程误差为0.61m,DEM分辨率为8.78cm/pix;周家庄区域10个控制点的平均高程误差为0.59m,DEM分辨率为10.4cm/pix;西营河出山口区域9个控制点的平均高程误差为0.32m,DEM分辨率为8.52cm/pix。本文所测数据精度和分辨率完全可以反映真实地貌特征,达到提取复杂地貌信息的要求。
3. 结果
3.1 地貌面分期
永昌南山北麓发育2级西营河阶地和3期洪积扇。阶地从新到老依次为T1—T2,洪积扇面从新到老依次为T0—T2,T0为现代洪积扇。洪积扇总体坡度约为2°~6°,3期洪积扇在山麓地带普遍发育,连续分布。本文基于遥感影像和野外调查,并通过无人机对杜家团庄处洪积扇(图 3)、周家庄洪积扇(图 4)和西营河河口西侧阶地(图 5)进行航空测量,详细展示研究区地貌面分布。
3.2 地貌面年龄
Champagnac等[32]用10Be剖面法对西营河河口西侧阶地测年,获得T2年龄为(29.9±7.8)ka,T1年龄为(16.3±4.4)ka。本文在砾石层与上覆黄土层交界部位采集黄土样品,样品沉积年代被认为与阶地或洪积扇废弃的年代相同,并被视为阶地和洪积扇形成的年代。杜家团庄洪积扇T1采样点位于丰乐断裂上盘,保存较好的扇中部位;东大河T3阶地采样点位于丰乐断裂上盘,虽然距离断层稍远但阶地连续且剖面出露较好,可以代表被错断阶地的年代,光释光测试结果如表 1。祁连山北缘部分地貌面测年数据汇总见表 2。根据气候曲线比对结果,认为研究区洪积扇T1和西营河阶地T1为19.3~16.3ka形成的同一期地貌面,洪积扇T2、西营河阶地T2和东大河阶地T3为29.9~27.4ka形成的同一期地貌面。
表 1 杜家团庄洪积扇T1和东大河阶地T3测年数据Table 1. Dating results of alluvial fan T1 in Dujiatang village and Dongda River terrace T3编号 U/(Bq/kg) Th/(Bq/kg) Ra/(Bq/kg) K/(Bq/kg) 环境剂量率/ (Gy/ka) 等效剂量/Gy 年龄/ka 杜家团庄洪积扇T1 52.52±1.71 103.88±3.50 710.16±38.15 35.58±9.46 6.31±0.45 121.75±12.61 19.30±2.45 东大河T3 44.24±1.44 61.37±2.17 552.48±29.80 44.54±10.83 4.53±0.32 124.16±6.62 27.40±2.47 表 2 祁连山北缘地貌面测年数据Table 2. Dating results of alluvial surfaces in the north of Qilian Mountains样品坐标 采样地层 年龄/ka 测年方法 资料来源 杜家团庄 杜家团庄洪积扇T1 19.30±2.45 OSL 本文 东大河 东大河T3 27.40±2.47 OSL 本文 西营河 西营河T1 16.3±4.4 10Be [32] 西营河 西营河T2 29.9±7.8 10Be [32] 西大河 阶地T2 30.79±6.15 TL [40] 金塔河 阶地T2 34±3 OSL [24] 古浪河 阶地T2 19.2±1.5 OSL [15] 黄羊河 阶地T3 28.1±3.0 OSL [15] 童子坝河 阶地T5 16.70±1.81 14C [18] 丰乐河 阶地T3 16.33±0.30 10Be [26] 石油河 阶地T2 29 TL [41] 石油河 阶地T3 19 TL [41] 榆木山中部 阶地T1 15.5±2.3 10Be [31] 榆木山中部 洪积扇T2 35.1±2.3 10Be [31] 张掖断裂东段 洪积扇 31±5 10Be [6] 玉门断裂东段 洪积扇T2 26.5±2.9 10Be [23] 3.3 断层垂直断距
在杜家团庄断层陡坎处开挖探槽,探槽底部据下盘地貌面3m,探槽剖面中上盘砾石层出露,而下盘砾石层未出露,因此本文所测地貌面陡坎高度代表的是断层最小垂直断距。
在东大河东侧杜家团庄处,断层错断两期洪积扇T1和T2。通过在DEM(图 3B)上提取多条断层陡坎剖面线,并对断层上下盘分别进行线性拟合,测得洪积扇T2上陡坎平均高度(17.62±1.07)m(图 6A),洪积扇T1上陡坎平均高度(12.46±0.46)m(图 6B),现今的洪积扇面T0上未发现陡坎。
在周家庄处,断层错断两期洪积扇T1和T2。在正射影像上将洪积扇划分3期,在洪积扇T1、T2上提取多条断层陡坎横剖面(图 4C),并对断层上下盘分别进行线性拟合,测得洪积扇面(T2)上断层陡坎平均高度约为(24.20±3.14)m(图 7A),洪积扇面(T1)上断层陡坎平均高度约为(11.48±1.73)m (图 7B),现今的洪积扇面T0上未发现陡坎。周家庄洪积扇位于东大河右岸2km处,陡坎上下盘剖面出露扇物质,剖面未见东大河物质。因此本文认为该处陡坎主要是由断裂活动形成,受东大河影响可能性小。
在西营河出山口西侧,断层错断两级阶地T1和T2。Champagnac等[32]测得阶地T2断层陡坎高度为96.4m,阶地T1断层陡坎高度为40.1m。Hetzel[33]认为Champagnac断层陡坎测量数据偏大。本文利用无人机航测生成3D影像模型(图 5C),并在1:50000 DEM上提取多条断层陡坎横剖面线。通过对两级错断阶地上下盘分别进行线性拟合,得到阶地T2断层陡坎平均高度(85.89±2.38)m(图 8A),阶地T1断层陡坎平均高度(37.97±2.38)m(图 8B)。Champagnac[32]所测阶地T2陡坎高度比本文所测数据高10.51m,测量结果相对较大,阶地T1陡坎高度与本文所测结果基本一致。本文根据本次测量结果进行区域断裂活动性评价。
4. 讨论
4.1 永昌南山北麓地貌面下切与气候变化关系
Thompson等[42]将格陵兰冰心、古里雅冰心和南极冰心所测成分对比,得出所测成分随时间变化曲线(图 9)。在MIS2阶段, 格陵兰冰心18 O和CH4、古里雅冰心18 O、南极冰心CH4含量均较低,出现全球范围冰期。但29.9~27.4ka为冰阶向间冰阶过渡阶段,格陵兰冰心18O和CH4、南极冰心CH4含量上升,气温变暖。此时期冰雪融水增加,河流流量增大,河流侵蚀下切能力增强,形成东大河阶地T3、西营河阶地T2和永昌南山北麓洪积扇T2。
图 9 永昌南山北麓地貌面形成时段与其他古气候记录对比A.格陵兰冰芯记录132ka年以来,18O(蓝)和CH4(红)含量变化,亮蓝色虚线表示110ka年前受冰盖变形影响的记录,古里雅冰芯记录110ka年以来18O含量变化;B.古里雅冰芯18O含量变化与格陵兰冰芯CH4含量和南极冰芯粉尘(蓝)、甲烷(红)和二氧化碳(黑)含量变化趋势相同;C.表示5d阶段同位素随时间变化连续性Figure 9. Comparison of abandoned period of the alluvial fan in the north front of South Yongchang Mountains with other paleoclimatic recordsA. The GISP2 δ18O (blue) and CH4 records (red) are shown with time for the past 132ka. The record is compromised by ice deformation below 110 ka, as shown by the light blue dotted line. The Guliya δ18O record over the past 110 ka. B. is matched to the GISP2 CH4 record over the past 110 ka. The Guliya record is also compared to the Vostok δD (blue), CH4 (red) and CO2 (black). C. which display temporal continuity below isotope Stage 5d.19.3~16.3ka是末次冰盛期向冰消期过渡阶段,格陵兰冰芯18 O和CH4、南极冰芯18 O和CH4、古里雅冰芯18 O含量均上升,此时气候逐渐变暖,冰雪融水增加,河流流量增大,河流侵蚀下切能力增强,下切形成西营河阶地T1和永昌南山北麓洪积扇T1。
本文所测阶地及洪积扇年龄和气候变化事件比对吻合,都形成于冰期向间冰期或冰阶向间冰阶气候过渡阶段,此时期温度升高、冰雪融水增多、河流流量增大,下切侵蚀能力增强,利于阶地和洪积扇的形成发育。本文认为研究区阶地和洪积扇为气候成因。阶地T2和洪积扇T2在29.9~27.4ka冰阶向间冰阶过渡阶段形成,阶地T1和洪积扇T1在19.3~16.3ka末次冰盛期向冰消期过渡阶段形成。
4.2 垂直滑动速率
研究区地貌面T1年龄上限为(19.30±2.45)ka,年龄下限为(16.3±4.4)ka,所测断层陡坎高度为最小垂直断距。杜家团庄洪积扇T1平均陡坎高度为(12.46±0.46)m,算得该处晚更新世以来垂直滑动速率为0.65~0.82mm/a。周家庄洪积扇T1平均陡坎高度为(11.48±1.73)m,计算得该处晚更新世以来的垂直滑动速率为0.60~0.76mm/a。西营河河口西侧阶地T1平均陡坎高度为(37.97±2.38)m,计算得该处晚更新世以来的垂直滑动速率为1.99~2.56mm/a。
5. 结论
(1) 永昌南山北麓在19.3~16.3和29.9~27.4ka发育两期地貌面,主要在冰期向间冰期或冰阶向间冰阶过渡、气候由冷变暖过程中形成。
(2) 晚更新世以来丰乐断裂在杜家团庄处的垂直滑动速率为0.65~0.82mm/a,在周家庄处的垂直滑动速率为0.60~0.76mm/a,在西营河河口处的垂直滑动速率为1.99~2.56mm/a。丰乐断裂在西营河河口的活动性远远大于其在杜家团庄和周家庄的活动性。
(3) 丰乐断裂在西营河河口活动性增大的原因:民乐-大马营断裂在丰乐断裂西端消失,丰乐断裂补偿构造分量。
-
图 5 (a)南海北部UK’37 north SST和(b)QH-CL11 TEXH86温度,以及(c)UK’37 north SST与QH-CL11 TEXH86温度之间的差值 (夏季、冬季及年平均SST来自19740站位的有孔虫数据[16])
Figure 5. (a)The averaged UK’37 north SSTs in the northern SCS and(b)TEXH86 temperatures in core QH-CL11, and(c)Temperature differences between the UK’37 north SSTs and TEXH86 temperatures (The summer, winter and mean annual SSTs are from core 19740[16])
图 6 (a)沉积柱QH-CL11的TEXH86数据和UK’37 north SST投图;(b)QH-CL11和 MD97-2146平均后的TEXH86数据(AVETEXH86)和UK’37 north SST投图[9, 12, 25]
Figure 6. (a)X–Y plots of UK’37 north SSTs versus TEXH86 temperatures in QH-CL11; (b)X–Y plots of UK’37 north SSTs versus TEXH86 temperatures averaged from QH-CL11 and MD97-2146(AVETEXH86)[9, 12,25]
图 8 (a)董哥洞δ18O记录[2],(b)湖光岩湖Ti含量记录[5],(c)QH-CL11 TEXH86 SST与MD01-2421 UK’37 SST的差值[47],(d)UK’37 north SST与MD01-2421 UK’37 SST的差值[9,17,47],(e)MD97-2151 UK’37 SST与MD01-2421 UK’37 SST的差值[47-48],(f)MD97-2151 UK’37 SST与QH-CL11 TEXH86 SST的差值[48]
Figure 8. (a)δ18O records from Dongge Cave stalagmites, China [2]; (b)Ti contents from from the sediment sequence of Lake Huguang Maar [5]; (c)The differences between TEXH86 SSTs in QH-CL11 and UK’37 SSTs in MD01-2421[47]; (d)The differences between UK’37 north SSTs and UK’37 SSTs in MD01-2421[9,17,47]; (e)The differences between UK’37 SSTs in MD97-2151 and UK’37 SSTs in MD01-2421[47-48]; (f)The differences between UK’37 SSTs in MD97-2151 and TEXH86 SSTs in QH-CL11[48]
表 1 文中用到的指标的定义式
Table 1 Initial definitions of the proxies used in this article.
指标定义 合理范围 来源 $\rm{TE{X_{86}} = \dfrac{{\left( {\left[ {GDGT - 2} \right] + \left[ {GDGT - 3} \right] + \left[ {Crenarchaeol\;regio\;isomer} \right]} \right)}}{{\left( {\left[ {GDGT - 1} \right] + \left[ {GDGT - 2} \right] + \left[ {GDGT - 3} \right] + \left[ {Crenarchaeol\;regio\;isomer} \right]} \right)}}}$ [28] ${\rm{TEX}}_{{\rm{86}}}^{\rm{H}} = {\rm{log(TE}}{{\rm{X}}_{{\rm{86}}}}{\rm{)}}$ >15 ℃ [32] ${\rm{TEX}}_{{\rm{86}}}^{\rm{L}} = {\rm{log}}\left( {\dfrac{{{\rm{GDGT - 2}}}}{{{\rm{GDGT - 1 + GDGT - 2 + GDGT - 3}}}}} \right)$ <15 ℃ [32] ${\rm{BIT = }}\dfrac{{{\rm{(}}\left[ {{\rm{GDGT - Ia}}} \right]{\rm{ + }}\left[ {{\rm{GDGT - IIa}}} \right]{\rm{ + [GDGT - IIIa])}}}}{{{\rm{(}}\left[ {{\rm{GDGT - Ia}}} \right]{\rm{ + }}\left[ {{\rm{GDGT - IIa}}} \right]{\rm{ + }}\left[ {{\rm{GDGT - IIIa}}} \right]{\rm{ + Crenarchaeol)}}}}$ <0.4 [36] ${\rm{MI = }}\dfrac{{\left[ {{\rm{GDGT - 1}}} \right]{\rm{ + }}\left[ {{\rm{GDGT - 2}}} \right]{\rm{ + [GDGT - 3]}}}}{{\left[ {{\rm{GDGT - 1}}} \right]{\rm{ + }}\left[ {{\rm{GDGT - 2}}} \right]{\rm{ + }}\left[ {{\rm{GDGT - 3}}} \right]{\rm{ + }}\left[ {{\rm{Crenarchaeol}}} \right]{\rm{ + [Crenarchaeol}}\;{\rm{regio}}\;{\rm{isomer]}}}}$ <0.3 [37] ${\rm{{\text{%}} GDGT - 2 = }}\dfrac{{{\rm{GDGT - 2}}}}{{\left[ {{\rm{GDGT - 1}}} \right]{\rm{ + }}\left[ {{\rm{GDGT - 2}}} \right]{\rm{ + }}\left[ {{\rm{GDGT - 3}}} \right]{\rm{ + [Crenarchaeol}}\;{\rm{regio}}\;{\rm{isomer]}}}}$ <45 [38] GDGT-0/ Crenarchaeol <2 [39] GDGT-0/ Crenarchaeol <0.4 [40] 表 2 研究区年平均及季节变化海温数据
Table 2 Annual mean and seasonal SST data in the study area
冬季温度/
℃春季温度/
℃夏季温度/
℃秋季温度/
℃年平均温度/
℃24.3 26.7 29.1 27.5 26.9 注:所有数据都是在0 m水深观测,数据来源于World Ocean Atlas 2013。 表 3 南海北部QH-CL11沉积柱有孔虫AMS14C年龄
Table 3 14C-AMS ages from core QH-CL11 in the northern South China Sea(SCS)
实验室编号 深度/(cmbsf a) 有孔虫种类 14C测定年龄/aBP 校正后年龄/aBP 526367 2~5 G.ruber + G.sacculifer 200 ±30 0~71 524755 62~65 G.ruber + G.sacculifer 3 450 ±30 3 174~3 426 526368 182~185 G.ruber + G.sacculifer 8 710 ±30 92 43~9 469 524758 242~245 G.ruber + G.sacculifer 11 100 ±30 12 530~12 710 524759 302~305 G.ruber + G.sacculifer 12 650±30 13 950~14 305 524760 362~365 G.ruber + G.sacculifer 13 410±30 15 745~15 306 526370 482~485 G.ruber + G.sacculifer 18 890±60 22 132~22 523 526371 542~545 G.ruber + G.sacculifer 22 500±70 26 045~26 543 526372 602~605 G.ruber + G.sacculifer 24 820±90 28 160~28 715 524765 672~675 G.ruber + G.sacculifer 28 080±120 31 160~31 649 注:a 海底以下以厘米为单位的深度。 表 4 文中收集的古温度和古环境数据来源与信息
Table 4 Sources of paleotemperature and paleoenvironment data collected in the paper
表 5 南海北部QH-CL11柱状沉积物中各指标及TEXH86 SST数据
Table 5 The indices used to evaluate the application of TEX86 and TEXH86 SST in core QH-CL11
编号 深度/
cmbsf年龄/
ka甲烷指数MI GDGT-0/
CrenarchaeolGDGT-2/
Crenarchaeol%GDGT-2 BIT TEXH86 TEXH86 SST/
℃190438 1 0.01 0.21 0.44 0.14 39.8 0.026 −0.180 26.3 190439 11 0.44 0.19 0.40 0.12 38.2 0.019 −0.184 26.0 190440 21 0.99 0.19 0.37 0.12 37.8 0.018 −0.192 25.5 190441 31 1.53 0.19 0.39 0.13 38.4 0.024 −0.174 26.7 190442 41 2.08 0.20 0.37 0.13 40.5 0.017 −0.175 26.6 190443 61 3.16 0.19 0.39 0.13 40.8 0.023 −0.178 26.5 190444 71 3.83 0.20 0.40 0.13 39.8 0.029 −0.172 26.9 190445 81 4.54 0.19 0.37 0.12 39.7 0.021 −0.178 26.5 190446 91 5.25 0.19 0.35 0.13 38.9 0.028 −0.174 26.7 190447 101 5.96 0.20 0.39 0.14 39.9 0.029 −0.175 26.6 190448 121 7.38 0.21 0.39 0.14 40.8 0.021 −0.176 26.6 190449 131 7.78 0.18 0.34 0.12 39.4 0.019 −0.165 27.3 190450 141 8.08 0.19 0.33 0.13 41.3 0.017 −0.157 27.8 190451 151 8.39 0.19 0.35 0.13 39.9 0.016 −0.170 26.9 190452 161 8.69 0.19 0.36 0.13 41.0 0.014 −0.171 26.9 190453 181 9.29 0.18 0.36 0.12 40.2 0.017 −0.174 26.7 190454 191 9.76 0.19 0.37 0.13 40.2 0.018 −0.180 26.3 190455 201 10.31 0.19 0.36 0.13 40.8 0.016 −0.175 26.6 190456 211 10.85 0.19 0.38 0.13 40.3 0.016 −0.178 26.4 190457 221 11.40 0.20 0.41 0.13 40.7 0.016 −0.184 26.0 190458 241 12.48 0.20 0.50 0.12 41.4 0.019 −0.209 24.3 190459 251 12.80 0.17 0.41 0.10 38.7 0.016 −0.216 23.8 190460 261 13.05 0.19 0.43 0.12 40.5 0.021 −0.206 24.5 190461 271 13.30 0.19 0.42 0.11 38.7 0.017 −0.209 24.3 190462 281 13.56 0.20 0.45 0.12 39.5 0.015 −0.216 23.8 190463 301 14.06 0.18 0.48 0.11 39.9 0.014 −0.214 24.0 190464 311 14.30 0.21 0.58 0.13 39.9 0.013 −0.234 22.6 190465 321 14.54 0.19 0.54 0.11 39.4 0.015 −0.234 22.6 190466 331 14.77 0.19 0.58 0.10 39.0 0.014 −0.256 21.1 190467 341 15.00 0.19 0.60 0.11 39.8 0.023 −0.243 22.0 190468 361 15.47 0.19 0.59 0.10 39.3 0.021 −0.257 21.0 190469 371 16.09 0.19 0.57 0.10 37.7 0.025 −0.254 21.2 190470 381 16.85 0.18 0.55 0.10 37.6 0.030 −0.267 20.3 190471 391 17.60 0.18 0.57 0.10 36.9 0.027 −0.259 20.9 190472 401 18.36 0.17 0.53 0.09 36.4 0.022 −0.252 21.4 190473 421 19.86 0.19 0.54 0.11 40.3 0.023 −0.231 22.8 190474 431 20.34 0.20 0.54 0.11 39.1 0.023 −0.243 22.0 190475 441 20.72 0.16 0.49 0.08 36.9 0.023 −0.258 20.9 190476 451 21.10 0.18 0.54 0.10 37.9 0.025 −0.252 21.3 190477 461 21.48 0.18 0.56 0.10 39.1 0.022 −0.252 21.4 190478 481 22.24 0.19 0.54 0.10 35.2 0.016 −0.228 23.0 190479 491 22.82 0.20 0.60 0.12 38.7 0.018 −0.247 21.7 190480 501 23.48 0.19 0.53 0.10 38.4 0.021 −0.246 21.7 190481 511 24.14 0.20 0.60 0.12 39.6 0.022 −0.238 22.3 190482 521 24.80 0.18 0.51 0.10 38.2 0.022 −0.235 22.5 190483 541 26.12 0.17 0.51 0.10 36.0 0.024 −0.205 24.6 190484 551 26.55 0.18 0.51 0.10 36.0 0.020 −0.231 22.8 190485 561 26.91 0.19 0.52 0.11 37.8 0.023 −0.241 22.1 190486 571 27.26 0.20 0.52 0.12 40.7 0.022 −0.219 23.6 190487 581 27.62 0.19 0.54 0.11 36.4 0.028 −0.222 23.4 190488 601 28.33 0.18 0.53 0.10 36.2 0.022 −0.238 22.3 190489 611 28.76 0.19 0.52 0.11 38.2 0.019 −0.217 23.7 190490 621 29.19 0.19 0.58 0.10 36.4 0.028 −0.239 22.2 190491 631 29.61 0.19 0.54 0.10 37.4 0.022 −0.249 21.6 190492 641 30.04 0.20 0.58 0.11 38.0 0.029 −0.237 22.4 190493 661 30.88 0.20 0.58 0.11 39.1 0.027 −0.240 22.2 190494 671 31.31 0.19 0.50 0.11 38.3 0.024 −0.212 24.1 190495 681 31.67 0.20 0.57 0.12 40.4 0.024 −0.229 23.0 -
[1] Lau K M, Kim M K, Kim K M. Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau [J]. Climate Dynamics, 2006, 26(7-8): 855-864. doi: 10.1007/s00382-006-0114-z
[2] Dykoski C A, Edwards R L, Cheng H, et al. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China [J]. Earth and Planetary Science Letters, 2005, 233(1-2): 71-86. doi: 10.1016/j.jpgl.2005.01.036
[3] Wang Y J, Cheng H, Edwards R L, et al. The Holocene Asian monsoon: links to solar changes and North Atlantic climate [J]. Science, 2005, 308(5723): 854-857. doi: 10.1126/science.1106296
[4] Wang Y J, Cheng H, Edwards R L, et al. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China [J]. Science, 2001, 294(5550): 2345-2348. doi: 10.1126/science.1064618
[5] Yancheva G, Nowaczyk N R, Mingram J, et al. Influence of the intertropical convergence zone on the East Asian monsoon [J]. Nature, 2007, 445(7123): 74-77. doi: 10.1038/nature05431
[6] 李明坤. 南海西北部36 kyr BP以来的古气候环境演变与驱动机制[D]. 中国科学院大学(中国科学院广州地球化学研究所)博士学位论文, 2018. LI Mingkun. Paleocliamte and paleoenvironment evolutions in the Northwestern South China Sea over the past 36 kyr BP and the forcing mechanisms[D]. Doctor Dissertation of University of Chinese Academy of Sciences (Guangzhou Institute of geochemistry, Chinese Academy of Sciences), 2018.
[7] Liu J B, Chen J H, Zhang X J, et al. Holocene East Asian summer monsoon records in northern China and their inconsistency with Chinese stalagmite δ18O records [J]. Earth-Science Reviews, 2015, 148: 194-208. doi: 10.1016/j.earscirev.2015.06.004
[8] 许慎栋, 陈文煌, 邓文峰, 等. 南海北部沉积物中浮游有孔虫Globigerinoides ruber壳体氧同位素指示的冬季表层海水温度[J]. 海洋地质与第四纪地质, 2016, 36(2):101-107. [XU Shendong, CHEN Wenhuang, DENG Wenfeng, et al. Winter surface seawater temperature in the northern South China Sea induced from temperature index of shell oxygen isotope of Globigerinoides ruber [J]. Marine Geology & Quaternary Geology, 2016, 36(2): 101-107. [9] Lin D C, Chen M T, Yamamoto M, et al. Millennial-scale alkenone sea surface temperature changes in the northern South China Sea during the past 45, 000 years (MD972146) [J]. Quaternary International, 2014, 333: 207-215. doi: 10.1016/j.quaint.2014.03.062
[10] Yamamoto M, Sai H, Chen M T, et al. The East Asian winter monsoon variability in response to precession during the past 150 000 yr [J]. Climate of the Past, 2013, 9(6): 2777-2788. doi: 10.5194/cp-9-2777-2013
[11] Li D W, Zhao M X, Tian J, et al. Comparison and implication of TEX86 and U-37K' temperature records over the last 356 kyr of ODP Site 1147 from the northern South China Sea [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 376: 213-223.
[12] Shintani T, Yamamoto M, Chen M T. Paleoenvironmental changes in the northern South China Sea over the past 28, 000 years: A study of TEX86-derived sea surface temperatures and terrestrial biomarkers [J]. Journal of Asian Earth Sciences, 2011, 40(6): 1221-1229. doi: 10.1016/j.jseaes.2010.09.013
[13] Huang E Q, Tian J, Steinke S. Millennial-scale dynamics of the winter cold tongue in the southern South China Sea over the past 26 ka and the East Asian winter monsoon [J]. Quaternary Research, 2011, 75(1): 196-204. doi: 10.1016/j.yqres.2010.08.014
[14] Li L, Wang H, Li J R, et al. Changes in sea surface temperature in western South China Sea over the past 450 ka [J]. Chinese Science Bulletin, 2009, 54(18): 3335-3343. doi: 10.1007/s11434-009-0083-9
[15] Shintani T, Yamamoto M, Chen M T. Slow warming of the northern South China Sea during the last deglaciation [J]. Terrestrial Atmospheric and Oceanic Sciences, 2008, 19(4): 341-346. doi: 10.3319/TAO.2008.19.4.341(IMAGES)
[16] Wang L, Sarnthein M, Erlenkeuser H, et al. East Asian monsoon climate during the Late Pleistocene: high-resolution sediment records from the south China Sea [J]. Marine Geology, 1999, 156(1-4): 245-284. doi: 10.1016/S0025-3227(98)00182-0
[17] Pelejero C, Grimalt J O, Heilig S, et al. High-resolution UK37 temperature reconstructions in the South China Sea over the past 220 kyr [J]. Paleoceanography and Paleoclimatology, 1999, 14(2): 224-231.
[18] Huang C Y, Liew P M, Zhao M X, et al. Deep sea and lake records of the Southeast Asian paleomonsoons for the last 25 thousand years [J]. Earth and Planetary Science Letters, 1997, 146(1-2): 59-72. doi: 10.1016/S0012-821X(96)00203-8
[19] 王小华, 陈荣华, 赵庆英, 等. 2009—2010年南海北部浮游有孔虫通量和稳定同位素季节变化及其对东亚季风的响应[J]. 海洋地质与第四纪地质, 2014, 34(1):103-115. [WANG Xiaohua, CHEN Ronghua, ZHAO Qingying, et al. The influence of East Asian Monsoon on seasonal variations in planktonic foraminiferal flux and stable isotope in the northern South China Sea during 2009-2010 [J]. Marine Geology & Quaternary Geology, 2014, 34(1): 103-115. [20] Liu Q Y, Jiang X, Xie S P, et al. A gap in the Indo-Pacific warm pool over the South China Sea in boreal winter: Seasonal development and interannual variability [J]. Journal of Geophysical Research: Oceans, 2004, 109(C7): C07012.
[21] Koutavas A, Lynch-Stieglitz J, Marchitto T M Jr, et al. El Nino-like pattern in ice age tropical Pacific sea surface temperature [J]. Science, 2002, 297(5579): 226-230. doi: 10.1126/science.1072376
[22] Wang P X, Wang L J, Bian Y H, et al. Late quaternary paleoceanography of the South China Sea: surface circulation and carbonate cycles [J]. Marine Geology, 1995, 127(1-4): 145-165. doi: 10.1016/0025-3227(95)00008-M
[23] Wang L J, Wang P X. Late quaternary paleoceanography of the South China Sea: glacial-interglacial contrasts in an enclosed basin [J]. Paleoceanography and Paleoclimatology, 1990, 5(1): 77-90.
[24] Wei G J, Li X H, Nie B F, et al. High resolution Porites Mg/Ca thermometer for the north of the South China Sea [J]. Chinese Science Bulletin, 1999, 44(3): 273-276. doi: 10.1007/BF02896292
[25] Lin D C, Chen M T, Yamamoto M, et al. Hydrographic variability in the northern South China Sea over the past 45, 000 years: New insights based on temperature reconstructions by Uk’37 and TEXH86 proxies from a marine sediment core (MD972146) [J]. Quaternary International, 2017, 459: 1-16. doi: 10.1016/j.quaint.2017.09.029
[26] Jia G D, Zhang J, Chen J F, et al. Archaeal tetraether lipids record subsurface water temperature in the South China Sea [J]. Organic Geochemistry, 2012, 50: 68-77. doi: 10.1016/j.orggeochem.2012.07.002
[27] Steinke S, Kienast M, Groeneveld J, et al. Proxy dependence of the temporal pattern of deglacial warming in the tropical South China Sea: toward resolving seasonality [J]. Quaternary Science Reviews, 2008, 27(7-8): 688-700. doi: 10.1016/j.quascirev.2007.12.003
[28] Schouten S, Hopmans E C, Schefuß E, et al. Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? [J]. Earth and Planetary Science Letters, 2002, 204(1-2): 265-274. doi: 10.1016/S0012-821X(02)00979-2
[29] Uda I, Sugai A, Itoh Y H, et al. Variation in molecular species of polar lipids from Thermoplasma acidophilum depends on growth temperature [J]. Lipids, 2001, 36(1): 103-105. doi: 10.1007/s11745-001-0914-2
[30] Gliozzi A, Paoli G, De Rosa M, et al. Effect of isoprenoid cyclization on the transition temperature of lipids in thermophilic archaebacteria [J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1983, 735(2): 234-242. doi: 10.1016/0005-2736(83)90298-5
[31] Wuchter C, Schouten S, Coolen M J L, et al. Temperature-dependent variation in the distribution of tetraether membrane lipids of marine Crenarchaeota: Implications for TEX86 paleothermometry [J]. Paleoceanography and Paleoclimatology, 2004, 19(4): PA4028.
[32] Kim J H, Van Der Meer J, Schouten S, et al. New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: Implications for past sea surface temperature reconstructions [J]. Geochimica et Cosmochimica Acta, 2010, 74(16): 4639-4654. doi: 10.1016/j.gca.2010.05.027
[33] Pelejero C, Grimalt J O. The correlation between the U37k index and sea surface temperatures in the warm boundary: The South China Sea [J]. Geochimica et Cosmochimica Acta, 1997, 61(22): 4789-4797. doi: 10.1016/S0016-7037(97)00280-9
[34] Wei Y L, Wang J X, Liu J, et al. Spatial variations in archaeal lipids of surface water and core-top sediments in the south china sea and their implications for paleoclimate studies [J]. Applied and Environmental Microbiology, 2011, 77(21): 7479-7489. doi: 10.1128/AEM.00580-11
[35] Zhang J, Bai Y, Xu S D, et al. Alkenone and tetraether lipids reflect different seasonal seawater temperatures in the coastal northern South China Sea [J]. Organic Geochemistry, 2013, 58: 115-120. doi: 10.1016/j.orggeochem.2013.02.012
[36] Hopmans E C, Weijers J W H, Schefuß E, et al. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids [J]. Earth and Planetary Science Letters, 2004, 224(1-2): 107-116. doi: 10.1016/j.jpgl.2004.05.012
[37] Zhang Y G, Zhang C L, Liu X L, et al. Methane Index: A tetraether archaeal lipid biomarker indicator for detecting the instability of marine gas hydrates [J]. Earth and Planetary Science Letters, 2011, 307(3-4): 525-534. doi: 10.1016/j.jpgl.2011.05.031
[38] Damsté J S S, Ossebaar J, Schouten S, et al. Distribution of tetraether lipids in the 25-ka sedimentary record of Lake Challa: extracting reliable TEX86 and MBT/CBT palaeotemperatures from an equatorial African lake [J]. Quaternary Science Reviews, 2012, 50: 43-54. doi: 10.1016/j.quascirev.2012.07.001
[39] Weijers J W H, Lim K L H, Aquilina A, et al. Biogeochemical controls on glycerol dialkyl glycerol tetraether lipid distributions in sediments characterized by diffusive methane flux [J]. Geochemistry, Geophysics, Geosystems, 2011, 12(10): Q10010. doi: 10.1029/2011GC003724
[40] Blaga C I, Reichart G J, Heiri O, et al. Tetraether membrane lipid distributions in water-column particulate matter and sediments: a study of 47 European lakes along a north-south transect [J]. Journal of Paleolimnology, 2009, 41(3): 523-540.
[41] Yeh Y C, Sibuet J C, Hsu S K, et al. Tectonic evolution of the Northeastern South China Sea from seismic interpretation [J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B6): B0610. doi: 10.1029/2009JB006354
[42] Huguet C, Hopmans E C, Febo-Ayala W, et al. An improved method to determine the absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids [J]. Organic Geochemistry, 2006, 37(9): 1036-1041. doi: 10.1016/j.orggeochem.2006.05.008
[43] Hopmans E C, Schouten S, Damsté J S S. The effect of improved chromatography on GDGT-based palaeoproxies [J]. Organic Geochemistry, 2016, 93: 1-6. doi: 10.1016/j.orggeochem.2015.12.006
[44] Müller P J, Kirst G, Ruhland G, et al. Calibration of the alkenone paleotemperature index U37K′ based on core-tops from the eastern South Atlantic and the global ocean (60°N-60°S) [J]. Geochimica et Cosmochimica Acta, 1998, 62(10): 1757-1772.
[45] Prahl F G, Muehlhausen L A, Zahnle D L. Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions [J]. Geochimica et Cosmochimica Acta, 1988, 52(9): 2303-2310. doi: 10.1016/0016-7037(88)90132-9
[46] Rasmussen S O, Seierstad I K, Andersen K K, et al. Synchronization of the NGRIP, GRIP, and GISP2 ice cores across MIS 2 and palaeoclimatic implications [J]. Quaternary Science Reviews, 2008, 27(1-2): 18-28. doi: 10.1016/j.quascirev.2007.01.016
[47] Isono D, Yamamoto M, Irino T, et al. The 1500-year climate oscillation in the midlatitude North Pacific during the Holocene [J]. Geology, 2009, 37(7): 591-594. doi: 10.1130/G25667A.1
[48] Zhao M X, Huang C Y, Wang C C, et al. A millennial-scale U37K′ sea-surface temperature record from the South China Sea (8°N) over the last 150 kyr: Monsoon and sea-level influence [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 236(1-2): 39-55. doi: 10.1016/j.palaeo.2005.11.033
[49] Reimer P J, Bard E, Bayliss A, et al. IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal BP [J]. Radiocarbon, 2013, 55(4): 1869-1887. doi: 10.2458/azu_js_rc.55.16947
[50] Wuchter C, Schouten S, Wakeham S G, et al. Temporal and spatial variation in tetraether membrane lipids of marine Crenarchaeota in particulate organic matter: Implications for TEX86 paleothermometry [J]. Paleoceanography and Paleoclimatology, 2005, 20(3): PA3013.
[51] Massana R, Murray A E, Preston C M, et al. Vertical distribution and phylogenetic characterization of marine planktonic Archaea in the Santa Barbara Channel [J]. Applied and Environmental Microbiology, 1997, 63(1): 50-56. doi: 10.1128/AEM.63.1.50-56.1997
[52] Zhang C Y, Hu C M, Shang S L, et al. Bridging between SeaWiFS and MODIS for continuity of chlorophyll-a concentration assessments off Southeastern China [J]. Remote Sensing of Environment, 2006, 102(3-4): 250-263. doi: 10.1016/j.rse.2006.02.015
[53] Yamamoto M, Shimamoto A, Fukuhara T, et al. Glycerol dialkyl glycerol tetraethers and TEX86 index in sinking particles in the western North Pacific [J]. Organic Geochemistry, 2012, 53: 52-62.
[54] Fallet U, Ullgren J E, Castañeda I S, et al. Contrasting variability in foraminiferal and organic paleotemperature proxies in sedimenting particles of the Mozambique Channel (SW Indian Ocean) [J]. Geochimica et Cosmochimica Acta, 2011, 75(20): 5834-5848. doi: 10.1016/j.gca.2011.08.009
[55] Wuchter C, Schouten S, Wakeham S G, et al. Archaeal tetraether membrane lipid fluxes in the northeastern Pacific and the Arabian Sea: Implications for TEX86 paleothermometry [J]. Paleoceanography and Paleoclimatology, 2006, 21(4): PA4208.
[56] Zhang Y G, Liu X Q. Export depth of the TEX86 signal [J]. Paleoceanography and Paleoclimatology, 2018, 33(7): 666-671. doi: 10.1029/2018PA003337
[57] Schouten S, Hopmans E C, Damsté J S S. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: A review [J]. Organic Geochemistry, 2013, 54: 19-61. doi: 10.1016/j.orggeochem.2012.09.006
[58] Thompson P R. Planktonic foraminifera in the Western North Pacific during the past 150 000 years: Comparison of modern and fossil assemblages [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1981, 35: 241-279. doi: 10.1016/0031-0182(81)90099-7
[59] Kienast M, Steinke S, Stattegger K, et al. Synchronous tropical South China Sea SST change and Greenland warming during deglaciation [J]. Science, 2001, 291(5511): 2132-2134. doi: 10.1126/science.1057131
[60] Bard E, Rostek F, Sonzogni C. Interhemispheric synchrony of the last deglaciation inferred from alkenone palaeothermometry [J]. Nature, 1997, 385(6618): 707-710. doi: 10.1038/385707a0
[61] Bond G C, Lotti R. Iceberg discharges into the north atlantic on millennial time scales during the last glaciation [J]. Science, 1995, 267(5200): 1005-1010.
[62] Bond G C, Heinrich H, Broecker W, et al. Evidence for massive discharges of icebergs into the North Atlantic ocean during the last glacial period [J]. Nature, 1992, 360(6401): 245-249. doi: 10.1038/360245a0
[63] Zhang R, Delworth T L. Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation [J]. Journal of Climate, 2005, 18(12): 1853-1860. doi: 10.1175/JCLI3460.1
[64] Claussen M, Ganopolski A, Brovkin V, et al. Simulated global-scale response of the climate system to Dansgaard/Oeschger and Heinrich events [J]. Climate Dynamics, 2003, 21(5-6): 361-370. doi: 10.1007/s00382-003-0336-2
[65] Leuschner D C, Sirocko F. The low-latitude monsoon climate during Dansgaard-Oeschger cycles and Heinrich Events [J]. Quaternary Science Reviews, 2000, 19(1-5): 243-254.
[66] Schulz H, Von Rad U, Erlenkeuser H, et al. Correlation between Arabian Sea and Greenland climate oscillations of the past 110, 000 years [J]. Nature, 1998, 393(6680): 54-57. doi: 10.1038/31750
[67] Berger A, Loutre M F. Insolation values for the climate of the last 10 million years [J]. Quaternary Science Reviews, 1991, 10(4): 297-317. doi: 10.1016/0277-3791(91)90033-Q
-
期刊类型引用(4)
1. 巨广宏,杨芸,杨天俊,王启鸿,符文熹,叶飞. 西藏尼洋河多布水电站深厚覆盖层成因分析. 地质灾害与环境保护. 2024(01): 63-69 . 百度学术
2. 郑荣荧,陈柏旭,周文杰,杨晨爽. 河西走廊西洞西滩冲洪积扇线性陡坎非构造成因分析. 地震科学进展. 2023(05): 203-213 . 百度学术
3. 何翔,杜星星,刘健,李艺豪,李群. 武威盆地第四纪沉积过程及其构造意义. 地震地质. 2022(01): 76-97 . 百度学术
4. 卢海峰,陈海龙,杨勇,张进忠. 甘肃武威盆地南缘断裂带晚第四纪活动特征及变形分析. 地质通报. 2022(Z1): 327-346 . 百度学术
其他类型引用(1)