九州-帕劳海脊南段及邻近海域典型海山形态特征及地质意义

刘佳, 李攀峰, 邢磊, 胡邦琦, 杨慧良, 赵京涛

刘佳,李攀峰,邢磊,等. 九州-帕劳海脊南段及邻近海域典型海山形态特征及地质意义[J]. 海洋地质与第四纪地质,2024,44(4): 65-77. DOI: 10.16562/j.cnki.0256-1492.2023021701
引用本文: 刘佳,李攀峰,邢磊,等. 九州-帕劳海脊南段及邻近海域典型海山形态特征及地质意义[J]. 海洋地质与第四纪地质,2024,44(4): 65-77. DOI: 10.16562/j.cnki.0256-1492.2023021701
LIU Jia,LI Panfeng,XING Lei,et al. Morphological characteristics and geological significance of seamounts in the southern Kyushu-Palau Ridge areas[J]. Marine Geology & Quaternary Geology,2024,44(4):65-77. DOI: 10.16562/j.cnki.0256-1492.2023021701
Citation: LIU Jia,LI Panfeng,XING Lei,et al. Morphological characteristics and geological significance of seamounts in the southern Kyushu-Palau Ridge areas[J]. Marine Geology & Quaternary Geology,2024,44(4):65-77. DOI: 10.16562/j.cnki.0256-1492.2023021701

九州-帕劳海脊南段及邻近海域典型海山形态特征及地质意义

基金项目: 国家自然科学基金面上项目“菲律宾海盆底层水体性质对中更新世气候转型的响应机制”(41976192);中国地质调查局项目(DD20191010,DD20191003,DD20230647);自然资源部海底科学重点实验室开放基金“多波束后向散射强度对九州-帕劳海脊多金属结核分布的响应”(KLSG2103)
详细信息
    作者简介:

    刘佳(1997—),女,硕士研究生,地质资源与地质工程专业,E-mail:718447071@qq.com

    通讯作者:

    李攀峰(1987—),男,高级工程师,主要从事深海地质研究,E-mail:lpf_320@126.com

  • 中图分类号: P736.21

Morphological characteristics and geological significance of seamounts in the southern Kyushu-Palau Ridge areas

  • 摘要:

    对海山形态特征的定量分析与讨论,有助于理解海山的形成与演化,从而进一步了解与海山地貌形态有关的动力作用。基于九州-帕劳海脊南段及邻近海域的高分辨率海底地形和浅地层剖面资料,利用统计学、频谱分析及层序地层学等方法,查明了研究区40座海山的形态特征,并对海山的演化过程进行了分析推测,同时指出了海山对底流沉积动力的影响。结果表明,研究区海山平均高度为1374 m,平均体积为100 km3,宽高比为0.21±0.09,平坦度为0.16±0.18;在中央海盆裂谷北侧和九州-帕劳海脊南段海山高度与底面半径具有较好的线性关系,而在中央海盆裂谷南侧相关性较差;中央海盆裂谷南侧海山的宽高比明显大于北侧,可能是由复杂的应力背景和构造机制等因素所导致。总结火山演化的4种生长模型,分析认为研究区海山的形态演化与山顶高度和基底直径成比例增加的火山生长模型基本类似,可能是由于火山间断喷发导致海山顶部与侧翼同时成比例发育。

    Abstract:

    The quantitative morphology study of volcanic seamount helps to understand the seamount evolution and intrinsic relationship between seamount morphology and geodynamics. High-resolution seabed topography data of 40 volcanic seamounts in the southern Kyushu-Palau Ridge and adjacent areas were used to analyze statistically the seamount morphology and the influence on sedimentation dynamics of bottom flow by spectral and sequence stratigraphy analyses. Results show that the average height of seamounts in the study area is 1374 m, the average volume is 100 km3, the aspect ratio is 0.21±0.09, and the flatness is 0.16±0.18. The height of seamounts in the northern Central Basin Rift and the southern Kyushu-Palau Ridge show a good linear correlation with the bottom radius, while the correlation between seamounts in the southern Central Basin Rift is poor. The aspect ratio of seamounts in the southern Central Basin Rift is significantly greater than that in the northern Central Basin rift due probably to complicated stress fields under regional tectonic frames. By summarizing four volcanic evolution models, we found that the seamounts in the study area fit the model that they grow with proportional increase in summit height and base diameter, which could be explained by intermittent volcanic eruptions leading to proportional development on the top and flanks.

  • 图  1   研究区域位置

    Figure  1.   The location of the study area

    图  2   研究方法示意图

    Figure  2.   Schematic diagram of the methodology applied in this study

    图  3   研究区40座海山位置及剖面位置

    Figure  3.   Locations of 40 seamounts and position of cross sections in the study area

    图  4   海山K12、K20、N04、N06和S03的典型水深剖面图

    Figure  4.   Typical bathymetric profiles of Seamounts K12, K20, N04, N06, and S03

    图  5   海山的形态参数之间的关系

    Figure  5.   Relationships among morphologic parameters of seamounts

    图  6   不同构造环境下海山地形的标准化功率谱

    Figure  6.   Normalized power spectra of seamount landforms in different tectonic settings

    图  7   火山生长模型[42]

    A:山顶高度和基底直径成比例增加的火山生长模型,B:峰顶高度增加而基底直径保持一致的火山生长模型,C:基底直径增加而顶部高度保持不变的火山生长模型,D:火山生长模型为峰顶高度和基底直径成比例增加,被火山侧翼的短阶段横向推进打断。①②③④为火山逐步生长的顺序。

    Figure  7.   Volcano growth models[42]

    A: Volcano growth with a proportional increase in summit height and base diameter, B: volcano growth with summit height increase while base diameter remains constant, C: volcano growth with the base diameter increase but the summit height stays, D: volcano growth with a proportional increases in summit height and basal diameter but this growth is disrupted by a short and lateral progradation. ①②③④ indicate the sequence of volcano growth.

    图  8   海山区域典型剖面[60]

    Figure  8.   A typical seismic profile of seamount[60]

    图  9   海山区域岬湾附近浅地层剖面

    Figure  9.   Typical seismic profile of cape bay showing sedimentation in seamount region

    图  10   沉积物波和环槽典型剖面[60]

    Figure  10.   Typical seismic profile of sedimentary wave and ring grooves[60]

    表  1   研究区域内海山的形态参数

    Table  1   Shape parameters of seamounts in the study area

    海山编号高度/m底面半径/km顶面半径/km体积/km3山坡倾角/(°)宽高比平坦度平均坡度/(°)
    S0112674.60.1528.019.50.280.0321.7
    S0220835.30.151.114.20.390.0212.6
    S0321737.80.5122.113.70.280.0618.4
    S0421195.72.251.812.40.370.3915.7
    S059406.23.121.911.20.150.5015.7
    K0114113.360.211.019.870.420.0613.2
    K02249612.682.3280.715.710.200.1815
    K032320141.9393.58.10.170.1415.5
    K046004.32.813.06.30.140.6513.7
    K05115012.57.8243.88.80.090.6213.7
    K0619249.33.882.19.30.210.4114.8
    K077822.750.254.813.20.280.0914.3
    K0813273.60.1524.916.40.370.0412.6
    K0915877.260.2595.515.790.220.0315.9
    K1013428.20.861.26.10.160.1015.8
    K1110694.90.3636.613.10.220.0713.2
    K1216816.30.268.215.80.270.0310.4
    K1315687.60.181.511.420.210.0119.4
    K14138513.61.4313.37.140.100.108.9
    K156642.50.12.822.20.270.0413
    K162002100.5221.515.40.200.0514.2
    K1715687.440.178.68.690.210.0111
    K1823907.252.75118.9170.330.3810
    K1911725.10.2531.511.310.230.0512.7
    K2010263.10.112.523.30.330.0310.5
    K218184.20.1510.916.80.190.049.3
    N019762.90.211.218.090.340.0711.2
    N028385.50.520.96.870.150.0911.6
    N037444.40.6216.513.430.170.1412.5
    N049988.90.27130.270.110.0316.5
    N057367.3151.712.10.100.1414.7
    N0611929.80.85118.17.10.120.0918.7
    N0710659.81.397.85.960.110.1316.4
    N08164812.30.8254.25.670.130.0716.2
    N0914087.90.5102.78.680.180.0617.4
    N109337.60.942.34.60.120.1212.2
    N116016.70.48.94.190.090.0614.7
    N12123291.299.85.40.140.1312.7
    N1319178.80.8133.2110.220.0915.3
    N14180515.29.1446.211.80.120.6011.4
    下载: 导出CSV
  • [1]

    Sanchez-Guillamón O, Vázquez J T, Palomino D, et al. Morphology and shallow structure of seafloor mounds in the Canary Basin (Eastern Central Atlantic Ocean) [J]. Geomorphology, 2018, 313: 27-47. doi: 10.1016/j.geomorph.2018.04.007

    [2] 郑翔. 冲绳海槽中部热液区及典型喷溢区地形地貌特征及成因分析[D]. 中国科学院大学硕士学位论文, 2015

    ZHENG Xiang. Topographic and geomorphologic features and genesis analyses of the hydrothermal fields and typical hydrothermal vents in the Mid-Okinawa Trough[D]. Master Dissertation of University of Chinese Academy of Sciences, 2015.

    [3] 宫士奇. 雅浦海山区海底地形及海山形态特征研究与分析[D]. 中国科学院研究生院硕士学位论文, 2016

    GONG Shiqi. Topographic and geomorphologic features and analysis of seafloor and seamounts in the Yap seamounts area[D]. Master Dissertation of University of Chinese Academy of Sciences, 2016.

    [4] 甘雨, 马小川, 栾振东, 等. 西太平洋雅浦-卡罗琳海区海山多尺度地形特征[J]. 海洋地质与第四纪地质, 2021, 41(1):125-137 doi: 10.16562/j.cnki.0256-1492.2020073101

    GAN Yu, MA Xiaochuan, LUAN Zhendong, et al. Multiscale topographic features of the seamounts in the Yap-Caroline area of West Pacific [J]. Marine Geology & Quaternary Geology, 2021, 41(1): 125-137. doi: 10.16562/j.cnki.0256-1492.2020073101

    [5]

    Menard H W. Marine Geology of the Pacific[M]. New York: McGraw-Hill, 1964.

    [6]

    Batiza R, Vanko D. Volcanic development of small oceanic central volcanoes on the flanks of the East Pacific Rise inferred from narrow-beam echo-sounder surveys [J]. Marine Geology, 1983, 54(1-2): 53-90. doi: 10.1016/0025-3227(83)90008-7

    [7]

    Abers G A, Parsons B, Weissel J K. Seamount abundances and distributions in the southeast Pacific [J]. Earth and Planetary Science Letters, 1988, 87(1-2): 137-151. doi: 10.1016/0012-821X(88)90070-2

    [8]

    Smith D K. Shape analysis of Pacific seamounts [J]. Earth and Planetary Science Letters, 1988, 90(4): 457-466. doi: 10.1016/0012-821X(88)90143-4

    [9]

    Smith W H F, Sandwell D T. Global sea floor topography from satellite altimetry and ship depth soundings [J]. Science, 1997, 277(5334): 1956-1962. doi: 10.1126/science.277.5334.1956

    [10]

    Craig C H, Sandwell D T. Global distribution of seamounts from Seasat profiles [J]. Journal of Geophysical Research:Solid Earth, 1988, 93(B9): 10408-10420. doi: 10.1029/JB093iB09p10408

    [11]

    Wessel P, Lyons S. Distribution of large Pacific seamounts from Geosat/ERS‐1: Implications for the history of intraplate volcanism [J]. Journal of Geophysical Research:Solid Earth, 1997, 102(B10): 22459-22475. doi: 10.1029/97JB01588

    [12]

    Lacey A, Ockendon J R, Turcotte D L. On the geometrical form of volcanoes [J]. Earth and Planetary Science Letters, 1981, 54(1): 139-143. doi: 10.1016/0012-821X(81)90074-1

    [13]

    Jordan T H, Menard H W, Smith D K. Density and size distribution of seamounts in the eastern Pacific inferred from wide‐beam sounding data [J]. Journal of Geophysical Research:Solid Earth, 1983, 88(B12): 10508-10518. doi: 10.1029/JB088iB12p10508

    [14]

    Wood C A. Calderas: a planetary perspective [J]. Journal of Geophysical Research:Solid Earth, 1984, 89(B10): 8391-8406. doi: 10.1029/JB089iB10p08391

    [15] 章家保, 金翔龙, 高金耀, 等. 断裂和白垩纪岩浆活动对中西太平洋海山区海山形成的影响[J]. 海洋地质与第四纪地质, 2006, 26(1):67-74 doi: 10.16562/j.cnki.0256-1492.2006.01.011

    ZHANG Jiabao, JIN Xianglong, GAO Jinyao, et al. Influence on the seamounts’ formation in MPM and WPSP from fractures and Cretaceous magma’s activities [J]. Marine Geology & Quaternary Geology, 2006, 26(1): 67-74. doi: 10.16562/j.cnki.0256-1492.2006.01.011

    [16] 庞洁红, 李三忠, 戴黎明, 等. 太平洋洋底高原和海山成因: 重点以Shatsky海隆成因为例[J]. 海洋地质与第四纪地质, 2011, 31(2):1-10

    PANG Jiehong, LI Sanzhong, DAI Liming et al. Genesis of oceanic plateaus and seamounts in the Pacific ocean: a case study of Shatsky rise [J]. Marine Geology & Quaternary Geology, 2011, 31(2): 1-10.

    [17] 徐建, 郑玉龙, 包更生, 等. 基于声学深拖调查的海山微地形地貌研究: 以马尔库斯-威克海岭一带的海山为例[J]. 海洋学研究, 2011, 29(1):17-24

    XU Jian, ZHENG Yulong, BAO Gengsheng, et al. Research of seamount micro-topography based on acoustic deep-tow system investigation: A case from the Marcus-Wake Ridge area [J]. Journal of Marine Sciences, 2011, 29(1): 17-24.

    [18] 马骏, 宋金明, 李学刚, 等. 大洋海山及其生态环境特征研究进展[J]. 海洋科学, 2018, 42(6):150-160

    MA Jun, SONG Jinming, LI Xuegang, et al. Research progress on oceanic seamounts and their eco-environmental characteristics [J]. Marine Sciences, 2018, 42(6): 150-160.

    [19] 章伟艳, 张富元, 胡光道, 等. 中西太平洋海山形态类型与钴结壳资源分布关系[J]. 海洋学报(中文版), 2008, 30(6):76-84

    ZHANG Weiyan, ZHANG Fuyuan, HU Guangdao, et al. Relationship between shape classification of Pacific seamount morphology and distribution of cobalt-rich crust resources [J]. Acta Oceanologica Sinica, 2008, 30(6): 76-84.

    [20]

    Genin A. Bio-physical coupling in the formation of zooplankton and fish aggregations over abrupt topographies [J]. Journal of Marine Systems, 2004, 50(1-2): 3-20. doi: 10.1016/j.jmarsys.2003.10.008

    [21]

    Ou X L, Zhu J J, Li S Z, et al. Submarine Geomorphological features and their origins analyzed from multibeam bathymetry data in the South China Sea [J]. Journal of Marine Science and Engineering, 2021, 9(12): 1419. doi: 10.3390/jmse9121419

    [22] 杨慧良, 尉佳, 李攀峰, 等. 九州-帕劳海脊两侧深海盆地浅部地层结构特征与分析[J]. 海洋地质与第四纪地质, 2021, 41(1):14-21 doi: 10.16562/j.cnki.0256-1492.2020072202

    YANG Huiliang, WEI Jia, LI Panfeng, et al. Characteristics of the stratigraphic architectures of the shallow sections in deep sea basin on both sides of Kyushu-Palau ridge [J]. Marine Geology & Quaternary Geology, 2021, 41(1): 14-21. doi: 10.16562/j.cnki.0256-1492.2020072202

    [23]

    Hilde T W C, Lee C S. Origin and evolution of the west Philippine Basin: A new interpretation [J]. Tectonophysics, 1984, 102(1-4): 85-104. doi: 10.1016/0040-1951(84)90009-X

    [24] 张洁, 李家彪, 丁巍伟. 九州-帕劳海脊地壳结构及其形成演化的研究综述[J]. 海洋科学进展, 2012, 30(4):595-607

    ZHANG Jie, LI Jiabiao, DING Weiwei. Reviews of the study on crustal structure and evolution of the Kyushu-Palau ridge [J]. Advances in Marine Science, 2012, 30(4): 595-607.

    [25]

    Park J O, Hori T, Kaneda Y. Seismotectonic implications of the Kyushu-Palau ridge subducting beneath the westernmost Nankai Forearc [J]. Earth, Planets and Space, 2009, 61(8): 1013-1018. doi: 10.1186/BF03352951

    [26]

    Nishizawa A, Kaneda K, Katagiri Y, et al. Variation in crustal structure along the Kyushu-Palau Ridge at 15-21 N on the Philippine Sea plate based on seismic refraction profiles [J]. Earth, planets and space, 2007, 59(6): e17-e20. doi: 10.1186/BF03352711

    [27]

    Yamashita M, Tsuru T, Takahashi N, et al. Fault configuration produced by initial arc rifting in the Parece Vela Basin as deduced from seismic reflection data [J]. Island Arc, 2007, 16(3): 338-347. doi: 10.1111/j.1440-1738.2007.00594.x

    [28]

    Perron J T, Kirchner J W, Dietrich W E. Spectral signatures of characteristic spatial scales and nonfractal structure in landscapes [J]. Journal of Geophysical Research:Earth Surface, 2008, 113(F4): F04003.

    [29]

    Bomberger C, Bendick R, Flesch L, et al. Spatial scales in topography and strain rate magnitude in the western United States [J]. Journal of Geophysical Research:Solid Earth, 2018, 123(7): 6086-6097. doi: 10.1029/2018JB016135

    [30]

    Annen C, Lénat J F, Provost A. The long-term growth of volcanic edifices: numerical modelling of the role of dyke intrusion and lava-flow emplacement [J]. Journal of Volcanology and Geothermal Research, 2001, 105(4): 263-289. doi: 10.1016/S0377-0273(00)00257-2

    [31]

    Dobbs S C, McHargue T, Malkowski M A, et al. Are submarine and subaerial drainages morphologically distinct? [J]. Geology, 2019, 47(11): 1093-1097. doi: 10.1130/G46329.1

    [32]

    Smith M E, Finnegan N J, Mueller E R, et al. Durable terrestrial bedrock predicts submarine canyon formation [J]. Geophysical Research Letters, 2017, 44(20): 10332-10340. doi: 10.1002/2017GL075139

    [33]

    De Silva S, Lindsay J M. Primary volcanic landforms[M]//Sigurdsson H. The Encyclopedia of Volcanoes. 2nd ed. Amsterdam: Academic Press, 2015: 273-297.

    [34]

    White J D L, McPhie J, Soule S A. Submarine lavas and hyaloclastite[M]//Sigurdsson H. The Encyclopedia of Volcanoes. 2nd ed. Amsterdam: Academic Press, 2015: 363-375.

    [35]

    Rossi M J. Morphology and mechanism of eruption of postglacial shield volcanoes in Iceland [J]. Bulletin of Volcanology, 1996, 57(7): 530-540. doi: 10.1007/BF00304437

    [36]

    Fink J H, Bridges N T, Grimm R E. Shapes of Venusian “pancake” domes imply episodic emplacement and silicic composition [J]. Geophysical Research Letters, 1993, 20(4): 261-264. doi: 10.1029/92GL03010

    [37]

    Castruccio A, Diez M, Gho R. The influence of plumbing system structure on volcano dimensions and topography [J]. Journal of Geophysical Research:Solid Earth, 2017, 122(11): 8839-8859. doi: 10.1002/2017JB014855

    [38]

    Reagan M K, Pearce J A, Petronotis K, et al. Subduction initiation and ophiolite crust: new insights from IODP drilling [J]. International Geology Review, 2017, 59(11): 1439-1450. doi: 10.1080/00206814.2016.1276482

    [39]

    Clift P, Vannucchi P. Controls on tectonic accretion versus erosion in subduction zones: Implications for the origin and recycling of the continental crust [J]. Reviews of Geophysics, 2004, 42(2): RG2001.

    [40]

    Bai Y L, Zhang D Y, Dong D D, et al. Aleutian island arc magma production rates and primary controlling factors [J]. Marine Geology, 2020, 430: 106346. doi: 10.1016/j.margeo.2020.106346

    [41]

    Ding H H, Ding W W, Zhao Y H, et al. Spatiotemporal distribution of seamount volume along the Kyushu-Palau ridge: implications for rejuvenated volcanism [J]. Journal of Asian Earth Sciences, 2022, 240: 105391. doi: 10.1016/j.jseaes.2022.105391

    [42]

    Sun Q L, Magee C, Jackson C A L, et al. How do deep-water volcanoes grow? [J]. Earth and Planetary Science Letters, 2020, 542: 116320. doi: 10.1016/j.jpgl.2020.116320

    [43]

    Magee C, Hunt-Stewart E, Jackson C A L. Volcano growth mechanisms and the role of sub-volcanic intrusions: Insights from 2D seismic reflection data [J]. Earth and Planetary Science Letters, 2013, 373: 41-53. doi: 10.1016/j.jpgl.2013.04.041

    [44]

    Chapman D C, Haidvogel D B. Formation of Taylor caps over a tall isolated seamount in a stratified ocean [J]. Geophysical & Astrophysical Fluid Dynamics, 1992, 64(1-4): 31-65.

    [45]

    Smith L T. Numerical simulations of stratified rotating flow over finite amplitude topography [J]. Journal of Physical Oceanography, 1992, 22(6): 686-696. doi: 10.1175/1520-0485(1992)022<0686:NSOSRF>2.0.CO;2

    [46]

    Schär C, Davies H C. Quasi-geostrophic stratified flow over isolated finite amplitude topography [J]. Dynamics of Atmospheres and Oceans, 1988, 11(3-4): 287-306. doi: 10.1016/0377-0265(88)90003-6

    [47] 王星星, 蔡峰, 吴能友, 等. 海山对深水底流沉积过程及演化的影响研究进展[J]. 海洋地质与第四纪地质, 2020, 40(5):68-78 doi: 10.16562/j.cnki.0256-1492.2019111101

    WANG Xingxing, CAI Feng, WU Nengyou, et al. Research progress in seamount influence on depositional processes and evolution of deep-water bottom currents [J]. Marine Geology & Quaternary Geology, 2020, 40(5): 68-78. doi: 10.16562/j.cnki.0256-1492.2019111101

    [48]

    Karl H A, Carlson P R. Large sand waves in Navarinsky Canyon head, Bering Sea [J]. Geo-Marine Letters, 1982, 2(3): 157-162.

    [49]

    Karl H A, Cacchione D A, Carlson P R. Internal-wave currents as a mechanism to account for large sand waves in Navarinsky Canyon head, Bering Sea [J]. Journal of Sedimentary Research, 1986, 56(5): 706-714.

    [50] 高振中, 何幼斌, 刘成鑫, 等. 深水牵引流沉积的研究历程、现状与前景[J]. 古地理学报, 2006, 8(3):331-338

    GAO Zhenzhong, HE Youbin, LIU Chengxin, et al. History, status and prospect of study on deep-water traction current deposits [J]. Journal of Palaeogeography, 2006, 8(3): 331-338.

    [51] 王青春, 何幼斌, 贺萍, 等. 日本海富山深海水道堤坝大型泥波的成因[J]. 海洋学报, 2004, 26(6):143-148

    WANG Qingchun, HE Youbin, HE Ping, et al. The formation of large mud-waves on the levees of Toyama Deep-sea Channel in the Sea of Japan [J]. Acta Oceanologica Sinica, 2004, 26(6): 143-148.

    [52] 张兴阳, 高振中, 姚雪根. 北大西洋洛克尔海槽东北部内波沉积: 深水大型沉积物波成因的再解释[J]. 沉积学报, 1999, 17(3):464-472

    ZHANG Xingyang, GAO Zhenzhong, YAO Xuegen. Internal-wave Deposits in the North-eastern Rockall Trough, North Atlantic Ocean: Reinterpretation of deep-water sediment waves formation [J]. Acta Sedimentologica Sinica, 1999, 17(3): 464-472.

    [53]

    Hernández-Molina F J, Larter R D, Rebesco M, et al. Miocene reversal of bottom water flow along the Pacific Margin of the Antarctic Peninsula: Stratigraphic evidence from a contourite sedimentary tail [J]. Marine Geology, 2006, 228(1-4): 93-116. doi: 10.1016/j.margeo.2005.12.010

    [54] 李俞锋, 蒲仁海, 张功成. 琼东南盆地晚中新世以来底流流向及沉积侵蚀特征[J]. 地球物理学进展, 2018, 33(6):2546-2554

    LI Yufeng, PU Renhai, ZHANG Gongcheng. Direction and deposition/erosion characteristics of the bottom currents in the QDNB, northwestern South China Sea [J]. Progress in Geophysics, 2018, 33(6): 2546-2554.

    [55] 陈慧, 解习农, 毛凯楠. 南海北缘一统暗沙附近深水等深流沉积体系特征[J]. 地球科学—中国地质大学学报, 2015, 40(4):733-743 doi: 10.3799/dqkx.2015.061

    CHEN Hui, XIE Xinong, MAO Kainan. Deep-water contourite depositional System in vicinity of Yi’tong shoal on northern margin of the South China Sea [J]. Earth Science—Journal of China University of Geosciences, 2015, 40(4): 733-743. doi: 10.3799/dqkx.2015.061

    [56]

    Taylor G I. Experiments on the motion of solid bodies in rotating fluids [J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1923, 104(725): 213-218.

    [57]

    Boyer D L, Zhang X Z. Motion of oscillatory currents past isolated topography [J]. Journal of Physical Oceanography, 1990, 20(9): 1425-1448. doi: 10.1175/1520-0485(1990)020<1425:MOOCPI>2.0.CO;2

    [58]

    Bograd S J, Rabinovich A B, LeBlond P H, et al. Observations of seamount‐attached eddies in the North Pacific [J]. Journal of Geophysical Research:Oceans, 1997, 102(C6): 12441-12456. doi: 10.1029/97JC00585

    [59]

    Adduce C, Cenedese C. An experimental study of a mesoscale vortex colliding with topography of varying geometry in a rotating fluid [J]. Journal of Marine Research, 2004, 62(5): 611-638. doi: 10.1357/0022240042387583

    [60] 方中华, 李攀峰, 杨源, 等. 菲律宾海深水环境下浅地层沉积特征分析[J]. 海洋学报, 2022, 44(3):53-60

    FANG Zhonghua, LI Panfeng, YANG Yuan, et al. Analysis on sedimentary characteristics of shallow strata in deep water environment of Philippine Sea [J]. Acta Oceanologica Sinica, 2022, 44(3): 53-60.

    [61]

    Zhang X Z, Boyer D L. Current deflections in the vicinity of multiple seamounts [J]. Journal of Physical Oceanography, 1991, 21(8): 1122-1138. doi: 10.1175/1520-0485(1991)021<1122:CDITVO>2.0.CO;2

    [62]

    Roden G I. Effect of seamounts and seamount chains on ocean circulation and thermohaline structure[M]//Keating B H, Fryer P, Batiza R, et al. Seamounts, Islands, and Atolls. Washington: American Geophysical Union, 1987, 43: 335-354.

    [63]

    Rogerson M, Schönfeld J, Leng M J. Qualitative and quantitative approaches in palaeohydrography: A case study from core-top parameters in the Gulf of Cadiz [J]. Marine Geology, 2011, 280(1-4): 150-167. doi: 10.1016/j.margeo.2010.12.008

图(10)  /  表(1)
计量
  • 文章访问数:  50
  • HTML全文浏览量:  4
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-16
  • 修回日期:  2023-04-12
  • 刊出日期:  2024-08-25

目录

    /

    返回文章
    返回