Research progress in seamount influence on depositional processes and evolution of deep-water bottom currents
-
摘要: 海山是广泛分布于深水区的一种构造地貌类型,底流则是一种长期存在于深水区的沉积动力,故二者之间将会不可避免地发生相互作用,对深水沉积过程及其演化具有不可忽略的控制作用。通过归纳总结全球海山区底流沉积过程研究成果,指出在海山的直接或间接作用下,深水底流沉积动力受到影响,流动路径发生改变,产生次级底流沉积动力,同时也可影响生物群落分布,进而导致海山区沉积地貌及岩相表现出独特的平面展布特征。随着海山区底流沉积动力和沉积地貌背景的垂向演变,不同时期底流沉积过程及其响应也有所差异。因此,海山区底流沉积动力复杂且具特殊性,造就了不同于开阔陆坡背景下的底流沉积地貌和岩相特征及时空分布规律,其对深海盆地构造和古海洋演化的指示意义也与开阔陆坡底流沉积体系有所不同。目前有关海山与底流沉积过程之间的耦合关系研究程度还相对较低,极大地限制着深水资源勘探和地质灾害预测,这一问题有必要在未来深水沉积学研究中给予重点关注。Abstract: Seamount is a kind of tectonic geomorphological features widely distributed in the deep sea around the world, where bottom currents persistently exist, thus the interactions between seamounts and bottom currents are very common and will bring about non-negligible influence on deep-water sedimentation and their evolution. This study summarized the global researches on the deep water sedimentation by bottom currents around seamounts, suggesting that deep-water bottom-current hydrodynamics would change under the direct or indirect influence of seamounts, including the changing in flow paths, generation of secondary bottom currents, and variation in ecosystems. Consequently, deep-water sedimentary morphologies and lithofacies would display special distribution patterns. With the evolution of bottom-current hydrodynamics and sedimentary morphologies, deep water sedimentation processes and associated responses would change as well. In summary, bottom currents are complex and special around seamounts, resulting in sedimentary morphologies and lithofacies features as well as distribution patterns differing from those on the open slope. Thus, the sedimentary morphologies and lithofacies formed under bottom currents around seamounts have very particular implications for basin structures and palaeoceanography evolution. However, there is still lack of study concerning the coupling relationship between seamounts and deep water sedimentation processes, greatly limiting deep-sea resource exploration and geo-hazard study, thus more attention is required to be paid to the relationships in the future research of deep-water sedimentology.
-
Keywords:
- seamount /
- bottom current /
- sedimentary processes /
- sedimentary evolution /
- coupling relationship
-
烃源岩时空分布是影响并控制油气资源分布的主要因素[1],但由于沉积环境变化导致烃源岩时空分布存在明显差异。前人对于湖相烃源岩的研究[2-6],普遍认为强烈裂陷期古水体深,湖泊底部较易形成欠补偿的还原环境,有利于有机质保存。但对于拗陷期是否具备优质湖相烃源岩发育条件缺乏系统研究和认识,普遍认为拗陷期湖水浅、风大、湖底充氧,有机质可能难以保存[2]。本文针对桑托斯盆地盐下拗陷期开展古生物学与地球化学研究,探讨古湖泊的沉积古地理-古气候背景以及沉积水介质的物理化学条件,从而重建烃源岩沉积环境,并总结拗陷期烃源岩发育模式,为拗陷期湖泊烃源岩发育条件提供新的案例。
1. 盆地概况
桑托斯盆地位于巴西东南部海域,北邻坎波斯盆地,南邻佩洛塔斯盆地,盆地面积约32.7万km2,水深0~
3200 m(图1)。桑托斯盆地与北部的坎波斯盆地和埃斯皮里图桑托盆地共同构成大坎波斯盆地,它们具有相似的构造演化和沉积充填史,为典型的被动大陆边缘盆地,石油地质条件均十分优越,目前已获得大量油气发现[7-9]。桑托斯盆地是一个典型的被动大陆边缘盆地,其形成演化与中生代以来冈瓦纳大陆的解体以及大西洋的扩张有关。构造演化和沉积充填可以划分为3个沉积构造演化阶段[10-11]:早白垩世裂谷期湖相沉积、Aptian过渡期盐岩沉积和晚白垩世—新生代漂移期海相沉积(图2)。
其中早白垩世裂谷期,盆地构造活动强烈,断裂普遍发育,形成了多个东北走向的大型隆起和坳陷带,表现出隆坳相间的断陷结构。盆地总体较为宽缓,表现出湖广水深的特征,主要沉积了一套厚层的陆相河湖体系。整体上,裂谷期经历了4个演化阶段(图3):
(1)初始断陷阶段(Neocomian-Barremian早期):以发育小位移的板状基底断层为主,地壳均匀伸展,且断层活动性差异小。同时伴随着多区带强烈火山活动,地层充填整体上以Camboriu组喷发玄武岩为主,这也为晚期生物灰岩发育提供了古构造背景,局部地区为湖泊、冲积扇相的砂泥岩沉积。
(2)强烈断陷阶段(Barremian中期):断层活动强烈,基底断块差异升降和掀斜变形,表现出垒堑相间的断陷结构。区域伸展速率和沉降幅度大,沉积环境呈现湖广水深的特点,以发育巨厚的Picarras组(PIC组)湖相地层为主。
(3)断拗转换阶段(Barremian晚期—Aptian早期):断裂活动整体减弱,伸展位移相对均匀地分布在不同断层上,地形高差小,表现出坳陷的结构。沉积充填Itapema组(ITP组),浅水区发育贝壳灰岩,深水区为湖相页岩、泥灰岩沉积。
(4)拗陷阶段(Aptian中—晚期):区内断裂发育少且活动微弱,发育稳定分布的Barra Velha组(BV组),岩性以藻叠层石灰岩为主,较深水区则发育湖相页岩和泥灰岩。
其中在Camboriu组、ITP组、BV组沉积时期,盆地内多区带均伴随着强烈火山活动,发育大量喷发溢流相玄武岩,局部发育侵入岩,以辉绿岩为主,局部发育辉长岩、煌斑岩(图4)。
区域钻井证实断陷期PIC组—断拗转换期ITP组深湖相泥页岩和泥灰岩为一套广泛分布的优质湖相烃源岩,而关于拗陷期BV组是否广泛具备优质烃源岩发育条件,有待进一步证实。
2. 古气候特征和古水体性质
2.1 古气候特征
桑托斯盆地在裂谷期整体处于微咸水-半咸水环境,有机质以蓝藻类和细菌为主,无定型有机质占有机质总量的90%以上(图5)。整体上具有有机质类型好、丰度高、生烃潜力大的特点。
裂谷期沉积时期,盆地整体气候干燥,沉积物中以代表干旱环境的克拉梭粉、阔三沟粉、似木贼孢、三气囊花粉为主,仅近岸存在小范围湿润环境,河流体系整体不发育,陆源碎屑供给少,这正是桑托斯盆地盐下裂谷期湖相碳酸盐岩发育的有利条件[12-15]。
BV组沉积时期,地球化学分析显示,水体营养丰富,营养物质输入丰富[16]。这主要是由于盆地及周缘火山岩发育,同时伴随着间歇性火山活动,而干燥的气候背景下,湖盆主要依赖地下水进行补给,地下水流经火山岩会溶解其营养元素,携带至湖盆中,同时间歇性火山活动也会不定期带来丰富的火山灰等营养物质[6],具备了藻类勃发的古地理背景与物源供给条件。
2.2 古水体盐度-水深特征
湖相烃源岩的发育与湖泊古水体盐度关系密切,主要是由于古盐度可直接影响古湖泊水体分层,从而影响有机质保存条件,强烈的水体分层可以在浅水背景下的湖底形成强还原环境[16-17]。本文通过对桑托斯盆地盐下湖相介形虫盐度标志种和水深标志种的分析,重建沉积时期古水体盐度和深度变化。
湖水盐度会影响沉积期湖盆中造礁或成滩生物的繁盛程度,其中贝壳类等软体动物在低盐度淡水水体中较为繁盛,而各类造礁微生物在盐度相对较高的半咸水-咸水水体中更为繁盛。
从贝壳灰岩至微生物礁灰岩存在一个氧同位素正偏的趋势(图6),表明自贝壳灰岩至微生物礁灰岩沉积时期,蒸发作用逐渐增强。其中在ITP组贝壳灰岩样品中,以偏负的碳氧同位素指标为主,这表明在沉积贝壳灰岩时期,沉积水体盐度相对较低,为正常盐度水体,适于贝壳类生物群落发育;而在BV组微生物礁灰岩样品中,以显著正偏的氧同位素指标为特征,指示水体中因轻同位素组分流失而使得沉积物中富集重同位素组分,也即在微生物礁灰岩沉积时期,由于蒸发作用和海侵作用导致湖盆水体咸化,盐度相对较高,而这样的水体环境不适宜贝壳类生物的生存,但可以促进造礁微生物的繁盛。同时,在两期沉积内部同位素变化不大,表明水体盐度在两个沉积时期均较为稳定,适于发育湖相生物灰岩沉积。
随后,基于对盐下碳酸盐岩样品中介形虫化石古生态学分析[18],进一步确定了沉积时期古水深及盐度。介形虫对盐度反应非常敏感,随着盐度升高,仅能在淡水和低盐度水体中生存的淡水种-微咸水种快速消失,取而代之为半咸水种和咸水种。在巴西盐下湖相生物灰岩中的介形虫化石,根据盐度指标可分为淡水种、微咸水种、半咸水种和咸水种四类。在贝壳灰岩沉积期介形虫以淡水种—微咸水种占绝对优势,指示ITP组贝壳灰岩沉积期为淡水—微咸水环境;而叠层石灰岩沉积期则以半咸水—咸水种占明显优势(图7),指示BV组微生物礁灰岩沉积期为半咸水—咸水环境。
此外,盐下生物灰岩沉积时期整体为浅湖环境,且呈现水退的趋势,但在断陷晚期ITP组贝壳灰岩的发育初期和末期,以及拗陷期BV组的发育中期,发生多期较大规模的幕式海侵。这一论断已被学者通过多种资料证实,如Mello和Hessel[19]从贝壳灰岩地层中的生物标识化合物、地质和古微生物等数据推断了在早Barremian时期就存在海侵作用;Silva-Telles Jr等[20]在贝壳灰岩与泥岩互层中识别出了螺旋锥状有孔虫,提出坎波斯盆地在OS-1010至OS-1100生物带地层中存在海侵现象;同时,通过钻井岩芯分析发现多井段存在海绿石。海侵作用导致水体盐度增加,并带来丰富的营养物质。
3. 烃源岩发育条件
3.1 古生产力
前人通过对国内外不同盆地优质烃源岩研究分析,发现优质烃源岩形成的必要条件是湖泊具有一定的生物生产力[2-6],从而为优质烃源岩发育提供物质基础。
桑托斯盆地盐下裂谷期沉积时期,盆地整体气候干旱,沉积物中以代表干旱环境的克拉梭粉-阔三沟粉-似木贼孢-三气囊花粉为主,仅含少量代表潮湿环境的孢粉,指示近岸小范围的湿润环境。干旱气候背景下,河流水系不发育,陆源碎屑供给较少,这正是桑托斯盆地盐下发育大规模碳酸盐岩的原因之一。地球化学分析结果显示[21](图8),沉积时期水体营养丰富,但其中Al含量整体相对较小,仅局部含量相对较高,而Al被认为是陆源物质输入的代表元素,低含量指示陆源物质输入较少,主要以地下的水化学输入为主。
桑托斯盆地及周边早白垩世火山岩发育,且干旱的气候背景下,古湖盆主要依靠地下水对湖泊进行补给,此外,在ITP组和BV组沉积时期,湖盆发育了多期海侵,海侵事件同样会带来大量营养元素,丰富的营养供给使得造礁生物、浮游生物藻类勃发,由此可见,在拗陷期BV组沉积时期,水体营养丰富,藻类勃发,古生产力较高。
区域钻井揭示断陷期PIC组-断拗转换期ITP组深湖相泥页岩和泥灰岩烃源岩干酪根类型主要为Ⅰ型,TOC含量1%~15.9%,平均可达5.1%,HI可达500~
1084 mg HC/g TOC,S1+S2平均可达37 mg/g(图9)。而对于拗陷期BV组烃源岩,目前仅有5个样品点,均位于构造高部位叠层石灰岩发育区,为泥质微生物灰岩(图10),其TOC为1.7%~3.77%,生烃潜力及干酪根类型与断陷期烃源岩类似,体现了优质湖相烃源岩的特点。3.2 保存条件
高的古生产力,并不代表沉积物中有机质丰度高,沉积下来的有机质经历氧化消耗而残存下来的方可被埋藏保存。可见,有机质能否得以保存对烃源岩的形成至关重要。
古生物分析显示,拗陷期BV组沉积时期,为宽浅、半咸水—咸水环境,从而可形成稳定的盐度分层,在湖泊顶部为低盐度富氧层,而在底部形成的高盐度缺氧层则为强还原环境,有利于有机质保存。较高的古生产力、良好的保存条件为拗陷期烃源岩发育提供了可能。由于目前盐下钻井主要钻探高部位碳酸盐岩发育区,目前掌握资料中尚未有钻井揭示洼陷区BV组烃源岩,但从地震上可见典型的盐下优质湖相烃源岩反射特征——低频连续强反射(图11)。同时,桑托斯盆地共轭的西非宽扎盆地,已有钻井揭示近200 m拗陷期优质湖相烃源岩,TOC为3%~6%,部分可达9.5%。
拗陷期BV组烃源岩发育是否在一定程度上拓宽了桑托斯盐下勘探潜力,早期认为裂陷期PIC-ITP组烃源岩为盆地盐下主力烃源岩,主要发育于深洼区,拗陷期烃源岩发育在一定程度上扩展了烃源岩的平面分布范围。
4. 烃源岩发育模式
桑托斯盆地盐下拗陷期BV组沉积时期,整体构造稳定,为宽浅湖盆。
地化分析显示,反映陆源输入的Al含量整体偏低,指示陆源输入较少,主要以地下水化学输入为主。同时由于周缘周期性火山活动及间接性海侵为湖泊提供了丰富的营养元素,沉积时期古水体整体营养丰富,藻类勃发,古生产力高。
在干旱气候背景下,蒸发作用对古水体盐度增加有一定影响。桑托斯盆地碳、氧同位素的分析结果显示,从ITP组贝壳灰岩至BV组微生物礁灰岩存在一个氧同位素正偏的趋势,表明自贝壳灰岩至微生物礁灰岩沉积时期,蒸发作用逐渐增强。同时,古水体盐度敏感介形虫种属显示,在拗陷期BV组沉积时期,整体以半咸水—咸水种占明显优势,指示沉积时期为半咸水—咸水环境,使得湖泊水体有了稳定的盐度分层,坳陷沉积中心较易形成高盐度缺氧还原环境,利于有机质保存,从而发育相对优质的拗陷期湖相烃源岩(图12)。
5. 结论
(1)桑托斯盆地盐下拗陷期BV组沉积时期,湖泊水体营养丰富,藻类勃发,古生产力高。同时由于沉积时期水体盐度较高,为半咸水—咸水环境,虽为宽浅湖泊,但干旱的气候背景下,较易形成盐度分层,从而在湖泊底层形成稳定的强还原环境,利于有机质保存。整体上,桑托斯盆地盐下拗陷期BV组具备优质烃源岩发育条件。
(2)研究区拗陷期烃源岩发育不仅拓宽了桑托斯盐下优质湖相烃源岩发育层系,同时由于断陷期优质湖相烃源岩主要分布于深洼区,而拗陷期优质烃源岩分布相对更为广泛,这在一定程度上扩展了盐下优质湖相烃源岩平面展布范围,提升了盆地勘探潜力。同时本文相关研究在一定程度上完善了湖相烃源岩发育沉积模式,填补了前人关于拗陷期是否发育烃源岩认识的空白。
-
图 1 全球底流沉积与底流年平均流速分布叠合图数字代表全球底流沉积统计实例序号,统计数据见文献[12]。
Figure 1. Global distribution of bottom currents superimposed with annually mean flow velocity The numbers indicate the sites for the case studies on bottom current around the world, modified from reference [12].
图 2 对称海山附近底流流速平面分布(A)和垂直流向纵剖面(B)B中流速单位为m/s,黄色指示反向流速 (据文献[21]修改)。
Figure 2. Plan view(A)and vertical cross-channel section(B)for the flow velocity distribution of bottom currents flowing through the axisymmetric hill (The velocity unit in B is m/s, the yellow indicates negative velocity) (Modified from references [21]).
图 3 流经海山的底流流场特征图ut代表随时间变化的实际流速,u0代表平均流速,f为科氏力参数,约为10−4/s,D为海山底部直径 (据文献[4, 19]修改)。
Figure 3. Diagrams showing the flow-field features of bottom currents flowing through seamounts utindicates the actual flow velocity varied with time, u0 indicates the mean flow velocity, f is the Coriolis parameter, ~10−4/s, D represents the seamount diameter at the seamount base (modified from references [4, 19]).
图 4 南海北部地貌图(A)和南海北部海平面异常(SLA)与表层流速度平面分布图(B)及南海东沙陆坡地区TJ-A-1站位原位观测结果(C-F)[35]
Figure 4. (A) Bathymetric map for the northern South China Sea; (B) Map of sea level anomaly (SLA) with surface geostrophic current velocity; (C-F) In-situ observed results at the site TJ-A-1 on the Dongsha slope, South China Sea[35]
图 5 流经海山区的中尺度涡旋所导致的底流的流场分布示意图
A指示深入深层的表层涡旋情形,B指示底层涡旋情形 (据文献[7]修改)。
Figure 5. Diagram for the flow patterns influenced by mesoscale eddies passing through seamount
A indicates the scenario dominated by surface deep-reaching eddy, B indicates the scenario dominated by bottom eddy (modified from reference [7]).
表 1 海山对底流沉积动力影响
Table 1 Seamount influences on bottom-current dynamics
影响因素 对底流沉积动力的影响 海山形态、规模 (1)相比于圆锥形海山,伸长状海山更容易导致底流沉积动力增强,并且增强幅度与海山高度呈正相关[27];
(2)底流沉积动力随坡度的增大而有所增强[14],故坡度较陡的海山受到的侵蚀作用更强;
(3)当海山高程较大时,将导致海山周缘斜坡在垂向上受到不同底流的影响,所对应的底流沉积动力与沉积响应也有所差异;底流流向与伸长状
海山走向的关系(1)垂直:迎流一侧底流强度更大,易于造成侵蚀;背流一侧易于激发内波作用继续向前传播[6];
(2)平行:底流顺坡侵蚀,尤其在坡脚处底流强度相对较大,易于形成底流沟道[38];
(3)斜交:底流流向易于发生改变,平行海山走向分量可沿斜坡走向进行侵蚀[38];海山群空间分布 随着海山间中心连线的距离和走向的改变,海山区底流沉积动力也随之发生改变。但是,目前该方面研究程度还相对较低,主要集中在早期的数值模拟研究方面[4],还需要展开进一步的研究。 -
[1] Wessel P, Sandwell D T, Kim S S. The global seamount census [J]. Oceanography, 2010, 23(1): 24-33. doi: 10.5670/oceanog.2010.60
[2] Kim S S, Wessel P. New global seamount census from altimetry-derived gravity data [J]. Geophysical Journal International, 2011, 186(2): 615-631. doi: 10.1111/j.1365-246X.2011.05076.x
[3] Hernández-Molina F J, Soto M, Piola A R, et al. Depositional system along the Uruguayan continental margin: sedimentary, oceanographic and paleoceanographic implications [J]. Marine Geology, 2016, 378: 333-349. doi: 10.1016/j.margeo.2015.10.008
[4] Zhang X, Boyer D L. Current deflections in the vicinity of multiple seamounts [J]. Journal of Physical Oceanography, 1991, 21(8): 1122-1138. doi: 10.1175/1520-0485(1991)021<1122:CDITVO>2.0.CO;2
[5] Hernández-Molina F J, Larter R D, Rebesco M, et al. Miocene reversal of bottom water flow along the Pacific Margin of the Antarctic Peninsula: stratigraphic evidence from a contourite sedimentary tail [J]. Marine Geology, 2006, 228(1-4): 93-116. doi: 10.1016/j.margeo.2005.12.010
[6] Turnewitsch R, Falahat S, Nycander J, et al. Deep-sea fluid and sediment dynamics—Influence of hill-to seamount-scale seafloor topography [J]. Earth-Science Reviews, 2013, 127: 203-241. doi: 10.1016/j.earscirev.2013.10.005
[7] Chen H, Zhang W, Xie X, et al. Sediment dynamics driven by contour currents and mesoscale eddies along continental slope: A case study of the northern South China Sea [J]. Marine Geology, 2019, 409: 48-66. doi: 10.1016/j.margeo.2018.12.012
[8] Heezen B C, Hollister C D. Deep sea current evidence from abyssal sediments [J]. Marine Geology, 1964, 1(2): 141-174. doi: 10.1016/0025-3227(64)90012-X
[9] Zenk M. Abyssal and Contour Currents[M]//Rebesco M, Camerlenghi A, eds. Contourites. Amsterdam, Elsevier, 2008: 37-57.
[10] 赵玉龙, 刘志飞. 等积体在全球大洋中的空间分布及其古环境意义—国际大洋钻探计划对全球等深流沉积研究的贡献[J]. 地球科学进展, 2017, 32(12):1287-1296. [ZHAO Yulong, LIU Zhifei. Spatial distribution of contourites in global ocean and its paleoclimatic significance - The contribution of international ocean drilling to the studies of contourites [J]. Advances in Earth Science, 2017, 32(12): 1287-1296. doi: 10.11867/j.issn.1001-8166.2017.12.1287 [11] Rebesco M, Hernández-Molina F J, Van Rooij D, et al. Contourites and associated sediments controlled by deep-water circulation processes: state-of-the-art and future considerations [J]. Marine Geology, 2014, 352: 111-154. doi: 10.1016/j.margeo.2014.03.011
[12] Thran A C, Dutkiewicz A, Spence P, et al. Controls on the global distribution of contourite drifts: Insights from an eddy-resolving ocean model [J]. Earth and Planetary Science Letters, 2018, 489: 228-240. doi: 10.1016/j.jpgl.2018.02.044
[13] Knutz P C. Paleoceanographic significance of contourite drifts[M]// In: Rebesco M, Camerlenghi A (Eds.). Contourites. Developments in Sedimentology, 60. Elsevier, Amsterdam, 2008: 511-535.
[14] Viana A R, Almeida W Jr, Nunes M C V, et al. The economic importance of contourites [J]. Geological Society of London Special Publication, 2007, 276(1): 1-23. doi: 10.1144/GSL.SP.2007.276.01.01
[15] Brackenridge R E, Stow D A V, Hernández-Molina F J, et al. Textural characteristics and facies of sand-rich contourite depositional systems [J]. Sedimentology, 2018, 65(7): 2223-2252. doi: 10.1111/sed.12463
[16] Hodgson D M. Distribution and origin of hydbrid beds in sand-rich submarine fans of the Tanqua depocentre, Karoo Basin, South Africa [J]. Marine and Petroleum Geology, 2009, 26: 1940-1956. doi: 10.1016/j.marpetgeo.2009.02.011
[17] Jobe Z, Sylvester Z, Pittaluga M B, et al. Facies architecture of submarine channel deposits on the western Niger Delta slope: Implications for grain-size and density stratification in turbidity currents [J]. Journal of Geophysical Research: Earth Surface, 2017, 122: 473-491. doi: 10.1002/2016JF003903
[18] Taylor G I. Experiments on the motion of solid bodies in rotating fluids [J]. Proceedings of the Royal Society, 1923, 104: 213-218.
[19] Boyer D L, Zhang X. Motion of oscillatory currents past isolated topography [J]. Journal of Physical Oceanography, 1990, 20(9): 1425-1448. doi: 10.1175/1520-0485(1990)020<1425:MOOCPI>2.0.CO;2
[20] Bograd S J, Rabinovich A B, LeBlond P H, et al. Observations of seamount‐attached eddies in the North Pacific [J]. Journal of Geophysical Research: Oceans, 1997, 102(C6): 12441-12456. doi: 10.1029/97JC00585
[21] Chapman D C, Haidvogel D B. Formation of Taylor caps over a tall isolated seamount in a stratified ocean [J]. Geophysical and Astrophysical Fluid Dynamics, 1992, 62: 31-65.
[22] Roden G I. Effects of seamount chains on ocean circulation and thermohaline structure[C]//In: Keating B H, et al. (Ed.). Seamounts, Islands and Atolls AGU Geophys. Monograph, 1987, 96: 335-354.
[23] Roden G I. Mesoscale flow and thermohaline structure around Fieberling Seamount [J]. Journal of Geophysical Research, 1991, 96(C9): 16653-16672. doi: 10.1029/91JC01747
[24] Chapman D C. Enhanced subinertial diurnal tides over isolated topographic features [J]. Deep-sea Research, 1989, 36: 815-824. doi: 10.1016/0198-0149(89)90030-7
[25] Genin A, Noble M, Lonsdale P F. Tidal currents and anticyclonic motions on two North Pacific seamounts [J]. Deep-sea Research, 1989, 36(12): 1803-1815. doi: 10.1016/0198-0149(89)90113-1
[26] Noble M, Mullineaux L S. Internal tidal currents over the summit of cross seamount [J]. Deep-sea research, 1989, 36: 1791-1802. doi: 10.1016/0198-0149(89)90112-X
[27] Holloway P E, Merrifield M A. Internal tide generation by seamounts, ridges, and islands [J]. Journal of Geophysical Research, 1999, 104(C11): 25937-25951. doi: 10.1029/1999JC900207
[28] Kasahara A. A mechanism of deep-ocean mixing due to near-inertial waves generated by flow over bottom topography [J]. Dyn Atmos. Oceans, 2010, 49: 124-140. doi: 10.1016/j.dynatmoce.2009.02.002
[29] Gill A E, Atmosphere-Ocean Dynamics[M]. Academic Press, San Diego, 1982: 662.
[30] Zhang X, Boye D L. Laboratory study of rotating, stratified, oscillatory flow over a seamount [J]. Journal of Physical Oceanography, 1993, 23(6): 1122-1141. doi: 10.1175/1520-0485(1993)023<1122:LSORSO>2.0.CO;2
[31] Goldner D R, Chapman D C. Flow and particle motion induced above a tall seamount by steady and tidal background currents [J]. Deep-sea Research, 1997, 144(5): 719-744.
[32] 刘长建, 庄伟, 夏华永, 等. 2009-2010年冬季南海东北部中尺度过程观测[J]. 海洋学报, 2012, 34(1):8-16. [LIU Changjian, ZHUANG Wei, XIA Huayong, et al. Mesoscale observation in the northeast South China Sea during winter 2009-2010 [J]. Acta Oceanologica Sinica, 2012, 34(1): 8-16. [33] 魏泽勋, 郑全安, 杨永增, 等. 中国物理海洋学研究70年:发展历程、学术成就概览[J]. 海洋学报, 2019, 41(10):23-64. [WEI Zexun, ZHENG Quanan, YANG Yongzeng, et al. Physical oceanography research in China over past 70 years: Overview of development history and academic achievements [J]. Acta Oceanologica Sinica, 2019, 41(10): 23-64. [34] Adams D K, McGillicuddy D J, Zamudio L, et al. Surface-generated mesoscale eddies transport deep-sea products from hydrothermal vents [J]. Science, 2011, 332(6029): 580-583. doi: 10.1126/science.1201066
[35] Zhang Y W, Liu Z F, Zhao Y L, et al. Mesoscale eddies transport deep-sea sediments [J]. Scientific Reports, 2014, 4: 5937.
[36] Zhao Y, Liu Z, Zhang Y, et al. In situ observation of contour currents in the northern South China Sea: Applications for deepwater sediment transport [J]. Earth and Planetary Science Letters, 2015, 430: 477-485. doi: 10.1016/j.jpgl.2015.09.008
[37] Rogerson M, Schonfeld J, Leng M J, et al. Qualitative and quantitative approaches in palaeohydrography: a case study from core-top parameters in the Gulf of Cadiz [J]. Marine Geology, 2011, 280(1): 150-167.
[38] García M, Hernández-Molina F J, Llave E, et al. Contourite erosive features caused by the Mediterranean Outflow Water in the Gulf of Cadiz: Quaternary tectonic and oceanographic implications [J]. Marine Geology, 2009, 257(1-4): 24-40. doi: 10.1016/j.margeo.2008.10.009
[39] Roberts D G, Hogg N G, Bishop D G, et al. Sediment distribution around moated seamounts in the Rockall Trough [J]. Deep Sea Research and Oceanographic Abstracts, 1974, 21(3): 175-184. doi: 10.1016/0011-7471(74)90057-6
[40] Howe J A, Stoker M S, Masson D G, et al. Seabed morphology and the bottom-current pathways around Rosemary Bank seamount, northern Rockall Trough, North Atlantic [J]. Marine and Petroleum Geology, 2006, 23(2): 165-181. doi: 10.1016/j.marpetgeo.2005.08.003
[41] Davies T A, Laughton A S. Sedimentary Processes in the North Atlantic[C]// In: Laughton A S, Berggren W A (Eds.). Initial Reports of Deep Sea Drilling Project, 12. U.S. Government Printing Office, Washington D C, 1972: 905-934.
[42] 陈慧, 解习农, 毛凯楠. 南海北缘一统暗沙附近深水等深流沉积体系特征[J]. 地球科学—中国地质大学学报, 2015, 40(4):733-743. [CHEN Hui, XIE Xinong, MAO Kainan. Deep-water contourite depositional system in vicinity of Yi’tong Shoal on Northern Margin of the South China Sea [J]. Earth Science – Journal of China University of Geoscience, 2015, 40(4): 733-743. doi: 10.3799/dqkx.2015.061 [43] Hernández-Molina F J, Campbell S, Badalini G, et al. Large bedforms on contourite terraces: Sedimentary and conceptual implications [J]. Geology, 2018, 46(1): 27-30. doi: 10.1130/G39655.1
[44] Stow D A V, Hernández-Molina F J, Llave E, et al. The Cadiz Contourite Channel: Sandy contourites, bedforms and dynamic current interaction [J]. Marine Geology, 2013, 343: 99-114. doi: 10.1016/j.margeo.2013.06.013
[45] Pratt R M. Great meteor seamount [J]. Deep-sea Research, 1963, 10: 17-25.
[46] Karig D E, Peterson M N A, Shor G G. Sediment-capped guyots in the Mid-Pacific Mountains [J]. Deep-Sea Research, 1970, 17: 373-378.
[47] Levin L A, Nittrouer C A. Textural characteristics of sediments on deep seamounts in the eastern Pacific Ocean between 10°N and 30°N[C]// In: Keating B, Fryer P, Batiza R, et al(eds). Geophysical Monograph 43. American Geophysical Union, Washington, 1987: 187-203.
[48] Thiéblemont A, Hernández-Molina F J, Miramontes E, et al. Contourite depositional systems along the Mozambique channel: The interplay between bottom currents and sedimentary processes [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2019, 147: 79-99. doi: 10.1016/j.dsr.2019.03.012
[49] Wang X, Zhuo H, Wang Y, et al. Controls of contour currents on intra-canyon mixed sedimentary processes: Insights from the Pearl River Canyon, northern South China Sea [J]. Marine Geology, 2018, 406: 193-213. doi: 10.1016/j.margeo.2018.09.016
[50] Richardson P L. Anticyclonic eddies generated near Corner Rise seamounts [J]. Journal of Marine Research, 1980, 38: 673-686.
[51] Rogers A D. The Biology of seamounts [J]. Advances in Marine Biology, 1994, 30(1): 305-350.
[52] Bank J J, Kim D H, Chun J H. Gas hydrate occurrences and their relation to host sediment properties: Results from second Uleung Basin Gas hydrate drilling expedition, East Sea [J]. Marine and Petroleum Geology, 2013, 47: 21-29. doi: 10.1016/j.marpetgeo.2013.05.006
[53] 陈芳, 苏新, 陆红锋, 等. 南海神狐海域有孔虫与高饱和度水合物的储存关系[J]. 地球科学, 2013, 38(5):907-915. [CHEN Fang, SU Xin, LU Hongfeng, et al. Relations between biogenic component (Foraminifera) and Highly saturated gas hydrates distribution from Shenhu Area, Northern South China Sea [J]. Earth Science – Journal of China University of Geoscience, 2013, 38(5): 907-915. doi: 10.3799/dqkx.2013.089 [54] 吴能友, 孙治雷, 卢建国, 等. 冲绳海槽海底冷泉-热液系统相互作用[J]. 海洋地质与第四纪地质, 2019, 39(5):23-35. [WU Nengyou, SUN Zhilei, LU Jianguo, et al. Interaction between seafloor cold seeps and adjacent hydrothermal activities in the Okinawa Trough [J]. Marine Geology & Quaternary Geology, 2019, 39(5): 23-35. [55] Chen H, Xie X, Van Rooij D, et al. Depositional characteristics and processes of alongslope currents related to a seamount on the northwestern margin of the Northwest Sub-Basin, South China Sea [J]. Marine Geology, 2014, 355: 36-53. doi: 10.1016/j.margeo.2014.05.008
[56] Vandorpe T, Van Rooij D, De Haas H. Stratigraphy and paleoceanography of a topography-controlled contourite drift in the Pen Duick area, southern Gulf of Cádiz [J]. Marine Geology, 2014, 349: 136-151. doi: 10.1016/j.margeo.2014.01.007
-
期刊类型引用(10)
1. 张瑞. 东海地区油基钻井液评价及优化研究. 石化技术. 2025(06) 百度学术
2. 屈童,黄志龙,李天军,杨易卓,王柏然,王瑞. 西湖凹陷平北地区武云亭凝析气田形成条件与成藏特征. 地质学报. 2024(01): 247-265 . 百度学术
3. 俞伟哲,胡伟. 中深层天然气分流河道型储层逐级刻画技术研究与应用. 低碳世界. 2024(05): 28-30 . 百度学术
4. 覃军,熊萍,何新建,沈冠华,王瑞霞,梅廉夫,吕志欢,叶青. 东海盆地石门潭组属于裂陷期地层序列吗?. 地层学杂志. 2024(04): 380-391 . 百度学术
5. 李倩,李昆,庄建建,陈子健,王丹萍,王修平,晏玉环,刘名杨. 西湖凹陷西斜坡断层—岩性圈闭形成条件探讨. 海洋石油. 2022(02): 14-22+38 . 百度学术
6. 周荔青,江东辉,周兴海,李昆,庄建建,刘闯. 东海西湖凹陷西斜坡断层—岩性油气藏富集评价体系与勘探方向. 石油实验地质. 2022(05): 747-754 . 百度学术
7. 庄建建,李喆,巩兴会,万丽芬. 西湖凹陷WBT地区平湖组下段有利储层预测. 海洋石油. 2021(01): 8-14+21 . 百度学术
8. 李斌,杨鹏程,蒋彦,陈现,李倩,李喆. 西湖凹陷西斜坡W构造异常高压特征及对油气成藏的影响. 海洋石油. 2021(02): 11-19+36 . 百度学术
9. 江东辉,蒲仁海,苏思羽,范昌育,周锋,杨鹏程. 断陷盆地斜坡带大型油气田成藏条件——西湖凹陷平北缓坡断裂与岩性控藏有利区. 天然气工业. 2021(11): 33-42 . 百度学术
10. 周荔青,江东辉,张尚虎,周兴海,杨鹏程,李昆. 东海西湖凹陷大中型油气田形成条件及勘探方向. 石油实验地质. 2020(05): 803-812 . 百度学术
其他类型引用(2)