东海西湖凹陷中央背斜带花港组成藏条件及主控因素分析—以H3气藏为例

李昆, 张沛, 张萍, 李倩, 万丽芬, 席敏红

李昆, 张沛, 张萍, 李倩, 万丽芬, 席敏红. 东海西湖凹陷中央背斜带花港组成藏条件及主控因素分析—以H3气藏为例[J]. 海洋地质与第四纪地质, 2020, 40(5): 127-135. DOI: 10.16562/j.cnki.0256-1492.2019070408
引用本文: 李昆, 张沛, 张萍, 李倩, 万丽芬, 席敏红. 东海西湖凹陷中央背斜带花港组成藏条件及主控因素分析—以H3气藏为例[J]. 海洋地质与第四纪地质, 2020, 40(5): 127-135. DOI: 10.16562/j.cnki.0256-1492.2019070408
LI Kun, ZHANG Pei, ZHANG Ping, LI Qian, WAN Lifen, XI Minhong. Analysis of reservoir-forming conditions and key controlling factors of Huagang Formation in the central anticlinal belt of Xihu Sag of East China Sea—Taking the reservoir H3 for example[J]. Marine Geology & Quaternary Geology, 2020, 40(5): 127-135. DOI: 10.16562/j.cnki.0256-1492.2019070408
Citation: LI Kun, ZHANG Pei, ZHANG Ping, LI Qian, WAN Lifen, XI Minhong. Analysis of reservoir-forming conditions and key controlling factors of Huagang Formation in the central anticlinal belt of Xihu Sag of East China Sea—Taking the reservoir H3 for example[J]. Marine Geology & Quaternary Geology, 2020, 40(5): 127-135. DOI: 10.16562/j.cnki.0256-1492.2019070408

东海西湖凹陷中央背斜带花港组成藏条件及主控因素分析—以H3气藏为例

基金项目: 中国石油化工股份有限公司科技项目“西湖中北部大中型气藏富集规律及目标优选”(KJ-2017-01)
详细信息
    作者简介:

    李昆(1988—),女,硕士,工程师,主要从事油气勘探地质研究工作,E-mail:lik.shhy@sinopec.com

  • 中图分类号: P744.4

Analysis of reservoir-forming conditions and key controlling factors of Huagang Formation in the central anticlinal belt of Xihu Sag of East China Sea—Taking the reservoir H3 for example

  • 摘要: 近年来,西湖凹陷中央背斜带渐新统花港组油气勘探取得重要突破,发现多个大中型含油气构造,在不同的含油气构造中,气藏的气柱高度及圈闭充满度差别大,说明不同的含油气构造具有不同的成藏主控因素。基于三维地震及多口钻井资料,从烃源岩、圈闭条件、储盖组合配置关系等方面,以H3气藏为例,通过对典型气藏的解剖,对H3气藏的成藏条件进行研究,分析了不同构造气藏的成藏主控因素。结果表明,中央背斜带油气主要来自于始新统煤系烃源岩,渐新统花港组具备良好的圈闭条件及储盖组合配置关系,油气成藏主控因素为有效的输导体系,而良好的后期保存条件则是控制油气富集程度(油气充满度)的重要因素。
    Abstract: A great breakthrough in oil and gas exploration has been made recently from the Huagang Formation in the central anticline belt of the Xihu Sag. Several medium to large oil and gas fields have been discovered. However, the gas column height and fullness ratio of trap differs from each other which suggests that every reservoir has its own key controlling factors. Based on seismic and drilling data, this paper selects the H3 reservoir as a case to study the accumulation conditions of source rocks, traps and combination of reservoir-cap systems. Also this paper sums up the key controlling factor of each reservoir by dissecting four typical reservoirs. The results show that the oil and gas accumulated in H3 reservoir come from the source rocks in Pinghu Formation; the reservoir and caprocks matched each other excellently, and the key factors to control oil and gas accumulation are the effective migration system and fault sealing, and the reservoir preservation condition has great influence on hydrocarbon accumulation.
  • 图  1   西湖凹陷中央背斜带位置图及地层柱状图

    Figure  1.   The structural location of central anticlinal belt and the integrated stratigraphic column of Xihu Sag

    图  2   中央背斜带天然气C5-7系列化合物三角图

    Figure  2.   C5-7 components of natural gas of the central anticlinal belt

    图  3   中央背斜带天然气甲烷含量与重烃含量关系图

    Figure  3.   The relationship between CH4 and heavy hydrocarbon in natural gas of central anticlinal belt

    图  4   中央背斜带H1-H3砂层组储盖组合配置关系剖面图

    Figure  4.   Profile of reservoir-cap combination in H1-H3 sand groups of central anticlinal belt

    图  5   西湖凹陷中央背斜带南-北地震剖面图(测线位置见图1

    Figure  5.   Seismic profile through central anticlinal belt from south to north(The line position is shown in Fig 1

    图  6   中央背斜带平湖组含油气系统事件图(测线位置见图1

    Figure  6.   The oil and gas system events of Pinghu Formation of central anticlinal belt

    图  7   中央背斜带典型构造油气成藏模式示意图(测线位置见图1

    Figure  7.   An abridged general view of hydrocarbon accumulation model for four typical cases in central anticlinal belt(The line position is shown in Fig 1

    图  8   D构造西侧主控断层SGR图

    Figure  8.   The SGR diagram of controlling fault in the west of D structure

    表  1   中央背斜带天然气、烃源岩碳同位素值

    Table  1   Statistical table of carbon isotope value of natural gas and source rock in central anticlinal belt

    碳同位素值/‰(样品数)
    丁烷花港组泥花港组煤平湖组泥平湖组煤
    G构造−27.3(8)−26.7(5)−26.4(2)
    H构造−23.7(3)−25.6(3)−24.5(1)
    C构造−24.0(1)−26.2(19)−25.7(2)
    A构造−27.1(9)
    B构造−27.0(6)−26.4(4)−25.8(7)−25.7(2)
    下载: 导出CSV

    表  2   H1-H3砂层组地层岩性统计

    Table  2   The statistical table of lithology form sand group H1 to H3

    A1B1C1D1E1F1G1
    H1H2H3H1H2H3H1H2H3H1H2H3H1H2H3H1H2H3H1H2H3
    地层厚度/m173110135195.5126.7143.5143.5152.6193257131185267254255254271265188.5280.5256
    砂岩厚度(粉砂及以上)/m2527.556.564.530.546630.51284874013971120.59890651794884.5191.5
    砂岩百分含量/%14254233244621843343175274738352468253075
    泥岩厚度/m140.56261.512812872.593.5107.588168813715010712212914375130.5171.558.5
    泥岩百分含量/%815646656051657046656220564248515328696123
    下载: 导出CSV

    表  3   中央背斜带典型构造油气藏参数

    Table  3   Statistical table of carbon isotope value of natural gas and source rock in central anticlinal belt

    构造名称圈闭面积/km2圈闭幅度/m气水界面深度/m综合解释结论含气面积/km2气柱高度/m充满度/%气水关系气藏类型
    B 32.0 140 −2781 气层 11.42 50 35.7 层状底水 构造气藏
    C 23.6 50 水层
    D 12.4 20 含气水层
    F 42.65 232 −3812.2 气层 42.65 232 100 层状边水 构造气藏
    下载: 导出CSV
  • [1] 朱立新, 宋在超. 东海西湖凹陷原型盆地构造格架与演化分析[J]. 海洋石油, 2016, 36(1):1-6. [ZHU Lixin, SONG Zaichao. Analysis of tectonic framework and evolution of prototype basin in Xihu Sag of the East China Sea [J]. Offshore Oil, 2016, 36(1): 1-6.
    [2] 何将启, 杨风丽. 东海西湖凹陷新生代盆地原型分析[J]. 海洋石油, 2003, 23(S1):13-20. [HE Jiangqi, YANG Fengli. Prototype basin analysis in Cenozoic for Xihu Sag, East China Sea [J]. Offshore Oil, 2003, 23(S1): 13-20.
    [3] 郑求根, 周祖翼, 蔡立国, 等. 东海陆架盆地中新生代构造背景及演化[J]. 石油与天然气地质, 2005, 26(2):197-201. [ZHENG Qiugen, ZHOU Zuyi, CAI Liguo, et al. Meso-Cenozoic tectonic setting and evolution of East China Sea shelf basin [J]. Oil & Gas Geology, 2005, 26(2): 197-201.
    [4] 胡明毅, 柯岭, 梁建设. 西湖凹陷花港组沉积相特征及相模式[J]. 石油天然气学报, 2010, 32(5):1-5. [HU Mingyi, KE Ling, LIANG Jianshe. The characteristics and pattern of sedimentary facies of Huagang formation in Xihu Depression [J]. Journal of Oil and Gas Technology, 2010, 32(5): 1-5.
    [5] 谢月芳, 陈敏娟, 王坚勇. 东海西湖凹陷浙东中央背斜带中南部油气成藏规律与晚期剪切断层的关系探讨[J]. 海洋石油, 2002, 22(2):8-13. [XIE Yuefang, CHEN Minjuan, WANG Jianyong. Pattern of oil and gas accumulation in the South and Middle Part of Zhedong Central anticline area [J]. Offshore Oil, 2002, 22(2): 8-13.
    [6] 熊斌辉, 张喜林, 张锦伟, 等. 西湖凹陷油气成藏的主控因素[J]. 海洋石油, 2008, 28(2):14-24. [XIONG Binhui, ZHANG Xilin, ZHANG Jinwei, et al. The key factor controlling hydrocarbon accumulation in Xihu Depression [J]. Offshore Oil, 2008, 28(2): 14-24.
    [7] 钟韬, 李键, 曹冰, 等. 西湖凹陷花港组储层致密化及其与油气成藏的关系[J]. 海洋地质前沿, 2018, 34(1):20-27. [ZHONG Tao, LI Jian, CAO Bing, et al. Densification timing of reservoir and its bearing on hydrocarbon accumulation in the Huagang formation of Xihu Sag [J]. Marine Geology Frontiers, 2018, 34(1): 20-27.
    [8] 魏恒飞, 陈践发, 陈晓东, 等. 西湖凹陷平湖组滨海型煤系烃源岩发育环境及其控制因素[J]. 中国地质, 2013, 40(2):487-497. [WEI Hengfei, CHEN Jianfa, CHEN Xiaodong, et al. The controlling factors and sedimentary environment for developing coastal coal-bearing source rock of Pinghu Formation in Xihu Depression [J]. Geology in China, 2013, 40(2): 487-497.
    [9] 李昆, 周兴海, 吴嘉鹏, 等. 西湖凹陷中下始新统宝石组沉积相研究[J]. 海洋石油, 2017, 37(1):16-20. [LI Kun, ZHOU Xinghai, WU Jiapeng, et al. Sedimentary facies of middle-lower Eocene Baoshi formation in Xihu Sag, East China Sea shelf basin [J]. Offshore Oil, 2017, 37(1): 16-20.
    [10] 吴嘉鹏, 万丽芬, 张兰, 等. 西湖凹陷平湖组岩相类型及沉积相分析[J]. 岩性油气藏, 2017, 29(1):27-34. [WU Jiapeng, WAN Lifen, ZHANG Lan, et al. Lithofacies types and sedimentary facies of Pinghu formation in Xihu Depression [J]. Lithologic Reservoirs, 2017, 29(1): 27-34.
    [11] 李上卿, 李纯洁. 东海西湖凹陷油气资源分布及勘探潜力分析[J]. 石油实验地质, 2003, 25(6):721-728. [LI Shangqing, LI Chunjie. Analysis on the petroleum resource distribution and exploration potential of the Xihu Depression, the East China Sea [J]. Petroleum Geology & Experiment, 2003, 25(6): 721-728.
    [12] 叶加仁, 顾惠荣, 贾健宜. 东海西湖凹陷油气地质条件及其勘探潜力[J]. 海洋地质与第四纪地质, 2008, 28(4):111-116. [YE Jiaren, GU Huirong, JIA Jianyi. Petroleum geological condition and exploration potential of Xihu Depression, East China Sea [J]. Marine Geology & Quaternary Geology, 2008, 28(4): 111-116.
    [13] 朱扬明, 周洁, 顾圣啸, 等. 西湖凹陷始新统平湖组煤系烃源岩分子地球化学特征[J]. 石油学报, 2012, 33(1):32-39. [ZHU Yangming, ZHOU Jie, GU Shengxiao, et al. Molecular geochemistry of Eocene Pinghu Formation coal-bearing source rocks in the Xihu Depression, East China Sea Shelf Basin [J]. Acta Petrolei Sinica, 2012, 33(1): 32-39.
    [14] 叶加仁, 顾惠荣. 东海西湖凹陷浙东中央背斜带烃源岩生排烃史研究[J]. 海洋地质与第四纪地质, 2001, 21(3):75-80. [YE Jiaren, GU Huirong. A study on hydrocarbon generation history and expulsion history of source rock in the Zhedong central anticline belt, Xihu Depression [J]. Marine Geology & Quaternary Geology, 2001, 21(3): 75-80.
    [15] 周瑾. 西湖凹陷中央背斜带两种热体制下烃源岩的热演化[J]. 中国海上油气(地质), 2003, 17(1):64-68. [ZHOU Jin. Thermal evolution of source rocks under two thermal systems in the central anticlinal zone in Xihu Sag, East China Sea Basin [J]. China Offshore Oil and Gas (Geology), 2003, 17(1): 64-68.
    [16]

    Prinzhofer A, Girard J P, Buschaert S, et al. Chemical and isotopic characterization of hydrocarbon gas traces in porewater of very low permeability rocks: The example of the Callovo-Oxfordian argillites of the eastern part of the Paris Basin [J]. Chemical Geology, 2009, 260(3-4): 269-277. doi: 10.1016/j.chemgeo.2008.12.021

    [17] 曹倩, 徐旭辉, 曾广东, 等. 东海盆地西湖凹陷天然气及原油地化特征分析[J]. 石油实验地质, 2015, 37(5):627-632. [CAO Qian, XU Xuhui, ZENG Guangdong, et al. Geochemical characteristics of natural gases and crude oils in the Xihu Sag of East China Sea Basin [J]. Petroleum Geology & Experiment, 2015, 37(5): 627-632.
    [18] 苏奥, 陈红汉, 王存武, 等. 东海盆地西湖凹陷油气成因及成熟度判别[J]. 石油勘探与开发, 2013, 40(5):521-527. [SU Ao, CHEN Honghan, WANG Cunwu, et al. Genesis and maturity identification of oil and gas in the Xihu Sag, East China Sea Basin [J]. Petroleum exploration and Development, 2013, 40(5): 521-527.
    [19] 蒋海军, 胡明毅, 胡忠贵, 等. 西湖凹陷古近系沉积环境分析-以微体古生物化石为主要依据[J]. 岩性油气藏, 2011, 23(1):74-78. [JIANG Haijun, HU Mingyi, HU Zhonggui, et al. Sedimentary environment of Paleogene in Xihu Sag: Microfossil as the main foundation [J]. Lithologic Reservoirs, 2011, 23(1): 74-78.
    [20] 董春梅, 赵仲祥, 张宪国, 等. 西湖凹陷中北部花港组物源及沉积相分析[J]. 东北石油大学学报, 2018, 42(5):25-34, 72. [DONG Chunmei, ZHAO Zhongxiang, ZHANG Xianguo, et al. Analysis of provenance and sedimentary facies of Huagang formation in the north central of Xihu Sag [J]. Journal of Northeast Petroleum University, 2018, 42(5): 25-34, 72.
    [21] 蔡佳, 祁鹏, 宋双. 东海盆地西湖凹陷花港组下段沉积相分析[J]. 海洋地质与第四纪地质, 2017, 37(2):56-65. [CAI Jia, QI Peng, SONG Shuang. Sedimentary facies of the Lower Huagang formation in Xihu Depression of Donghai Basin [J]. Marine Geology & Quaternary Geology, 2017, 37(2): 56-65.
    [22] 蒋一鸣, 何新建, 张绍亮. 东海陆架盆地“反转-改造”构造迁移演化特征——以西湖凹陷边缘构造为例[J]. 长江大学学报: 自科版, 2016, 13(26):1-7. [JIANG Yiming, HE Xinjian, ZHANG Shaoliang. The characteristics of “Inverse-transform” tectonic migration evolution of the East China Sea Shelf Basin-By taking the marginal structure of Xihu Sag for example [J]. Journal of Yangtze University: Natural Science Edition, 2016, 13(26): 1-7.
    [23] 徐发, 张建培, 张田, 等. 西湖凹陷输导体系特征及其对油气成藏的控制作用[J]. 海洋地质前沿, 2012, 28(7):24-29. [XU Fa, ZHANG Jianpei, ZHANG Tian, et al. Features of migration system in Xihu Sag and its control on hydrocarbon accumulation [J]. Marine Geology Frontiers, 2012, 28(7): 24-29.
图(8)  /  表(3)
计量
  • 文章访问数:  1898
  • HTML全文浏览量:  525
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-03
  • 修回日期:  2020-05-08
  • 网络出版日期:  2020-10-20
  • 刊出日期:  2020-09-30

目录

    /

    返回文章
    返回