Characteristics of submarine landslides and their implications for petroleum geology
-
摘要: 海底滑坡是一种由于重力失稳导致的广泛发生在外陆架-上陆坡-深海平原的沉积物搬运体,是海底沉积物重要的搬运过程,具有较强的侵蚀能力和搬运能力,可将大量陆架沉积物搬运至深海,为深海带来丰富的沉积物。再沉积后的滑坡体因其特殊的内部结构,对海洋油气成藏有重要影响。综合国内外研究,对海底滑坡空间展布特征和垂向结构特征进行总结,对滑坡体岩石物理特征进行梳理,揭示海底滑坡边界特征、内部结构以及岩石物理特征。结合海底滑坡特征,从提供物源、储层、盖层、改变海底温压等方面分析海底滑坡对海底油气藏的积极意义,从破坏盖层、改变海底土体温压环境等方面分析海底滑坡对海底油气藏的负面影响。最后结合国内外研究现状,指出未来应对海底滑坡微尺度特征识别、进一步开展海底滑坡与海底油气藏联系以及加强海洋油气开发致灾风险等方面进行深入研究。Abstract: Submarine landslide is a type of sediment transport body that occurs widely in the regions from outer continental shelf to upper continental slope and to deep-sea plain due to gravity instability. It is an important transport process of seafloor sediments. Its strong power of erosion could transport a huge amount of sediments from continental shelf to deep sea. A landslide event has an important impact on submarine hydrocarbon accumulation and distribution because of its special internal structure. This mini-review summarizes studies on submarine landslide and its role in shaping and re-working marine hydrocarbon resources, specified the characteristics in spatial distribution and vertical structure of submarine landslides, and revealed preliminarily the petrophysical characteristics of landslides. Based on the above-mentioned works, the roles of submarine landslides in both positive and negative manner, on submarine oil and gas reservoirs was analyzed in terms of provenance, reservoir, caprock, and variations in seafloor temperature and pressure. Finally, combined with the current research progresses, we pointed out that the future direction of research shall focus on the microscale characteristics of submarine landslides, on the relationship between submarine landslides and submarine oil and gas reservoirs, and on the prevention in submarine-landslide–risk regions against possible disaster from trigging during offshore operation of oil and gas development.
-
海岸带是陆海相互作用的强烈地带,是重金属污染物重要的“源”和“汇”,随着人类社会经济的快速发展,海岸带地区面临愈来愈严重的环境风险[1-4]。开展海岸带地区重金属污染的调查和环境质量评价,对于科学指导海岸带开发管理与生态环境保护具有重要意义。
日照市作为我国东部沿海地区重要的新兴港口城市,近些年来经济发展迅速,海岸带地区面临日趋严峻的生态环境风险。研究表明,Cd和Hg在日照市土壤中累积效应明显,尤其在城镇建设用地最为富集,受工农业生产活动影响显著,Pb和Zn受自然背景和人类活动共同影响,重金属总体上潜在生态危害轻微到中等[5, 6]。但是以往仅对日照市土壤重金属开展了研究,对日照市近岸海域重金属的环境效应关注不多,对土壤和近海表层沉积物重金属的空间分布规律和影响因素缺乏了解。因此,本文对日照市土壤和近岸海域表层沉积物开展重金属分析,综合研究海岸带地区重金属污染状况,评估自然和人为因素的影响,为日照市海岸带环境保护提供科学支撑。
1. 地质背景
日照市海岸带北起日照市东港区两城河口,与青岛胶南市海岸接壤,南至岚山区绣针河入海口,与江苏赣榆县相连,西至204国道,东至20m水深线附近,总面积2280km2,陆域面积为720km2,海域面积1560km2(图 1)。岩石主要由侵入岩、变质岩组成,地层缺失较多。出露的地层较少,主要为新生代第四系,仅局部地区见少量古元古代荆山岩群。岩浆岩十分发育,主要为元古代和中生代侵入岩,分布在北部的奎山—丝山一带以及南部的虎山一带。土壤类型分布有棕壤土、潮土、盐土和风砂土等。海底底质类型复杂,从泥质砂质砾到泥均有分布,日照港和岚山港附近的沉积物粒径细,其他区域总体上粒径粗[7]。构造以北东向的日照断裂和北西向的梭罗树断裂为主。在研究区南部和中部分别为岚山和奎山两段剥蚀丘陵直接濒海,形成邻海陡崖,南部和北部波状起伏的剥蚀平原和现代海岸线之间为宽广的沙坝潟湖沉积体系。有两城河、傅疃河与绣针河入海,在河流的两侧有规模较小的带状冲积平原,河口地区形成小规模的河口三角洲。
2. 材料与方法
2.1 样品采集
日照市表层土壤样品采集由山东省第四地质矿产勘查院完成,采样间距为1km×1km,主要采集表层0~20cm上下混合均匀的土壤,用木铲将样品装入干净布袋,去除植物根系等杂物后低温保存,每袋样品湿重不低于2kg,共采集666个;海底表层沉积物由青岛海洋地质研究所完成,采样间距为5km×5km,近岸加密至2.5km×5km,采用箱式取样器,主要采集海底表层0~5cm的沉积物,每袋样品湿重不低于2kg,用干净的木勺将样品装入聚乙烯袋中,低温保存,共采集50个。
2.2 样品测试
沉积物粒度分析测试由自然资源部海洋地质实验检测中心完成。取样品1~2g,分别用双氧水和稀盐酸浸泡以去除有机质和碳酸盐,然后洗盐,用六偏磷酸钠溶液分散后待测。采用英国马尔文(MLVERN)公司生产的Mastersizer-2000型激光粒度分析仪(测量范围为0.02~2000μm,偏差 < 1%,重现性ϕ50 < 1%)进行粒度测试。粒度参数的计算和等级划分均采用Folk等提出的方法[7]。
重金属元素分析由自然资源部海洋地质实验检测中心完成。先将待测样品放在恒温(<60℃)下烘干后,研磨至250目以下。取适量样品用混合熔剂熔融,制成标准玻璃样片。元素As、Hg采用原子荧光光度计(AFS)测定;Cd、Cr、Cu、Ni、Pb和Zn采用等离子质谱仪(ICP-MS)测定。在测试过程中均进行了若干重复样与标样分析,相对误差<10%,数据质量可靠。
2.3 评价方法
2.3.1 单项污染指数评价法
单项污染指数法计算公式[8, 9]为:${P_i} = {C_i}/{S_i}$式中: Pi为i污染物的单项污染指数,Ci为i污染物的实测值,Si为i污染物的标准值。由于研究区陆域主要为农田、茶园、果园等,属于Ⅱ类土壤环境,土壤质量评价执行二级质量标准(GB15618-1995)[8](表 1)。海域主要为海水浴场、海水养殖区、海洋自然保护区等,海洋沉积物质量评价执行一类标准(GB18668-2002)[9](表 1)。
Table 1. Environmental quality standard of soils and surface sediments类别 土壤 表层沉积物 pH <6.5 6.5~7.5 >7.5 - Cd 0.3 0.3 0.6 0.5 Hg 0.3 0.5 1.0 0.2 As(水田) 30 25 20 20 As(旱田) 40 30 25 - Cu(农田) 50 100 100 35 Cu(果园) 150 200 200 - Pb 250 300 350 60 Cr(水田) 250 300 350 80 Cr(旱田) 150 200 250 - Zn 200 250 300 150 Ni 40 500 60 - 注:“-”代表海洋沉积物质量(GB18668-2002), 没有列出相应的参考值。 2.3.2 潜在生态风险指数法
潜在生态风险指数法计算公式[10]:
总体污染程度:
$$ {C_d} = \sum\limits_{i = 1}^m {{C^i}_f} $$ 潜在生态风险指数:
$$ {\rm{RI}} = \sum\limits_{i = 1}^m {{\rm{E}}{{\rm{r}}^i}} = \sum\limits_{i = 1}^m {{{{\mathop{\rm Tr}\nolimits} }^i}} \times C_f^i = \sum\limits_{i = 1}^m {{{{\mathop{\rm Tr}\nolimits} }^i}} \times \frac{{{C^i}}}{{C_n^i}} $$ 式中:m为污染物的种类,Cfi为污染物i的污染参数,Ci为污染物i的实测浓度,Cni为污染物i的污染评价参考值,采用基本未受人类活动影响的日照市深层土壤(1.5m)污染物的背景值[11](Cu=18,Pb=25,Zn=62.4,Cr=56.9,Ni=25.9,Cd=0.085,As=5.8和Hg=0.016,单位:μg/g),Tri为污染物的毒性响应参数[10, 12](Cu=Pb=Ni=5,Zn=1,Cr=2,Cd=30和Hg=40)。潜在生态风险评价指标如表 2所示。
表 2 潜在生态风险评价指标(据Hakanson,1980修改)Table 2. The assessment index of potential ecological risk (modified after Hakanson, 1980)评价等级 单个污染物
污染参数
(Cfi)总体污染
参数(Cd)单个污染物
潜在生态
风险参数
(Eri)潜在生态
风险指数
(RI)低 <1 <8 <40 <150 中 1~3 8~16 40~80 150~300 较高 3~6 16~24 80~160 300~600 高 160~320 很高 ≥6 ≥24 ≥320 ≥600 3. 结果与讨论
3.1 重金属元素的分布特征
3.1.1 Cr元素
Cr元素在研究区的含量变化范围为9.80~298.10μg/g(表 3),平均含量为48.86μg/g,变异系数为27.0%(剔除高、低值后,下同)。Cr呈陆域北部低、南部高,海域中间低、两头高的特点(图 2)。高值区主要分布于岚山安东卫街道、虎山镇西部采石场、石臼港北部以及岚山港南部海域。反映了城镇工业污水、工业废气排放造成污染。海域高值区位于石臼港和岚山港近岸细颗粒沉积区,反映了粒度控制规律。
表 3 日照市海岸带重金属含量统计(单位:μg/g)Table 3. Heavy metal contents in Rizhao coastCr Ni Cu Zn As Cd Hg Pb 最大值 298.10 170.90 148.90 517.80 41.00 0.57 0.98 165.10 最小值 9.80 6.00 1.00 12.20 1.60 0.02 0.01 11.80 平均值 48.86 19.50 14.40 51.72 6.54 0.09 0.02 27.27 中值 48.8 18.8 14.2 50.2 6.63 0.09 0.02 26.9 标准偏差 13.12 5.41 5.77 15.10 1.82 0.02 0.01 3.63 变异系数 27.0% 28.0% 40.0% 29.2% 28.0% 27.0% 38.0% 13.0% 3.1.2 Ni元素
Ni元素在研究区的含量变化范围为6.00~170.90μg/g(表 3),平均含量为19.50μg/g,变异系数为28.0%。大致呈城区高、郊区低的态势(图 2)。高值区主要分布在人类活动频繁的城区、港口附近。反映了城镇工业废水废气排放造成的污染。海域高值区则反映了细颗粒物质的吸附作用。
3.1.3 Cu元素
Cu元素在研究区的含量变化范围为1.00~148.90μg/g(表 3),平均含量为14.40μg/g,变异系数高达40.0%。Cu分布也呈城区高、郊区低的态势(图 2)。陆域高值区分布在人口密集的城镇及港口附近,与城镇大量工业污水、废气排放密切相关。海域高值区位于石臼港和岚山港近岸细颗粒沉积区,反映了细颗粒物质的吸附作用。
3.1.4 Zn元素
Zn元素在研究区的含量变化范围为12.20~517.80μg/g(表 3),平均含量为51.72μg/g,变异系数为29.2%。Zn分布呈城区高、郊区低的态势(图 2)。高值区主要分布在日照市城区、岚山城区、石臼港、岚山港附近。说明与城镇大量工矿企业排放的污水密切相关,日照港和岚山港近岸海域Zn高值与细颗粒物质吸附作用有关。
3.1.5 As元素
As元素在研究区的含量变化范围为1.60~41.00μg/g(表 3),平均含量为6.54μg/g,变异系数为28.0%。As元素陆域高值区呈环状、斑状分布在人口较为密集的城镇区,海域则表现为自岸向深水区增高的态势,高值区主要分布在海域大于10m水深区域,在20μg/g以上,局部可达35μg/g以上(图 2)。海域As含量高,可能与海域背景值高有关。
3.1.6 Cd元素
Cd元素含量变化范围为0.02~0.57μg/g(表 3),平均含量为0.09μg/g,变异系数为27.0%。Cd高值主要分布在岚山区(安东卫镇、岚山头等)和东南海域(图 2),可能与日照市钢铁厂等冶炼企业以及石油化工企业排放的工业废水有关。东南海域高值出现可能与该处大量贝类富集Cd有关。次高值主要出现在人口密集的城镇及石臼港和岚山港口附近海域,与工业生产活动密切相关。
3.1.7 Hg元素
Hg元素在研究区的含量变化范围为0.01~0.98μg/g(表 3),平均含量为0.02μg/g,变异系数高达38.0%。Hg呈城区高、郊区低,陆域高、海域低的特点(图 2)。高值区呈片状主要分布在日照市城区、岚山城区、石臼港和日照港附近,反映了城镇工业废水废气排放造成的污染。海域高值区反映了细颗粒物质的吸附作用。
3.1.8 Pb元素
Pb元素在研究区的含量变化范围为11.80~165.10μg/g(表 3),平均含量为27.27μg/g,变异系数为13.0%,含量变化相对较小。Pb分布也呈城区高、郊区低的态势(图 2)。高值区分布在东港城区、岚山城区、岚山港口及20m等深线附近。与城镇大量工矿企业排放的污水、废气密切相关,东南海域Pb高值可能与有机质吸附作用有关。
3.2 与周边沉积物重金属含量对比
为了便于比较日照市土壤和海域重金属含量变化特点,分别统计了上述两者的平均含量(表 4)。除了Pb和As重金属含量高外,日照市海域重金属Cu、Zn、Cr和Hg含量均比土壤中的浓度低很多,说明土壤重金属污染要比海域严重。对比吕建树等[5]发表的日照市表层土壤重金属数据,本文土壤Cu、Pb、Cr、Ni、As和Hg元素含量均有升高,说明近几年日照市土壤污染有加重的趋势。对比庞旭贵等[11]的研究数据,研究区土壤仅Pb、As和Hg元素含量有所升高,但也说明了重金属有污染加重的趋势。相比海州湾[13]和莱州湾[14],研究区海域除Pb和As含量高外,其他元素含量均低。与胶州湾[15]相比,研究区海域元素含量也普遍较低(As除外),说明研究区海洋环境质量相对较好。
表 4 日照市海岸带重金属元素含量与其他典型区域比较(单位:μg/g)Table 4. Comparison of heavy metal concentrations in Rizhao coast and other representative areasCu Pb Zn Cr Ni Cd As Hg 参考文献 日照市表层土壤 17.04 28.36 55.91 52.43 21.07 0.09 6.54 0.04 本文 日照市近岸海域 15.92 29.23 42.84 43.25 20.75 0.08 17.54 0.019 本文 日照市表层土壤 15.6 26.3 60.3 46 20.2 0.1 4.9 0.03 吕建树等,2012 日照市表层土壤 19.2 26.8 64.7 57.1 24.3 0.113 5.4 0.026 庞旭贵等,2014 海州湾 19.41 18.23 73.29 74.18 0.17 6.62 李飞和徐敏,2014 胶州湾 25.04 32.95 71.15 44.35 0.086 7.59 0.086 何书峰等,2013 莱州湾 21.96 21.99 60.41 60.00 0.12 12.64 0.051 郑懿民等,2015 3.3 重金属元素的富集与来源
通过对海域50个表层沉积物重金属含量与平均粒径(Mz)相关性分析发现(图 3),除了Cd、Pb和As与平均粒径无明显相关性外,Cu、Zn、Hg、Ni、Cr均与Mz有明显相关性,R2值分别为0.58、0.74、0.50、0.58和0.81(即R值均大于0.7),显然受粒度影响,表明细颗粒物质是重金属Cu、Zn、Hg、Ni和Cr的良好载体。在日照港和岚山港附近,沉积物类型为含砾泥、砂质泥和泥等细粒物质[7],对重金属有良好的吸附作用,因而导致该区域重金属Cu、Zn、Hg、Ni和Cr的含量较高。在研究区东部和东南部15~20m水深区域,尽管颗粒较粗,沉积物以砾砂混合沉积为主,但分布有较多的钙质结核[7],其表面具有丰富的铁锰氧化物[16],可能对Cd、Pb和As具有较好的吸附作用[17],从而导致元素Cd、Pb和As的富集。此外,元素As本身在海域的背景值较高[5]。
以往的研究表明,土地利用类型对重金属的富集具有重要影响[5]。本文利用遥感解译方法分析发现,研究区陆域土地总面积为708.03km2,可分为耕地、林地、园地、城镇及农居地、水域、滩涂、交通用地、工况用地、沙滩等(图 4)。其中,耕地面积339.06km2,在所有土地类型中占比最大,为47.88%。其次是城镇及农居地、工矿用地和交通用地,面积分别为146.65、52.15和32.45km2,三者共占比32.66%。城镇居民地主要分布在日照市区、岚山区和东港区,范围较大,农村居民地分布较为分散。大规模工矿用地主要集中分布在东部沿海地区,主要是石臼港、岚山港和钢铁厂,其余小规模工矿用地散落分布在各个乡镇街道。交通用地主要是铁路、高速路、各级公路、城区及村镇道路等。对比重金属元素平面分布图(图 2)可以发现,城镇居民地、工矿用地对8种重金属的富集作用非常明显,其次是耕地。这种空间分布特点与工农业生产生活排放的污染物密切相关,例如工业废水、生活污水和交通尾气,以及化肥和农药的过量使用等。
日照市作为新兴港口城市,近些年来发展迅速。2015年,日照市钢铁、水泥、发电、石化等重工业产值占到工业总产值的65.4%①,规模以上企业从事采矿冶炼的有142家,石化制造95家,汽车制造和造船84家,纺织40家,造纸和印刷15家以及电力12家②。这些高能耗企业主要集中在东部沿海地区,其生产活动产生的大量“三废”排放到周边土壤和近岸海域环境导致重金属污染。2015年,日照港口吞吐量达到3.61亿t,港口规模居全国沿海港口第8、世界第11位③,是我国中西部和中亚地区重要的出海口。港池、航道疏浚,船舶燃油泄漏,船舶电镀维护等活动,都会产生重金属污染[18]。
① 2016年日照市政府工作报告.
② 2016年日照市统计年鉴.
③ 2016年日照市政府工作报告.
3.4 重金属环境质量评价
如表 5所示,研究区土壤重金属污染程度较小,未受污染样品数量均占97%以上,仅Cu、Hg和Ni有少量污染,说明绝大部分区域符合土壤质量二级标准;海底表层沉积物主要为As污染和Cr污染,分别占比10%和30%,其他元素均未超出沉积物质量一级标准上限,说明海域环境质量相对较好。
表 5 日照市海岸带土壤及表层沉积物单项污染指数评价结果Table 5. Results of individual pollution index of soil and surface sediments in Rizhao coast% 土壤 表层沉积物 Pi≤1 Pi>1 Pi≤1 Pi>1 As 100.00 0 70.00 30.00 Cd 99.85 0.15 100.00 0 Cr 99.55 0.45 90.00 10.00 Cu 97.15 2.85 100.00 0 Hg 98.20 1.80 100.00 0 Ni 97.45 2.55 100.00 0 Pb 100.00 0 100.00 0 Zn 99.85 0.15 100.00 0 日照市海岸带重金属潜在生态风险评价结果见表 6。Cu、Zn、Cr和Ni在研究区为轻微污染(Cfi<1,平均值,下同),但在局部地区污染很严重,其元素含量是背景值的5~8倍;Pb、Cd、As和Hg在研究区为中等污染程度(1<Cfi<3),但局部污染严重,Pb、Cd和As最大含量可达背景值的5~7倍,Hg更是达到了背景值的60多倍。重金属污染程度由高到低依次为:Hg>As>Pb>Cd>Cu>Cr>Zn>Ni,可见重金属Hg、As、Pb和Cd是日照市海岸带地区最主要的污染物。Hg主要通过煤燃烧、金属加工、废物焚烧、化工和水泥生产排放到大气层中,然后再经过沉降富集在土壤和海底沉积物中[19]。其中,煤燃烧是Hg的主要来源[20],中国的Hg排放量占全球三分之一[21],主要是因为我国传统的能源结构以煤炭为主。前已述及,日照市海岸带地区集聚了大量的高能耗产业,是造成Hg等重金属污染的主要原因。重金属总体污染程度Cd值为3.07~67.60,平均值9.69,表明日照市海岸带大部分地区的重金属总体污染程度中等,但局部污染严重。重金属潜在生态风险程度由高到低依次为:Hg>Cd>As>Pb>Cu>Ni>Cr>Zn。重金属潜在生态风险指数RI值为52.62~2518.50,平均值168.99,表明绝大部分地区重金属潜在生态风险程度中等,但局部地区风险程度很高。
表 6 日照市海岸带重金属单因子污染物污染程度与潜在生态风险程度Table 6. The degrees of contamination and potential ecological risk in Rizhao coast重金属 Cfi Eri 最小值 最大值 平均值 最小值 最大值 平均值 Cu 0.06 8.27 0.94 0.28 41.36 4.71 Pb 0.47 6.60 1.14 2.36 33.02 5.68 Zn 0.20 8.30 0.88 0.20 8.30 0.88 Cr 0.17 5.24 0.91 0.34 10.48 1.82 Ni 0.23 6.60 0.81 1.16 32.99 4.06 Cd 0.24 6.71 1.08 7.06 201.18 32.39 As 0.28 7.07 1.26 2.76 70.69 12.61 Hg 0.43 61.43 2.67 17.19 2457.00 106.83 $\sum\limits_{(i = 1)}^8 {} $ Cd RI 最小值 最大值 平均值 最小值 最大值 平均值 3.07 67.60 9.69 52.62 2518.50 168.99 日照市海岸带重金属总体污染程度和潜在生态风险程度分布特点非常相似(图 5)。重金属总体污染程度和潜在生态风险程度较高和很高的区域都集中分布在城镇和港口地区,说明人类活动对环境产生了强烈影响,应该引起重视。海域、耕地和林地等地区重金属总体污染程度和潜在生态风险程度为低和中等,表明目前耕地土壤和海域沉积物环境质量总体比较好,应维持和加强保护。
4. 结论
(1) 日照市海岸带地区重金属污染程度由高到低依次为:Hg>As>Pb>Cd>Cu>Cr>Zn>Ni,重金属Hg、As、Pb和Cd是日照市海岸带地区最主要的污染物。
(2) 土壤重金属含量普遍高于海域(As和Pb除外),高值区主要分布在城镇地区,大大高于郊区、农田,与工业污染物的排放密切相关。海域重金属含量受细粒物质控制,高值区主要分布在石臼港和岚山港港区附近,港运交通对污染物的富集也有重要影响。东南海域As元素含量高可能受高背景的影响。此外,东南海域普遍存在的钙质结核表面铁锰氧化物对东南海域As、Pb和Cd元素也有富集效应。
(3) 日照市城镇地区的总体污染程度和潜在生态风险程度较高,说明人类活动对环境干扰强烈,导致了较为严峻的环境问题。农田地区和海域环境质量相对较好,应该予以维持和加强保护。
-
表 1 全球海底滑坡陡壁坡度统计
Table 1 Slope of global submarine landslide headwall
滑坡名称 位置 陡壁坡度 中国南海北部陆坡滑坡[16] 中国南海北部陆坡 5°~35° The Israel Slump Complex[18] 以色列近海大陆边缘 2°~15° The Gorgon Slide[19] 澳大利亚西北部边缘 30° The Gebra Slide[21] 南极布兰斯菲尔德盆地 16° The Storegga Slide[22] 挪威近海大陆架 25°~35° The Hinlopen Slide[23] 北冰洋斯瓦尔巴群岛边缘 20°~35° The Goleta Slope[24] 美国圣巴巴拉海峡西部边坡 40°~45° The 44-North Slide[25] 美国俄勒冈州近海边缘 22° Submarine landslides along the Israeli continental-slope[26] 以色列大陆坡 5°~26° 白云滑坡[27] 中国南海珠江口盆地 6°~14.5° -
[1] Hampton M A, Lee H J, Locat J. Submarine landslides [J]. Reviews of Geophysics, 1996, 34(1): 33-59. doi: 10.1029/95RG03287
[2] Locat J, Lee H, Ten Brink U S, et al. Geomorphology, stability and mobility of the Currituck slide [J]. Marine Geology, 2009, 264(1-2): 28-40. doi: 10.1016/j.margeo.2008.12.005
[3] 朱超祁, 贾永刚, 刘晓磊, 等. 海底滑坡分类及成因机制研究进展[J]. 海洋地质与第四纪地质, 2015, 35(6):153-163 ZHU Chaoqi, JIA Yonggang, LIU Xiaolei, et al. Classification and genetic machanism of submarine landslide: a review [J]. Marine Geology & Quaternary Geology, 2015, 35(6): 153-163.
[4] 贾永刚, 王振豪, 刘晓磊, 等. 海底滑坡现场调查及原位观测方法研究进展[J]. 中国海洋大学学报, 2017, 47(10):61-72 JIA Yonggang, WANG Zhenhao, LIU Xiaolei, et al. The research progress of field investigation and in-situ observation methods for submarine landslide [J]. Periodical of Ocean University of China, 2017, 47(10): 61-72.
[5] 宋晓帅, 孙志文, 朱超祁, 等. 深海滑坡研究进展[J]. 海洋地质与第四纪地质, 2022, 42(1):222-235 doi: 10.16562/j.cnki.0256-1492.2021062701 SONG Xiaoshuai, SUN Zhiwen, ZHU Chaoqi, et al. A review on deepwater landslide [J]. Marine Geology & Quaternary Geology, 2022, 42(1): 222-235. doi: 10.16562/j.cnki.0256-1492.2021062701
[6] 潘继平, 张大伟, 岳来群, 等. 全球海洋油气勘探开发状况与发展趋势[J]. 中国矿业, 2006, 15(11):1-4 doi: 10.3969/j.issn.1004-4051.2006.11.001 PAN Jiping, ZHANG Dawei, YUE Laiqun, et al. Status quo of global offshore oil and gas exploration and development and its trends [J]. China Mining Magazine, 2006, 15(11): 1-4. doi: 10.3969/j.issn.1004-4051.2006.11.001
[7] Randolph M F, Gaudin C, Gourvenec S M, et al. Recent advances in offshore geotechnics for deep water oil and gas developments [J]. Ocean Engineering, 2011, 38(7): 818-834. doi: 10.1016/j.oceaneng.2010.10.021
[8] 苏丕波, 梁金强, 张伟, 等. 南海北部神狐海域天然气水合物成藏系统[J]. 天然气工业, 2020, 40(8):77-89 doi: 10.3787/j.issn.1000-0976.2020.08.006 SU Pibo, LIANG Jinqiang, ZHANG Wei, et al. Natural gas hydrate accumulation system in the Shenhu sea area of the northern South China Sea [J]. Natural Gas Industry, 2020, 40(8): 77-89. doi: 10.3787/j.issn.1000-0976.2020.08.006
[9] 宁伏龙, 梁金强, 吴能友, 等. 中国天然气水合物赋存特征[J]. 天然气工业, 2020, 40(8):1-24 doi: 10.3787/j.issn.1000-0976.2020.08.001 NING Fulong, LIANG Jinqiang, WU Nengyou, et al. Reservoir characteristics of natural gas hydrates in China [J]. Natural Gas Industry, 2020, 40(8): 1-24. doi: 10.3787/j.issn.1000-0976.2020.08.001
[10] Gee M J R, Masson D G, Watts A B, et al. The Saharan debris flow: an insight into the mechanics of long runout submarine debris flows [J]. Sedimentology, 1999, 46(2): 317-335. doi: 10.1046/j.1365-3091.1999.00215.x
[11] Solheim A, Berg K, Forsberg C F, et al. The Storegga Slide complex: repetitive large scale sliding with similar cause and development [J]. Marine and Petroleum Geology, 2005, 22(1-2): 97-107. doi: 10.1016/j.marpetgeo.2004.10.013
[12] 年廷凯, 沈月强, 郑德凤, 等. 海底滑坡链式灾害研究进展[J]. 工程地质学报, 2021, 29(6):1657-1675 doi: 10.13544/j.cnki.jeg.2021-0815 NIAN Tingkai, SHEN Yueqiang, ZHENG Defeng, et al. Research advances on the chain disasters of submarine landslides [J]. Journal of Engineering Geology, 2021, 29(6): 1657-1675. doi: 10.13544/j.cnki.jeg.2021-0815
[13] 贾永刚, 陈天, 李培英, 等. 海洋地质灾害原位监测技术研究进展[J]. 中国地质灾害与防治学报, 2022, 33(3):1-14 doi: 10.16031/j.cnki.issn.1003-8035.2022.03-01 JIA Yonggang, CHEN Tian, LI Peiying, et al. Research progress on the in-situ monitoring technologies of marine geohazards [J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(3): 1-14. doi: 10.16031/j.cnki.issn.1003-8035.2022.03-01
[14] Micallef A, Masson D G, Berndt C, et al. Submarine spreading in the Storegga Slide, Norwegian Sea [J]. Geological Society, London, Memoirs, 2016, 46(1): 411-412. doi: 10.1144/M46.88
[15] Bull S, Cartwright J, Huuse M. A review of kinematic indicators from mass-transport complexes using 3D seismic data [J]. Marine and Petroleum Geology, 2009, 26(7): 1132-1151. doi: 10.1016/j.marpetgeo.2008.09.011
[16] Wang W W, Wang D W, Wu S G, et al. Submarine landslides on the north continental slope of the South China Sea [J]. Journal of Ocean University of China, 2018, 17(1): 83-100. doi: 10.1007/s11802-018-3491-0
[17] Wu N. Multi-scale, multidisciplinary analysis of mass-transport complex (MTC) emplacement and structure[D]. Doctor Dissertation of Imperial College London, 2020.
[18] Frey Martinez J, Cartwright J, Hall B. 3D seismic interpretation of slump complexes: examples from the continental margin of Israel [J]. Basin Research, 2005, 17(1): 83-108. doi: 10.1111/j.1365-2117.2005.00255.x
[19] Nugraha H D, Jackson C A L, Johnson H D, et al. How erosive are submarine landslides[J]. Geology, 2019.
[20] 何叶, 钟广法. 海底滑坡及其反射地震识别综述[J]. 海洋科学, 2015, 39(1):116-125 doi: 10.11759/hykx20130714001 HE Ye, ZHONG Guangfa. Current status of submarine landslides and their seismic recognition [J]. Marine Sciences, 2015, 39(1): 116-125. doi: 10.11759/hykx20130714001
[21] Imbo Y, De Batist M, Canals M, et al. The Gebra Slide; a submarine slide on the Trinity Peninsula margin, Antarctica[J]. Marine geology, 2003, 193(3-4): 235-252.
[22] Bryn P, Berg K, Forsberg C F, et al. Explaining the Storegga slide [J]. Marine and Petroleum Geology, 2005, 22(1-2): 11-19. doi: 10.1016/j.marpetgeo.2004.12.003
[23] Vanneste M, Mienert J, Bunz S. The Hinlopen Slide; a giant, submarine slope failure on the northern Svalbard margin, Arctic Ocean[J]. Earth and planetary science letters, 2006, 245(1-2): 373-388.
[24] Jared W Kluesner D S B A. Structural controls on slope failure within the western Santa Barbara Channel based on 2D and 3D seismic imaging [J]. Geochemistry,Geophysics, Geosystems, 2020, 8(21):1-34.
[25] Lenz B L, Sawyer D E, Phrampus B, et al. Seismic imaging of seafloor deformation induced by impact from large submarine landslide blocks, offshore Oregon[J]. Geosciences (Basel), 2019, 9(1): 10.
[26] Katz O, Reuven E, Aharonov E. Submarine landslides and fault scarps along the eastern Mediterranean Israeli continental slope[J]. Marine geology, 2015, 369: 100-115.
[27] 孙运宝, 吴时国, 王志君, 等. 南海北部白云大型海底滑坡的几何形态与变形特征[J]. 海洋地质与第四纪地质, 2008, 28(6):69-77 SUN Yunbao, WU Shiguo, WANG Zhijun, et al. The geometry and deformation characteristics of Baiyun submarine landslide [J]. Marine Geology & Quaternary Geology, 2008, 28(6): 69-77.
[28] Alves T M, Kurtev K, Moore G F, et al. Assessing the internal character, reservoir potential, and seal competence of mass-transport deposits using seismic texture: A geophysical and petrophysical approach [J]. AAPG Bulletin, 2014, 98(4): 793-824. doi: 10.1306/09121313117
[29] Scarselli N. Submarine landslides: architecture, controlling factors and environments. A summary[M]//Scarselli N, Adam J, Chiarella D, et al. Regional Geology and Tectonics. Volume 1: Principles of Geologic Analysis. 2nd ed. Amsterdam: Elsevier, 2020: 417-439.
[30] 吴时国, 马林伟, 孙金, 等. 海上丝绸之路大型地质灾害: 特点与现状[J]. 地球物理学进展, 2021, 36(1):401-411 doi: 10.6038/pg2021EE0316 WU Shiguo, MA Linwei, SUN Jin, et al. Characteristic and current status of some large-scale geological disasters along the Maritime Silk Road [J]. Progress in Geophysics, 2021, 36(1): 401-411. doi: 10.6038/pg2021EE0316
[31] Nugraha H D, Jackson C A L, Johnson H D, et al. Evolution of flow cells within a mass-transport complex: Insights from the Gorgon Slide, offshore NW Australia[Z]. EarthArXiv, 2020.
[32] Le Goff J, Slootman A, Mulder T, et al. On the architecture of intra-formational mass-transport deposits; insights from the carbonate slopes of Great Bahama Bank and the Apulian carbonate platform[J]. Marine geology, 2020, 427: 106205.
[33] Scarselli N, McClay K, Elders C. Submarine slide and slump complexes, Exmouth Plateau, NW Shelf of Australia[C]//Western Australian Basins Symposium 2013. Perth: Petroleum Exploration Society of Australia, 2013.
[34] Gee M J R, Gawthorpe R L, Friedmann J S. Giant striations at the base of a submarine landslide [J]. Marine Geology, 2005, 214(1-3): 287-294. doi: 10.1016/j.margeo.2004.09.003
[35] Lastras G, De Blasio F V, Canals M, et al. Conceptual and numerical modeling of the BIG'95 debris flow, Western Mediterranean Sea [J]. Journal of Sedimentary Research, 2005, 75(5): 784-797. doi: 10.2110/jsr.2005.063
[36] Wu N, Jackson C A L, Johnson H D, et al. The formation and implications of giant blocks and fluid escape structures in submarine lateral spreads [J]. Basin Research, 2021, 33(3): 1711-1730. doi: 10.1111/bre.12532
[37] Wu N, Jackson C A L, Johnson H D, et al. Lithological, petrophysical, and seal properties of mass-transport complexes, northern Gulf of Mexico [J]. AAPG Bulletin, 2021, 105(7): 1461-1489. doi: 10.1306/06242019056
[38] Gafeira J, Bulat J, Evans D. The southern flank of the Storegga Slide: imaging and geomorphological analyses using 3D seismic[M]//Lykousis V, Sakellariou D, Locat J. Submarine Mass Movements and Their Consequences. Dordrecht: Springer, 2007, 27: 57-65.
[39] Gee M J R, Gawthorpe R L, Friedmann S J. Triggering and evolution of a giant submarine landslide, offshore Angola, revealed by 3D seismic stratigraphy and geomorphology[J]. Journal of sedimentary research, 2006, 76(1): 9-19.
[40] Kneller B, Dykstra M, Fairweather L, et al. Mass-transport and slope accommodation: Implications for turbidite sandstone reservoirs [J]. AAPG Bulletin, 2016, 100(2): 213-235. doi: 10.1306/09011514210
[41] 姚哲, 朱继田, 左倩媚, 等. 琼东南盆地深水区重力流沉积体系及油气勘探前景[J]. 天然气工业, 2015, 35(10):21-30 doi: 10.3787/j.issn.1000-0976.2015.10.003 YAO Zhe, ZHU Jitian, ZUO Qianmei, et al. Gravity flow sedimentary system and petroleum exploration prospect of deep water area in the Qiongdongnan Basin South, China Sea [J]. Natural Gas Industry, 2015, 35(10): 21-30. doi: 10.3787/j.issn.1000-0976.2015.10.003
[42] Zabanbark A, Lobkovsky L I. Continental slopes of the West Africa Region: A unique treasure of hydrocarbons [J]. Oceanology, 2018, 58(5): 727-736. doi: 10.1134/S000143701805017X
[43] Le A N. Mass-transport deposit in deep water setting, offshore Cameroon, West Africa [J]. Indonesian Journal on Geoscience, 2021, 8(2): 213-219.
[44] Lisitsyn A P. Patterns of rapid and extremely rapid (avalanche) sedimentation: implications for marine oil and gas generation [J]. Russian Geology & Geophysics, 2009, 50(4): 278-298.
[45] Allen J, Schwartz K, Desantis J, et al. Integration of structure and stratigraphy in bone spring tight oil sandstones using 3D seismic in the Delaware Basin, TX[C]//Unconventional Resources Technology Conference. Denver, Colorado: SEG, 2013: 2521-2527.
[46] Bhatnagar P, Verma S, Bianco R. Characterization of mass transport deposits using seismic attributes: Upper Leonard Formation, Permian Basin [J]. Interpretation, 2019, 7(4): SK19-SK32. doi: 10.1190/INT-2019-0036.1
[47] Qin Y P, Alves T M, Constantine J, et al. The role of mass wasting in the progressive development of submarine channels (Espírito Santo Basin, Se Brazil) [J]. Journal of Sedimentary Research, 2017, 87(5): 500-516. doi: 10.2110/jsr.2017.18
[48] Henry L C, Wadsworth J A, Hansen B, et al. Erosion and ponding of Thunder Horse deepwater turbidites by mass transport complexes in Mississippi Canyon based on image log sedimentology [J]. Marine and Petroleum Geology, 2018, 97: 639-658. doi: 10.1016/j.marpetgeo.2018.08.006
[49] 姚根顺, 袁圣强, 马玉波, 等. 琼东南华光凹陷深水重力搬运沉积体系及其油气勘探[J]. 地球科学:中国地质大学学报, 2009, 34(3):471-476 doi: 10.3799/dqkx.2009.052 YAO Genshun, YUAN Shengqiang, MA Yubo, et al. Deepwater mass transport deposition system of Huaguang depression, Qiongdongnan Basin and its significance for hydrocarbon exploration [J]. Earth Science:Journal of China University of Geosciences, 2009, 34(3): 471-476. doi: 10.3799/dqkx.2009.052
[50] 陈珊珊, 孙运宝, 吴时国. 南海北部神狐海域海底滑坡在地震剖面上的识别及形成机制[J]. 海洋地质前沿, 2012, 28(6):40-45 doi: 10.16028/j.1009-2722.2012.06.008 CHEN Shanshan, SUN Yunbao, WU Shiguo. Sea bottom landslide in the Shenhu area on the north margin of South China Sea and triggering mechanisms [J]. Marine Geology Frontiers, 2012, 28(6): 40-45. doi: 10.16028/j.1009-2722.2012.06.008
[51] Posamentier H W, Martinsen O J, Shipp R C, et al. The character and genesis of submarine mass-transport deposits: insights from outcrop and 3D seismic data[M]//Mass-Transport Deposits in Deepwater Settings. Special Publication, Society for Sedimentary Geology, 2011, 96: 7-38.
[52] Alves T M, Kurtev K, Moore G F, et al. Assessing the internal character, reservoir potential, and seal competence of mass-transport deposits using seismic texture: A geophysical and petrophysical approach[J]. AAPG Bulletin, 2014, 98(4): 793-824.
[53] Cardona S, Wood L J, Day-Stirrat R J, et al. Fabric development and pore-throat reduction in a mass-transport deposit in the Jubilee Gas Field, eastern Gulf of Mexico: consequences for the sealing capacity of MTDs[M]//Lamarche G, Mountjoy J, Bull S, et al. Submarine Mass Movements and their Consequences. Switzerland: Springer International Publishing, 2016, 41: 27-37.
[54] Cardona S, Wood L, Moscardelli L, et al. Cannibalization and sealing of deepwater reservoirs by mass-transport complexes: The Jubilee field, Gulf of Mexico [J]. Interpretation, 2020, 8(4): SV17-SV30. doi: 10.1190/INT-2019-0274.1
[55] 赵芳. 南海北部陆缘裂后期岩浆活动及海底滑坡事件研究[D]. 中国科学院海洋研究所博士学位论文, 2016. ZHAO Fang. Post-rift magmatism and submarine landslides on the northern South China Sea continental margin[D]. Doctor Dissertation of Institute of Oceanology, Chinese Academy of Sciences, 2016.
[56] 杨木壮, 潘安定, 沙志彬. 陆缘地区天然气水合物成藏地质模式[J]. 海洋地质与第四纪地质, 2010, 30(6):85-90 YANG Muzhuang, PANG Anding, SHA Zhibin. Geological models of gas hydrates deposits along the continental margin [J]. Marine Geology & Quaternary Geology, 2010, 30(6): 85-90.
[57] 郭依群, 梁金强, 王宏斌, 等. 南海北部海底滑坡与天然气水合物的关系[C]//海洋地质、矿产资源与环境学术研讨会论文摘要集. 广州, 2006 GUO Yiqun, LIANG Jinqiang, WANG Hongbin, et al. Relationship between submarine landslides and gas hydrate in the northern South China Sea[C]//Abstracts of Seminar on Marine Geology, Mineral Resources & Environment. Guangzhou, 2006.
[58] 吴时国, 姚根顺, 董冬冬, 等. 南海北部陆坡大型气田区天然气水合物的成藏地质构造特征[J]. 石油学报, 2008, 29(3):324-328 doi: 10.3321/j.issn:0253-2697.2008.03.002 WU Shiguo, YAO Genshun, DONG Dongdong, et al. Geological structures for forming gas hydrate reservoir in the huge deepwater gas field of the northern South China Sea [J]. Acta Petrolei Sinica, 2008, 29(3): 324-328. doi: 10.3321/j.issn:0253-2697.2008.03.002
[59] 蔡峰, 闫桂京, 梁杰, 等. 大陆边缘特殊地质体与水合物形成的关系[J]. 海洋地质前沿, 2011, 27(6):11-15 doi: 10.16028/j.1009-2722.2011.06.001 CAI Feng, YAN Guijing, LIANG Jie, et al. The relationship between special geological bodies and hydrate formation at continental margin [J]. Marine Geology Frontiers, 2011, 27(6): 11-15. doi: 10.16028/j.1009-2722.2011.06.001
[60] Bünz S, Mienert J, Berndt C. Geological controls on the Storegga gas-hydrate system of the mid-Norwegian continental margin [J]. Earth and Planetary Science Letters, 2003, 209(3-4): 291-307. doi: 10.1016/S0012-821X(03)00097-9
[61] 吴时国, 董冬冬, 杨胜雄, 等. 南海北部陆坡细粒沉积物天然气水合物系统的形成模式初探[J]. 地球物理学报, 2009, 52(7):1849-1857 doi: 10.3969/j.issn.0001-5733.2009.07.019 WU Shiguo, DONG Dongdong, YANG Shengxiong, et al. Genetic model of the hydrate system in the fine grain sediments in the northern continental slope of South China Sea [J]. Chinese Journal of Geophysics, 2009, 52(7): 1849-1857. doi: 10.3969/j.issn.0001-5733.2009.07.019
[62] 张丙坤, 李三忠, 夏真, 等. 南海北部海底滑坡与天然气水合物形成与分解的时序性[J]. 大地构造与成矿学, 2014, 38(2):434-440 doi: 10.16539/j.ddgzyckx.2014.02.001 ZHANG Bingkun, LI Sanzhong, XIA Zhen, et al. Time sequence of submarine landslides and gas hydrates in the northern South China Sea [J]. Geotectonica et Metallogenia, 2014, 38(2): 434-440. doi: 10.16539/j.ddgzyckx.2014.02.001
[63] 杜浩, 石万忠, 梁金强, 等. 琼东南盆地块体搬运沉积体系成因及其对水合物成藏的影响[J]. 石油地球物理勘探, 2021, 56(4):869-881 doi: 10.13810/j.cnki.issn.1000-7210.2021.04.020 DU Hao, SHI Wanzhong, LIANG Jinqiang, et al. Genesis of mass transport deposits and their effect on gas hydrate accumulation in the Qiongdongnan Basin [J]. Oil Geophysical Prospecting, 2021, 56(4): 869-881. doi: 10.13810/j.cnki.issn.1000-7210.2021.04.020
[64] Alves T M. Megablocks and the stratigraphic record of continental margins: how large an event do they materialise?[C]//STRATI 2013. Switzerland: Springer International Publishing, 2014: 775-780.
[65] Talling P, Clare M, Urlaub M, et al. Large submarine landslides on continental slopes: Geohazards, methane release, and climate change [J]. Oceanography, 2014, 27(2): 32-45. doi: 10.5670/oceanog.2014.38
[66] 刘杰, 杨睿, 邬黛黛, 等. 琼东南盆地华光凹陷天然气水合物稳定带厚度的影响因素[J]. 海洋学报, 2019, 41(8):13-25 LIU Jie, YANG Rui, WU Daidai, et al. Factors affecting the thickness of gas hydrate stability zones in the Huaguang Sag, Qiongdongnan Basin [J]. Haiyang Xuebao, 2019, 41(8): 13-25.
[67] 刘杰, 刘丽华, 吴能友, 等. 南海东沙海域深水区末次冰期以来天然气水合物稳定带演化[J]. 海洋地质与第四纪地质, 2021, 41(2):146-155 doi: 10.16562/j.cnki.0256-1492.2020061801 LIU Jie, LIU Lihua, WU Nengyou, et al. Evolution of gas hydrate stability zone in the deep water of Dongsha sea area since the Last Glaciation Maximum [J]. Marine Geology & Quaternary Geology, 2021, 41(2): 146-155. doi: 10.16562/j.cnki.0256-1492.2020061801
[68] Riboulot V, Ker S, Sultan N, et al. Freshwater lake to salt-water sea causing widespread hydrate dissociation in the Black Sea [J]. Nature Communications, 2018, 9(1): 117. doi: 10.1038/s41467-017-02271-z
[69] Maslin M, Owen M, Betts R, et al. Gas hydrates: past and future geohazard? [J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2010, 368(1919): 2369-2393. doi: 10.1098/rsta.2010.0065
[70] Eldholm O, Bungum H. Potential secondary events caused by early Holocene paleoearthquakes in Fennoscandia: a climate-related review [J]. Norwegian Journal of Geology, 2021, 101: 202108.
[71] Paull C K, Brewer P G, Ussler W, et al. An experiment demonstrating that marine slumping is a mechanism to transfer methane from seafloor gas-hydrate deposits into the upper ocean and atmosphere [J]. Geo-Marine Letters, 2002, 22(4): 198-203. doi: 10.1007/s00367-002-0113-y
[72] Maslin M, Owen M, Day S, et al. Linking continental-slope failures and climate change: testing the clathrate gun hypothesis [J]. Geology, 2004, 32(1): 53-56. doi: 10.1130/G20114.1
[73] Brothers D S, Luttrell K M, Chaytor J D. Sea-level-induced seismicity and submarine landslide occurrence [J]. Geology, 2013, 41(9): 979-982. doi: 10.1130/G34410.1
[74] Yelisetti S, Spence G D, Riedel M. Role of gas hydrates in slope failure on frontal ridge of northern Cascadia margin [J]. Geophysical Journal International, 2014, 199(1): 441-458. doi: 10.1093/gji/ggu254