中国东部苏鲁造山带的印支期俯冲极性及其造山过程

李三忠, 郑祺亮, 李玺瑶, 赵淑娟, 索艳慧, 郭玲莉, 王永明, 周在征, 刘晓光, 兰浩圆, 张剑, 郭润华, 李少俊

李三忠, 郑祺亮, 李玺瑶, 赵淑娟, 索艳慧, 郭玲莉, 王永明, 周在征, 刘晓光, 兰浩圆, 张剑, 郭润华, 李少俊. 中国东部苏鲁造山带的印支期俯冲极性及其造山过程[J]. 海洋地质与第四纪地质, 2017, 37(4): 18-32. DOI: 10.16562/j.cnki.0256-1492.2017.04.002
引用本文: 李三忠, 郑祺亮, 李玺瑶, 赵淑娟, 索艳慧, 郭玲莉, 王永明, 周在征, 刘晓光, 兰浩圆, 张剑, 郭润华, 李少俊. 中国东部苏鲁造山带的印支期俯冲极性及其造山过程[J]. 海洋地质与第四纪地质, 2017, 37(4): 18-32. DOI: 10.16562/j.cnki.0256-1492.2017.04.002
LI Sanzhong, ZHENG Qiliang, LI Xiyao, ZHAO Shujuan, SUO Yanhui, GUO Lingli, WANG Yongming, ZHOU Zaizheng, LIU Xiaoguang, LAN Haoyuan, ZHANG Jian, GUO Runhua, LI Shaojun. Triassic Subduction Polarity and Orogenic Process of the Sulu Orogen, East China[J]. Marine Geology & Quaternary Geology, 2017, 37(4): 18-32. DOI: 10.16562/j.cnki.0256-1492.2017.04.002
Citation: LI Sanzhong, ZHENG Qiliang, LI Xiyao, ZHAO Shujuan, SUO Yanhui, GUO Lingli, WANG Yongming, ZHOU Zaizheng, LIU Xiaoguang, LAN Haoyuan, ZHANG Jian, GUO Runhua, LI Shaojun. Triassic Subduction Polarity and Orogenic Process of the Sulu Orogen, East China[J]. Marine Geology & Quaternary Geology, 2017, 37(4): 18-32. DOI: 10.16562/j.cnki.0256-1492.2017.04.002

中国东部苏鲁造山带的印支期俯冲极性及其造山过程

基金项目: 

国家自然科学基金杰出青年基金 41325009

山东省泰山学者特聘教授项目 

鳌山卓越科学家计划 2015ASTP-0S10

国家重点研发计划 2017YFC0601400-1

详细信息
    作者简介:

    李三忠(1968—),男,教授,博导,构造地质与海洋地质专业,E-mail:sanzhong@ouc.edu.cn

  • 中图分类号: P542

Triassic Subduction Polarity and Orogenic Process of the Sulu Orogen, East China

  • 摘要: 中国东部的苏鲁造山带印支期先后经历了大洋消减俯冲、大陆碰撞、陆壳深俯冲、陆内造山等复杂过程。综合苏鲁造山带的构造地质学、岩石学、岩相古地理学、年代学进展,发现以下事实用传统的华南向华北俯冲难以解释:(1)徐淮地区形成了明显的朝北西拓展的逆冲构造变形,此外,苏鲁造山带中还存在大量的北西向逆冲推覆构造;(2)苏鲁造山带中出露的白垩纪花岗岩中来自古元古代的继承锆石,以及Sr、Nd、Pb同位素示踪结果都显示与华北地块南缘地质体更为相似;(3)苏鲁造山带北侧的胶莱盆地以及胶北隆起缺乏晚古生代到中生代的弧后火山岩证据;(4)华北南缘三叠纪时期的古地理环境更接近被动大陆边缘。基于这些事实,本文认为,晚古生代-早三叠世早期苏鲁段的商丹洋可能向南东俯冲,不同于秦岭-大别段的商丹洋向北俯冲,消减到秦岭-大别微陆块苏鲁段之下,发生华北地块与该微陆块的拼合,华北地块整体向南东楔入秦岭-大别微陆块,导致大别-苏鲁超高压岩石垂向折返剥露;中三叠世-晚三叠世,勉略洋自东向西的剪刀式闭合,华南地块向北秦岭-大别微陆块俯冲拼合,并逐渐将华南地块与华北地块之间的秦岭-大别微陆块向西、向北侧向挤出,到了中生代华北地块持续向南东俯冲并楔入华南地块,将苏鲁-大别造山带沿郯庐断裂错断并最终形成该区总体构造格局。
    Abstract: The Sulu Orogen, located in East China, has experienced a series of complex Indosinian tectonic processes including subduction of oceanic crust, continent-continent collision, deep continent subduction and intracontinental orogenism. After synthesis of recent researches on tectonics, petrology and paleogeography in the Sulu Orogen, this paper reached the following conclusions that are different from the traditional tectonic models of subduction of the South China Block under the North China Block. 1) In addition to the NW thrusts in the Xu-Huai area, a large number of northwestward thrusts occur in the orogen. 2) The existence of inherited Early Pterozoic zircon and the Sr-Nd-Pb isotopic tracers in the Cretaceous granites in the Sulu Orogen sugest the affinity of the orogen to the North China Block. 3) In the Jiaolai Basin and the Jiaobei Uplift, there is no arc magmatism was recorded from Late Paleozoic to Mesozoic. 4) The southern margin of the North China Block was a passive margin in Triassic. The Shangdan Ocean was subductd southeastward under the Qinling-Dabie Microplate in the Sulu segment, but northward in the Qinling-Dabie segment from Late Paleozoic to Early Triassic, which resuted in the collision of the North China Block and the Qinling-Dabie Microplate. The North China Block indented into the Qinling-Dabie Microplate and thus caused the vertical exhumation of the high-pressure and ultra-high pressure metamorphic rocks. During the Middle-Late Triassic, the northward scissors-type closure of the Mianlue Ocean resulted in an assembly of the South China Block to the Qinling-Dabie Microplate from west to east. The Qinling-Dabie Microplate between the North China and South China blocks was laterally extruded to the west and the north respectively. In the Mesozoic, together with the intracontinental subduction of the North China Block to the South China Block, the Sulu-Dabie Orogen was indented southeastwards by the North China Block. The tectonic setting in the Sulu Orogen and adjacent region was basically formed then.
  • 全球约90%以上的天然气水合物(以下简称水合物)都赋存于海底浅层含泥质沉积物中[1],由于储层渗透性差,曾一度被认为是不适宜开采的矿体。2017和2020年,我国在南海北部泥质粉砂型水合物储层中成功实施两轮试采,证明了泥质储层中的水合物也具备一定的技术可采性[2-3]。然而,平均约3×104 m3的日均产气量离工业气流标准还有很大差距,开采效率亟待提升[4-5]。因此,加强我国南海北部海域水合物增产研究非常必要。

    水合物开采产能主要受到储层等地质因素的制约和开采井配置等工程因素的影响[611]。理论研究和实际试采结果均表明,与垂直井相比,水平井因有效扩大了分解面积而可获得更高产气速率[1214]。但超长井段水平井在水合物储层中的应用仍受成本和技术难度的限制[14]。以多分支井为代表的复杂结构井被认为是实现水合物产能提升的关键[5,14-16] 。然而,降压开采过程中多分支井不同射孔井段的协同降压会干扰储层中的传热传质[17]。虽然目前已基本明确水平分支射孔程度对产能的影响规律[18],但垂直主井同时射孔及其射孔程度对多分支井开采产能的影响仍不清楚。

    此外,储层特性对海域水合物产气、产水能力制约明显[19]。现已初步探明储层孔隙度、渗透率等条件控制下的产能演化规律[20-22,12,2325],地层倾角作为水合物储层非均质性的重要构造特征之一[13],已逐渐引起学者们的重视[24,26]。大量地震调查和实地钻探数据均显示海域水合物通常赋存于海底凹凸起伏的地层中[27-29]。相关研究表明,地层倾角使得水合物储层的初始温压场分布特征产生差异[27],进而影响水合物开采过程中的流体运移和生产行为[24,30],尤其是水在储层孔隙中的分布及流动性[31-32]。此外,倾斜水合物储层在开采过程中也更易发生变形,进而对开采井的稳定性和产能造成负面影响[30]。学者们认为,在日本倾斜水合物储层的生产过程中,位于储层构造高部位的流体因地层存在倾角发生了破坏性流动,进一步损坏了防砂装置,导致地层严重出砂,从实际证明了地层倾角的存在会对水合物开采行为造成显著影响[33]。我国南海北部神狐海域泥质水合物储层(如SH2、W11、W17和W19站位)主要分布于峡谷地区[34]。地层倾角也可能会对该区域泥质水合物储层的开采产能造成影响。然而,目前与此相关的研究开展较少,还未能清晰刻画南海北部具有倾角的泥质水合物储层的开采过程。多分支井降压开采条件下,倾斜泥质水合物储层的长期开采响应行为和产气产水规律仍不明确。

    基于已形成的复杂水合物储层建模新技术和复杂结构井建模新方法[18, 26],本研究以南海北部神狐海域X01站位水合物储层的地质参数和地形参数为依据,建立了代表实际情况的倾斜泥质水合物储层模型,通过TOUGH+HYDRATE水合物产能模拟软件进行数值模拟研究。首先,探讨垂直主井是否射孔及射孔程度对多分支井开采产能的影响和增产效果,确定垂直主井和水平分支的最佳打开长度比值,优选多分支井井型;然后,考虑储层倾角作用下重力分异对水合物开采的影响,揭示位于储层不同构造位置(即构造低部位、倾斜部位和构造高部位)的多分支井的降压开采响应规律,确定优势布井位置。上述研究可深化海域倾斜泥质水合物开采传热传质与产气规律认识,为后续试采和开采工程设计提供一定的理论基础和工程依据。

    中新世以来,南海北部神狐海域进入构造沉降期,高沉积速率为水合物的赋存创造了良好的地质条件[35-36]。2015年,广州海洋地质调查局(GMGS)在神狐海域进行了GMGS3科考,获取了高质量的地球物理测井资料和水合物岩心样品[34]。调查结果显示,神狐海域海底温度大约为3~6 ℃,地热梯度为4.5~6.7 ℃/100 m。水合物层分布深度约150~400 m,厚度为10~80 m。平均水合物饱和度为20%~40%,最高达76%。神狐海域W17、W19等站位的水合物储层主要位于海底峡谷区的构造高部位或海脊边缘。其中,X01站位含水合物沉积物主要为黏土质粉砂或粉砂质黏土,水合物储层厚度为76 m,位于海脊顶部,见图1。根据多波束探测数据可知,X01站位西北区域地层倾角约为10°~15°。Wang等[37]对X01站位所在水合物层的空间分布研究结果认为,该区域的水合物储层近似平行于海底展布。

    图  1  中国南海珠江口盆地和X01站位所在水合物储层的厚度示意图(A—B),多分支井结构示意图(C),基于实际地形参数和地质参数建立的倾斜3D储层模型及多分支井在储层不同构造部位的布设示意图(D)
    图中A—B修改自Li等[2] 和Wang等[37],红色虚线框架表示本研究区域。
    Figure  1.  Map of Pearl River Mouth basin, South China Sea and thickness of gas hydrate-bearing sediments at site X01(A-B) ; the schematic diagram of a multilateral horizontal well configuration(C) and a inclined 3D hydrate-bearing reservoir model and schematic diagram of the layout of multilateral horizontal wells in different structural positions (D)
    A-B are modified from Li et al [2] and Wang et al [37], red dotted frame is the research area of this study.

    本研究采用国际上最认可的TOUGH+HYDRATE水合物产能预测软件进行水合物开采产能模拟[38-39]。3D储层建模对网格数量和计算时间要求较高,基于前期确立的优势网格划分方案[18],本研究采用并行版TOUGH+HYDRATE软件(pT+H)[40],建立了与实际海底情况一致的倾角为10°~15°的3D水合物储层模型(1000 m(x)× 1000 m(y)× 312.5 m(z)),见图1D。考虑本研究主要探究实际水合物储层的倾角对开采产能的影响,建模时将水合物层设置为与海底地层平行分布且水合物饱和度一致。除地形参数外,3D倾斜储层的其他参数均参考X01站位的主要储层物性参数(表1)。此外,鉴于X01站位与神狐海域SH2站位的水合物储层物性相似,相对渗透率模型和孔隙水压力模型中经验参数的设定主要参考SH2站位水合物储层建模时选取的经验参数[41]

    表  1  数值模拟采用的主要储层参数[34,41]
    Table  1.  Main reservoir parameters employed in numerical simulation
    参数数值参数数值
    储层基础参数
    上覆盖层厚度/m116.5颗粒密度/(kg∙m−3)2650
    水合物储层厚度/m76地温梯度/(℃/100 m)5.46
    下伏地层厚度/m120热导率(湿)/(W∙m−1∙℃)2.917
    储层孔隙度/%34.50热导率(干)/(W∙m−1∙℃)1.00
    储层绝对渗透率/(10−3μ㎡)kx = ky = kz = 0.22压缩系数/Pa−11.00×10−8
    水合物饱和度/%34.00比热容/(J∙kg−1∙℃−1)1000
    X01站位处水深/m1309.75孔隙水盐度/‰3.05
    相对渗透率模型(Relative permeability model) [39]
    KrA =SA*nKrG =SG*nG
    SA*=SA−SirA)/(1−SirASG* =SG −SirG)/(1−SirA
    SirA0.50nG3.00
    SirG0.05n5.00
    孔隙水压力模型(Capillary pressure model) [42]
    Pcap = −P0[(S*−1/λ−1]1−λS* =SA−SirA)/(SmxASirA
    P0/Pa105SmxA1.00
    λ0.15SirA0.50
    下载: 导出CSV 
    | 显示表格

    根据以往经验,本研究在建模时,将上覆盖层和下伏地层厚度分别设定为 116.5 m和120 m,以满足热量和质量的交换[43-44]。多分支井的共面水平分支垂直于主井布设,位于垂直方向上的储层中部,套管射孔完井方式,各分支打开长度为20 m(图1C)。在x轴和y轴方向上,模型采用不等间距的划分方式。井眼附近传热传质比较剧烈,故在区域离散过程中,对井周网格进行了较为精细的划分:网格尺寸以0.1 m为主。其他储层的网格尺寸随着与开采井距离的增大而增大。在z轴方向上,水合物储层的网格尺寸设定为1.0 m;上覆盖层和下伏地层的网格划分主要遵循Moridis和Reagan[45]提及的划分规律,即储层的网格尺寸随着与储层距离的增大而规律性增大。储层上、下边界处的网格在z方向的厚度均为0.001 m。

    X01站位水合物储层的初始孔隙压力随地层深度的增加而增大。在5.46 ℃/100 m的地温梯度下[34],储层初始温度从顶边界到底边界呈线性升高。海水密度平均为1023 kg/m3。3D储层模型的外围边界为绝热无渗流边界,上下边界均为恒温、恒压边界[46]。本研究涉及的水合物储层初始化细节参考前人研究[37,47-48]。完成模型初始化后,水合物储层底部温度为15.35 ℃;因地层倾角的原因,水合物层底部压力分布不一,最低压力为15.96 MPa(图1D为初始化后地层温度分布情况)。根据水合物的压力-温度平衡曲线认为水合物可稳定存在。

    根据Moridis等[45]学者的早期研究,可将开采井单元作为一种“伪多孔介质”,并假定井内流动满足达西定律。该“伪多孔介质”的孔隙度值为1,渗透率设定为kr = kz = 5.0×10−9 m2,且毛细压力设定为Pc = 0。在模拟时认为开采井眼稳定、防砂可靠、出水已妥善处理。

    先前研究证实,与一分支井、二分支井和三分支井相比,四分支井对泥质水合物储层的开采能力相对最高[18]。因此,本研究采用的多分支井为四分支井。如图2所示,为了探讨多分支井垂直主井是否射孔及打开长度对开采产能的影响和增产效果,共设计5个案例。Case 1-1代表多分支井的垂直主井不射孔,Case 1-2— Case 1-5的多分支井的垂直主井打开长度分别为5、10、20 和28 m,即射孔垂直主井长度与分支长度比值(Lv/Lh)分别为0.25、0.5、1和1.4。模拟时,5个案例的多分支井均布设于图1D中的较水平储层,以最大程度控制变量,减少构造条件对井型优选的影响。根据海域实际开采现场试验结果[44],设定多分支井采用4.5 MPa进行恒压开采。

    图  2  具有不同射孔垂直主井的多分支井结构示意图
    Figure  2.  Schematic of multilateral horizontal well configuration with different perforated vertical main wells

    确定最佳Lv/Lh后,将优选的多分支井部署在储层的不同结构位置进行降压开采,即将多分支井布设于储层的构造低部位(Case 2-1)、构造倾斜部位(Case 2-2)和构造高部位(Case 2-3)(图1D)。在考虑重力分异对水合物开采的影响下,对比开采产能差异,揭示倾斜水合物储层多分支井降压开采的响应特性和储层渗流规律,确定优势多分支井布设位置。

    本文以产气速率、产水速率、气水产出比(即累计气体开采量与累计产水量的比值,水合物开采经济性评价相对指标)、储层水合物分解累计产气量和储层内剩余游离气量来综合对比不同开采方案下的产气产水规律及水合物储层响应特征。

    图3描述了垂直主井不射孔的多分支井(Case 1-1)和垂直主井射孔的多分支井(Case 1-2 — Case 1-5)降压开采条件下,储层产气量及井中产气速率、产水速率和气水产出比。

    图  3  多分支井开采时,产气和产水的情况
    A. 储层水合物分解累计产气量和储层内剩余游离气量,B. 井中产气速率和产水速率,C. 井中气水产出比,D. 第720天,井中气水产出比。
    Figure  3.  Gas and water production performance when hydrate-bearing reservoirs are produced by multilateral horizontal wells
    A. Cumulative gas production volume from hydrate deposits and amount of free gas remaining in the reservoirs, B. gas production rate and water production rate in the production well, C. gas-to-water ratio in the production well, D. gas-to-water ratio in the production well at t = 720 days.

    图3A中可以看出,无论采用何种多分支井开采泥质水合物储层,水合物分解累计产气量随着开采的进行而逐渐增大,但储层经过长期开采后,水合物分解累计产气量的增加幅度逐渐降低。这主要是由于:①随着水合物分解和吸热反应的发生,水平分支周围储层的温度明显降低,在一定程度上抑制了水合物的分解;②随着压降的传递和开采的进行,水合物分解前缘逐渐远离开采井,但储层渗透率极低,水合物分解范围主要集中于井周(图4A)。因此,水合物分解累计产气量的增幅逐渐减弱。从图3A还可发现,无论采用何种多分支井开采泥质水合物储层,储层内剩余游离气量随着开采的进行逐渐增多。但当开采时间超过约2 880 d时,储层的游离气量逐渐降低。此现象表明,多分支井的长期气体产出能力比短期气体产出能力更强。这可能是由于在开采后期,分支井周围储层的渗流能力因水合物分解而得到了提升,进而促进储层内游离气体的产出。如图4B所示,随着开采的进行,垂直主井井周和水平分支下部储层的游离气量逐渐增大,促进更多分解气从多分支井中产出。

    图  4  降压开采第1、5和10年,Case 1-5案例储层中水合物饱和度(A)和气体饱和度(B)的分布图
    为了更好地呈现结果,主要呈现多分支井附近的物理场图,下同。
    Figure  4.  Spatial distributions of hydrate saturation (A) and gas saturation (B) at t = 1 year, t = 5 year and t = 10 year in Case 1-5
    for clearly presenting situations, only the spatial distributions around the multilateral horizontal well are shown, same as below .

    相比而言,当采用多分支井降压开采泥质水合物储层时,随着多分支井垂直主井打开长度的增加,储层水合物分解累计产气量和储层内剩余游离气量均增加。但对于X01站位这样具有极低绝对渗透率的海域泥质水合物储层而言,开采潜能并不十分理想,若要实施开采作用,还须结合其他辅助增产措施。本研究主要考虑多分支井垂直主井射孔程度和储层构造条件对多分支井开采产能的影响,暂不考虑将多分支井布设在低渗海域泥质水合物储层中的产量是否达到商业开采目的。

    不同案例的井中产气产水规律随开采时间的变化较为规则,不同案例间的产能差异变化较小。从图3B中可以看出,由于地层渗透率极低,储层的降压产气效果较弱,即使是开采早期,多分支井的产气速率也比较低,主要为70~100 ST·m3/d。在130 d的模拟周期内,产气速率降低较快。而后,随着降压开采的进行,产气速率逐渐缓慢降低。与产气速率演变规律相反,不同案例的产水速率随着长期开采的进行而逐渐增加。但无论采用何种多分支井进行降压开采,产水速率的增幅并不十分明显,产水速率基本为3.5~4.5 ST·m3/d。图3C呈现了10 年开采时间内多分支井的气水产出比。从图中可以看出,开采早期气水产出比较高,尤其是130 d内的气水产出比(>20),但随着开采的进行,5个案例的气水产出比均呈现下降的趋势。

    与Case 1-2—Case 1-5的产气产水结果相比,Case 1-1井中产气速率、产水速率和气水产出比均最低。随着垂直主井打开长度的增加,井中产气速率和产水速率相应增大。虽然水平分支下部储层的温压分布和水合物分解情况基本不受垂直主井射孔程度的影响(图5A—C),但相同开采时间内,垂直主井井周储层的压降范围和水合物分解范围随着垂直主井打开长度的增加而增大。因此,气、水产出速率随着垂直主井打开长度的增加相应增大(图3B)。但当垂直主井打开长度增大到一定程度后,增强射孔程度带来的产气增幅不如产水增幅明显,导致气水产出比反而随着垂直主井打开长度的增加而降低(图3C)。这可能是由于垂直主井射孔程度增强后,垂直主井与上覆盖层的距离更近,上覆地层中的水在开采过程中更易流入开采井(图5D),水流的增多导致垂直主井产气速率的增幅随其打开长度的增加而降低。

    图  5  开采10 年后,Case 1-2,Case 1-4和Case 1-5储层中压力(A)、温度(B)、水合物饱和度(C)和液体饱和度分布图(D)
    Figure  5.  Spatial distributions of the pressure (A), temperature (B), hydrate saturation (C), and water saturation (D) at t = 10 year in Cases 1-2, 1-4 and 1-5

    通过进一步对比相同开采时间(以开采第720天为例,图3D)内垂直主井射孔程度不同的多分支井的气水产出比可发现,当Lv/Lh<0.5时,气水产出比随Lv/Lh的增大而增大;当0.5<Lv/Lh<1.0时,Lv/Lh对气水产出比影响不明显,气水产出比值均较高,当Lv/Lh = 0.75时,值最大;当Lv/Lh>1.0时,随Lv/Lh的增大,气水产出比反而降低。因此,开采低渗泥质水合物储层时,Lv/Lh比值为0.5~1.0时,最利于提高多分支井的气水产出。

    如上所述,随着垂直主井打开长度的增加,多分支井的产气速率逐渐增大。但当Lv/Lh为0.75时,多分支井的气水产出比最高。因此在本小节研究中,以垂直主井打开长度为15 m、水平分支打开长度为20 m的多分支井为例,对比布设于不同构造位置的多分支井的产能差异。

    图6呈现了上述多分支井布设在泥质水合物储层不同构造部位时的产气产水情况。从图中可见,经过相同开采时间,不同案例中开采井的产气速率、产水速率和气水产出比随开采时间的变化较为规则。相比而言,Case 2-1和Case 2-2中的产气速率和产水速率均明显高于Case 2-3中的产气速率和产水速率。其主要原因是,在Case 2-3中水合物储层的埋藏深度较浅,水合物储层的初始温度和压力相对较低。在相同的开采条件下,Case 2-3中的水合物受到更弱的压降作用而发生分解反应,水合物分解范围更小(图7)。此外,虽然在开采过程中Case 2-2储层的压降比Case 2-3储层的压降更明显,但经过相同开采时间,布设于储层构造高部位的多分支井的井周储层温压明显更低(图7),在一定程度上抑制了水合物的进一步分解,故Case 2-3在开采时呈现出相对较低的气、水产出速率。在Case 2-1和Case 2-2两个案例中,尽管Case 2-2的储层初始温压较Case 2-1的储层初始温压条件低,但在开采过程中流体流动随时都受到重力分异作用的影响,导致Case 2-1和Case 2-2中的产气速率和产水速率相差不显著(图6)。

    图  6  多分支井布设在不同构造位置的产气产水情况
    Figure  6.  Gas and water production performance of multilateral horizontal wells deployed in different structural positions
    图  7  开采5 年后,Case 2-2和Case 2-3的储层物理场分布图
    Figure  7.  Spatial distribution of physical properties in Cases 2-2 and 2-3 at t = 5 year

    虽然多分支井布设于储层倾斜处和构造低部位时的产气、产水效果基本一致,但多分支井位于泥质水合物储层不同构造位置时,气水产出比存在差异。相比而言,多分支井布设于泥质水合物储层的构造高部位(Case 2-3)时,气水产出比最大(图6)。随着多分支井布设储层埋深的增加,气水产出比值逐渐降低。对比Case 2-1和Case 2-2的气水产出比可发现:①对于短期开采而言,将多分支井布设于储层倾斜处(Case 2-2),气水产出比较高;②对于长期开采而言,Case 2-1和Case 2-2的气水产出比逐渐趋于一致。水平井开采倾斜泥质水合物储层的研究指出,水合物分解易引起开采井发生变形、井周沉积物发生位移,进而影响开采安全和采收率[30]。采用多分支井长期开采具有倾角的泥质水合物储层时,采气安全也极可能受到倾角的影响。相比于倾斜地层,水平地层对实际水合物开采过程中井壁稳定性和储层稳定更有利,而产出水也可以依赖设备进行适当处理,故认为将多分支井部署在位于构造低部位的较水平泥质水合物储层可能更利于提高采收率。值得注意的是,对于渗透率极低的泥质水合物储层而言,仅采用降压法进行开采,多分支井的产气产水情况仍不理想,导致地层倾角对多分支井降压开采造成的产能差异的影响有限。若在海域低渗泥质储层中开展实际开采,势必会结合其他辅助增产措施,如储层改造技术。在联合开采技术的应用下,储层倾角的存在对开采产能造成的影响会更明显,尤其对于渗透率较大的泥质水合物储层,更应将多分支井部署在位于构造低部位的水平水合物储层中。此外,本研究仅考虑了多分支井射孔程度和布设位置对倾斜泥质水合物储层开采产能的影响,对于储层变形和非均质性对开采产能的影响在后续的研究中需进一步量化考虑。

    (1)相比于仅水平分支射孔的多分支井,水平分支和垂直主井同时射孔的多分支井更利于水合物分解产气。但垂直主井的打开长度不宜过长,垂直主井与水平分支打开长度比值介于0.5~1.0时,最利于提高多分支井的气水产出比。

    (2)海域泥质水合物储层的地层倾角影响多分支井的开采产能。将多分支井布设在储层构造低部位的水平位置更利于水合物的长期开采。但对于X01站位此类具有极低绝对渗透率的泥质水合物储层而言,开采潜能并不十分理想;若要实施开采作用,在将多分支井布设在优势构造储层进行开采的基础上,还须结合其他辅助增产措施,如井网开采模式和储层改造技术。

  • 图  1   中国东部晚古生代—中生代大地构造单元及有孔虫、蜓类分布

    (据文献[25-33]编制)断裂名称:F1.五莲-青岛-牟平断裂;F2.嘉山-响水断裂;F3.郯庐断裂;F4.洛南-栾川断裂;F5.商丹带;F6.勉略带;F7.索伦断裂;F8.西拉木伦断裂;F9.贺根山断裂;F10.依兰-伊通断裂;F11.敦化-密山断裂;F12.龙门山断裂;F13.哀牢山-红河断裂;F14.江绍断裂;F15.日本中央断裂;F16.千岛俯冲带;F17.日本俯冲带;F18.琉球俯冲带

    Figure  1.   Late Paleozoic to Mesozoic tectonic map of East Asia showing the tectonic units and distribution of the foraminifera and the fusulinids

    (compiled after [25-33])Faults, sutures and subduction zones: F1.Wulian-Qingdao-Yantai Fault; F2.Jiashan-Xiangshui Fault; F3.Tanlu Fault; F4.Luonan-Luanchuan Fault; F5.Sangdan Suture; F6.Mianlue Suture; F7.Solonker Suture; F8.Xilamulun Fault; F9.Hegenshan Suture; F10.Yilan-Yitong-Fault; F11.Dunhua-Mishan Fault; F12.Longmenshan Fault; F13.Ailaoshan-Red River Fault; F14.Jiangshan-Shaoxing Fault; F15.Central Japan Fault; F16.Kuril Subduction Zone; F17.Japan Subduction Zone; F18.Rykyu Subduction Zone

    图  2   中国东部苏鲁造山带中生代区域构造 (据文献[17,34-53]编制)

    Figure  2.   Mesozoic tectonic map of East China (compiled after references [17,34-53])

    图  3   苏鲁造山带石门-理务关地区构造变形特征 (位置见图2,修改自文献[70])

    Figure  3.   Tectonic map of the Shimeng-Liwuguan of the Sulu orogen (see Fig.2 for locations, after reference [70])

    图  4   晚古生代东亚陆块的相对位置 (底图据文献[114])

    Figure  4.   Locations of Late Paleozoic continental blocks in East Asia (revised from reference [114])

    图  5   中二叠世到中侏罗世华南-华北地块拼合过程 (粉红色为华南地块与华北地块之间的微陆块)

    Figure  5.   Assembling process of the South China Block and North China Block in Middle Permian to Middle Jurassic and the pink shows the micro-continental blocks between the South China Block and North China Block

  • [1]

    Chen R X, Zheng Y F, Gong B, et al. Origin of retrograde fluid in ultrahigh-pressure metamorphic rocks: Constraints from mineral hydrogen isotope and water content changes in eclogite-gneiss transitions in the Sulu orogeny[J]. Geochimica et Cosmochimica Acta, 2007, 71(9): 2299-2325. doi: 10.1016/j.gca.2007.02.012

    [2]

    Li S Z, Jahn B M, Zhao S J, et al. Triassic southeastward subduction of North China Block to South China Block: insights from new geological, geophysical and geochemical data[J]. Earth-Science Reviews, 2017, 166: 270-285, doi: 10.1016/j.earscirev.2017.01.009.

    [3]

    Niu Y L, Liu Y, Xue Q Q, et al. Exotic origin of the Chinese continental shelf: new insights into the tectonic evolution of the western Pacific and eastern China since the Mesozoic[J]. Earth Sciences, 2015, 60(18): 1598-1616. http://www.cnki.com.cn/Article/CJFDTotal-JXTW201518006.htm

    [4]

    Wang J, Chang S C, Lin P J, et al. Evidence of Early Cretaceous transpression in the Sulu orogenic belt, eastern China[J]. Tectonophysics, 2016, 687: 44-55. doi: 10.1016/j.tecto.2016.09.005

    [5] 李三忠, 刘鑫, 索艳慧, 等.华北克拉通东部地块和大别—苏鲁造山带印支期褶皱—逆冲构造与动力学背景[J].岩石学报, 2009, 25(9): 2031-2049. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200909001

    LI Sanzhong, LIU Xin, SUO Yanhui, et al. Triassic folding and thrusting in the Eastern Block of the North China Craton and the Dabie-Sulu orogen and its geodynamics[J]. Acta Petrologica Sinica, 2009, 25(9): 2031-2049. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200909001

    [6] 李三忠, 王金铎, 刘建忠, 等.鲁西地块中生代构造格局及其形成背景[J].地质学报, 2005, 79(4): 487-497. doi: 10.3321/j.issn:0001-5717.2005.04.006

    LI Sanzhong, WANG Jinduo, LIU Jianzhong et al. Mesozoic structure and its tectonic setting in the Western Shandong Block[J]. Acta Geologica Sinica, 2005, 79(4): 487-497. doi: 10.3321/j.issn:0001-5717.2005.04.006

    [7] 索书田, 钟增球, 周汉文, 等.大别-苏鲁超高压和高压变质带构造演化[J].地学前缘, 2004, 11(3): 71-82. doi: 10.3321/j.issn:1005-2321.2004.03.009

    SUO Shutian, ZHONG Zengqiu, ZHOU Hanwen, et al. Tectonic evolution of Dabie-Sulu UHP and HP metamorphic belts, East-Central China[J]. Earth Science Frontiers, 2004, 11(3): 71-82. doi: 10.3321/j.issn:1005-2321.2004.03.009

    [8] 吴萍萍, 王椿镛, 丁志峰, 等.大别-苏鲁及邻区上地幔的各向异性[J].地球物理学报, 2012, 55(8): 2539-2550. http://www.cnki.com.cn/Article/CJFDTotal-DQWX201208007.htm

    WU Pingping, WANG Chunyong, DING Zhifeng, et al. Seismic anisotropy of upper mantle beneath the Dabie-Sulu and its adjacent areas[J]. Chinese Journal of Geophysics, 2012, 55(8): 2539-2550. http://www.cnki.com.cn/Article/CJFDTotal-DQWX201208007.htm

    [9] 许志琴, 李源, 梁凤华, 等. "秦岭-大别-苏鲁"造山带中"古特提斯缝合带"的连接[J].地质学报, 2015, 89(4): 671-680. doi: 10.3969/j.issn.0001-5717.2015.04.001

    XV Zhiqin, LI Yuan, LIANG Fenghua, et al. A connection between of the Paleo-Tethys suture zone in the Qinling-Dabie-Sulu Orogenic Belt[J]. Acta Geologica Sinica, 2015, 89(4): 671-680. doi: 10.3969/j.issn.0001-5717.2015.04.001

    [10] 杨文采, 胡振远, 程振炎, 等.郯城—涟水综合地球物理剖面[J].地球物理学报, 1999, 42(2): 206-217. doi: 10.3321/j.issn:0001-5733.1999.02.008

    YANG Wencai, HU Zhenyuan, CHENG Zhenyan, et al. Long profile of Geophysical investigation from Tanchen to Lianshui, East-Central China[J]. Chinese Journal of Geophysics, 1999, 42(2): 206-217. doi: 10.3321/j.issn:0001-5733.1999.02.008

    [11] 杨文采, 杨午阳, 金振民, 等.苏鲁超高压变质带岩石圈的地震组构[J].中国科学D辑:地球科学, 2004, 34(4): 307-319. http://www.cnki.com.cn/Article/CJFDTotal-JDXK200404002.htm

    YANG Wencai, Yang Wuyang, Jin Zhenmin, et al. Lithospheric seismic fabrics of Sulu ultrahigh-pressure metamorphic belt[J]. Science in China: Series D: Earth Sciences, 2005, 48(5): 585-600. http://www.cnki.com.cn/Article/CJFDTotal-JDXK200404002.htm

    [12] 郑永飞.超高压变质与大陆碰撞研究进展:以大别-苏鲁造山带为例[J].科学通报, 2008, 53(18): 2129-2152. doi: 10.1016-j.fgb.2010.02.001/

    ZHENG Yongfei. A perspective view on ultrahigh-pressure metamorphism and continental collision in the Dabie-Sulu orogenic belt[J]. Chinese Science Bulletin, 2008, 53(20): 3081-3104. doi: 10.1016-j.fgb.2010.02.001/

    [13]

    Hynes A. Encouraging the extrusion of deep-crustal rocks in collisional zones[J]. Mineralogical Magazine, 2002, 66(1): 5-24. doi: 10.1180/0026461026610013

    [14]

    Platt J P. Exhumation of high-pressure rocks: a review of concepts and processes[J]. Terra Nova, 1993, 5(2): 119-133. doi: 10.1111/j.1365-3121.1993.tb00237.x

    [15]

    Ring U, Laws S, Bernet M. Structural analysis of a complex nappe sequence and late-orogenic basins from the Aegean Island of Samos, Greece[J]. Journal of Structural Geology, 1999, 21(11): 1575-1601. doi: 10.1016/S0191-8141(99)00108-X

    [16]

    Ring U, Ratschbacher L, Frisch W, et al. Kinematics of the Alpine plate-margin: structural styles, strain and motion along the Penninic-Austroalpine boundary in the Swiss-Austrian alps[J]. Journal of the Geological Society, 1989, 146(5): 835-849. doi: 10.1144/gsjgs.146.5.0835

    [17]

    Xu Z Q, Wang Q, Tang Z M, et al. Fabric kinematics of the ultrahigh-pressure metamorphic rocks from the main borehole of the Chinese Continental Scientific Drilling Project: implications for continental subduction and exhumation[J]. Tectonophysics, 2009, 475(2): 235-250. doi: 10.1016/j.tecto.2009.02.041

    [18]

    Maruyama S, Liou J G, Zhang R Y. Tectonic evolution of the ultrahigh-pressure (UHP) and high-pressure (HP) metamorphic belts from central China[J]. The Island Arc, 1994, 3(2): 112-121. doi: 10.1111/j.1440-1738.1994.tb00099.x

    [19]

    Wang E, Meng Q R, Burchfiel B C, et al. Mesozoic large-scale lateral extrusion, rotation, and uplift of the Tongbai-Dabie Shan belt in east China[J]. Geology, 2003, 31(4): 307-310. doi: 10.1130/0091-7613(2003)031<0307:MLSLER>2.0.CO;2

    [20]

    Ratschbacher L, Franz L, Enkelmann E, et al. The Sino-Korean-Yangtze suture, the Huwan detachment, and the Paleozoic-Tertiary exhumation of (ultra) high-pressure rocks along the Tongbai-Xinxian-Dabie Mountains[C]//Hacker B R, McClelland W C, Liou J G. Ultrahigh-Pressure Metamorphism: Deep Continental Subduction. Geological Society of America Special Papers. Geological Society of America, 2006, 403: 45-75.

    [21]

    Ratschbacher L, Hacker B R, Webb L E, et al. Exhumation of the ultrahigh-pressure continental crust in east central China: cretaceous and Cenozoic unroofing and the Tan-Lu fault[J]. Journal of Geophysical Research, 2000, 105(B6): 13303-13338. doi: 10.1029/2000JB900040

    [22]

    Li S Z, Kusky T M, Zhao G C, et al. Two-stage Triassic exhumation of HP-UHP terranes in the western Dabie orogen of China: constraints from structural geology[J]. Tectonophysics, 2010, 490(3-4): 267-293. doi: 10.1016/j.tecto.2010.05.010

    [23]

    Li S Z, Kusky T M, Liu X C, et al. Two-stage collision-related extrusion of the western Dabie HP-UHP metamorphic terranes, central China: evidence from quartz c -axis fabrics and structures[J]. Gondwana Research, 2009, 16(2): 294-309. doi: 10.1016/j.gr.2009.03.003

    [24]

    Li S Z, Kusky T M, Zhao G C, et al. Thermochronological constraints on two-stage extrusion of HP/UHP terranes in the Dabie-Sulu orogen, east-central China[J]. Tectonophysics, 2011, 504(1-4): 25-42. doi: 10.1016/j.tecto.2011.01.017

    [25]

    Arakawa Y, Saito Y, Amakawa H. Crustal development of the Hida belt, Japan: Evidence from Nd-Sr isotopic and chemical characteristics of igneous and metamorphic rocks[J]. Tectonophysics, 2000, 328(1-2): 183-204. doi: 10.1016/S0040-1951(00)00183-9

    [26]

    Wu Y D, Hou Q L. The extension of the Dabie-Sulu orogenic belt in Korean Peninsula: based on 40Ar/39Ar Tectonic chronology[J]. Acta Petrologica Sinica, 2016, 32(10): 3187-3204.

    [27]

    Zhou J B, Wilde S A, Zhang X Z, et al. The onset of Pacific margin accretion in NE China: evidence from the Heilongjiang high-pressure metamorphic belt[J]. Tectonophysics, 2009, 478(3-4): 230-246. doi: 10.1016/j.tecto.2009.08.009

    [28] 唐贤君, 於文辉, 单蕊.中国东部-朝鲜半岛中生代板块结合带划分研究现状与问题[J].地质学报, 2010, 84(5): 606-617. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201005002

    TANG Xianjun, YU Wenhui, SHAN Rui. The mesozoic plate boundary in the Eastern China and Korean peninsula: present studies and problems[J]. Acta Geologica Sinica, 2010, 84(5): 606-617. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201005002

    [29]

    Oh C W. A new concept on tectonic correlation between Korea, China and Japan: histories from the late Proterozoic to Cretaceous[J]. Gondwana Research, 2006, 9(1-2): 47-61. doi: 10.1016/j.gr.2005.06.001

    [30]

    Oh C W, Krishnan S, Kim S W, et al. Mangerite magmatism associated with a probable Late-Permian to Triassic Hongseong-Odesan collision belt in South Korea[J]. Gondwana Research, 2006, 9(1-2): 95-105. doi: 10.1016/j.gr.2005.06.005

    [31]

    Oh C W, Kim S W, Williams I S. Spinel granulite in Odesan area, South Korea: Tectonic implications for the collision between the North and South China blocks[J]. Lithos, 2006, 92(3-4): 557-575. doi: 10.1016/j.lithos.2006.03.051

    [32]

    Kobayashi F. Tethyan uppermost Permian (Dzhulfian and Dorashamian) foraminiferal faunas and their paleogeographic and tectonic implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 150(3-4): 279-307. doi: 10.1016/S0031-0182(99)00011-5

    [33]

    Kobayashi F. Palaeogeographic constraints on the tectonic evolution of the Maizuru Terrane of Southwest Japan to the eastern continental margin of South China during the Permian and Triassic[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 195(3-4): 299-317. doi: 10.1016/S0031-0182(03)00363-8

    [34] 朱光, 朴学峰, 张力, 等.合肥盆地伸展方向的演变及其动力学机制[J].地质论评, 2011, 57(2): 153-166. http://d.old.wanfangdata.com.cn/Periodical/dzlp201102001

    ZHU Guang, PIAO Xuefeng, ZHANG Li, et al. Evolution of extensional direction in the Hefei Basin and its dynamic mechanism[J]. Geological Review, 2011, 57(2): 153-166. http://d.old.wanfangdata.com.cn/Periodical/dzlp201102001

    [35] 胡红雷, 朱光.苏北地区前陆变形特征与形成机制[J].大地构造与成矿学, 2013, 37(3): 366-376. doi: 10.3969/j.issn.1001-1552.2013.03.002

    HU Honglei, ZHU Guang. Characteristics and formation mechanism of the foreland deformation in the Subei region[J]. Geotectonica et Metallogenia, 2013, 37(3): 366-376. doi: 10.3969/j.issn.1001-1552.2013.03.002

    [36]

    Fan W M, Guo F, Wang Y J, et al. Late Mesozoic volcanism in the northern Huaiyang tectono-magmatic belt, central China: partial melts from a lithospheric mantle with subducted continental crust relicts beneath the Dabie orogen[J]. Chemical Geology, 2004, 209(1-2): 27-48. doi: 10.1016/j.chemgeo.2004.04.020

    [37] 徐扬, 冯岩, 李日辉.胶北地块前寒武纪基底研究新进展[J].现代地质, 2011, 25(5): 965-974. doi: 10.3969/j.issn.1000-8527.2011.05.017

    XU Yang, FENG Yan, LI Rihui. Main progresses in the study of Precambrian Basement of Jiaobei Terrane, Eastern China[J]. Geoscience, 2011, 25(5): 965-974. doi: 10.3969/j.issn.1000-8527.2011.05.017

    [38] 孔凡梅, 刘云, 李旭平, 等.胶北地块变质基底超镁铁岩的矿物岩石地球化学特征[J].岩石学报, 2015, 31(6): 1549-1563. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201506005

    KONG Fanmei, LIU Yun, LI Xuping, et al. Mineralogical and Petrogeochemical characteristics of ultramafic rocks from the metamorphic basement of the Jiaobei terrane[J]. Acta Petrologica Sinica, 2015, 31(6): 1549-1563. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201506005

    [39] 刘平华, 刘福来, 王舫, 等.胶北地体多期变质事件的P-T-t轨迹及其对胶-辽-吉带形成与演化的制约[J].岩石学报, 2015, 31(10): 2889-2941. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201510005

    LIU Pinghua, LIU Fulai, WANG Fang, et al. P-T-t paths of the multiple metamorphic events of the Jiaobei terrane in the southeastern segment of the Jiao-Liao-Ji Belt (JLJB), in the North China Craton: impication for formation and evolution of the JLJB[J]. Acta Petrologica Sinica, 2015, 31(10): 2889-2941. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201510005

    [40] 刘建辉, 刘福来, 丁正江, 等.胶北地体早前寒武纪重大岩浆事件、陆壳增生及演化[J].岩石学报, 2015, 31(10): 2942-2958. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201510006

    LIU Jianhui, LIU Fulai, DING Zhengjiang, et al. Early Precambrian major magmatic events, and growth and evolution of continental crust in the Jiaobei terrane, North China Craton[J]. Acta Petrologica Sinica, 2015, 31(10): 2942-2958. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201510006

    [41] 张岳桥, 李金良, 张田, 等.胶莱盆地及其邻区白垩纪-古新世沉积构造演化历史及其区域动力学意义[J].地质学报, 2008, 82(9): 1229-1257. doi: 10.3321/j.issn:0001-5717.2008.09.007

    ZHANG Yueqiao, LI Jinliang, ZHANG Tian, et al. Cretaceous to paleocene tectono-sedimentary evolution of the Jiaolai basin and the contiguous areas of the Shandong peninsula (North China) and its geodynamic implications[J]. Acta Geologica Sinica, 2008, 82(9): 1229-1257. doi: 10.3321/j.issn:0001-5717.2008.09.007

    [42] 耿科, 王瑞江, 李洪奎, 等.山东省麻粒岩与麻粒岩相变质作用——研究现状及对前寒武纪大地构造演化的启示[J].地质论评, 2016, 62(1): 153-170. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201601014

    GENG Ke, WANG Ruijiang, LI Hongkui, et al. Granulite and granulite facies metamorphism in Shandong Province——research status and implications to Precambrian geotectonic evolution[J]. Geological Review, 2016, 62(1): 153-170. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201601014

    [43] 郝天珧, SUH M, 刘建华, 等.黄海深部结构与中朝-扬子块体结合带在海区位置的地球物理研究[J].地学前缘, 2004, 11(3): 51-61. doi: 10.3321/j.issn:1005-2321.2004.03.007

    HAO Tianyao, SUH M, LIU Jianhua, et al. Deep structure and boundary belt position between Sino-Korean and Yangtze blocks in Yellow Sea[J]. Earth Science Frontiers, 2004, 11(3): 51-61. doi: 10.3321/j.issn:1005-2321.2004.03.007

    [44] 李楠.南黄海盆地北部坳陷构造演化及沉积相研究[D].国海洋大学博士学位论文, 2010.

    LI Nan. Research on structural evolution and sedimentary facies in North Depression of South Yellow Sea Basin[D]. Doctor Dissertation of Ocean University of China, 2010.

    [45] 王振鸿, 胡明毅, 汤济广, 等.南黄海盆地南部坳陷晚白垩世-第四纪构造演化对油气的控制[J].化工矿产地质, 2014, 36(3): 129-138. doi: 10.3969/j.issn.1006-5296.2014.03.001

    WANG Zhenhong, HU Mingyi, YANG Jiguang, et al. Control on petroleum by tectonic evolution of the late Cretaceous-Quaternary in the South Depression of the South Yellow Sea Basin[J]. Geology of Chemical Minerals, 2014, 36(3): 129-138. doi: 10.3969/j.issn.1006-5296.2014.03.001

    [46] 曾洁.南黄海盆地北部坳陷中生代沉积相研究[D].中国科学院海洋研究所硕士学位论文, 2013.

    ZENG Jie. Research on sedimentary fades of Mesozoic in North Depression of South Yellow Sea Basin[D]. Master Dissertation of the Institute of Oceanology, Chinese Academy of Sciences, 2013.

    [47] 岳保静, 廖晶, 刘鸿, 等.中朝-扬子板块碰撞结合带东部边界及海域延伸[J].海洋地质与第四纪地质, 2014, 34(1): 75-85. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201401009

    YU Baojing, LIAO Jing, LIU Hong, et al. East boundary of the collision belt between Sino-Korean and Yangtze Plates in Eastern China and their extension in the sea[J]. Marine Geology and Quaternary Geology, 2014, 34(1): 75-85. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201401009

    [48] 田振兴.北黄海盆地断裂特征及其深部构造研究[D].中国海洋大学硕士学位论文, 2005.

    TIAN Zhenxing. The disquisition on fracture character and deep-level Geological structure in the North Yellow Sea Basin[D]. Master Dissertation of Ocean University of China, 2005.

    [49]

    Shu L S, Yin H W, Faure M, et al. Mesozoic intracontinental underthrust in the SE margin of the North China Block: insights from the Xu-Huai thrust-and-fold belt[J]. Journal of Asian Earth Sciences, 2017, 141: 161-173, doi: 10.1016/j.jseaes.2016.08.020.

    [50] 舒良树, 吴俊奇, 刘道忠.徐宿地区推覆构造[J].南京大学学报, 1994, 30(4): 638-647. doi: 10.3321/j.issn:0469-5097.1994.04.001

    SHU Liangshu, WU Junqi, LIU Daozhong. Thrust tectonics of Xuzhou-Suzhou Region, Eastern China[J]. Journal of Nanjing University: Natural Sciences Edition, 1994, 30(4): 638-647. doi: 10.3321/j.issn:0469-5097.1994.04.001

    [51] 王鹏程, 赵淑娟, 李三忠, 等.长江中下游南部逆冲变形样式及其机制[J].岩石学报, 2015, 31(1): 230-244. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201501017

    WANG Pengcheng, ZHAO Shujuan, LI Sanzhong, et al. The styles and dynamics of thrust in the south of the Middle-Lower Yangtze River area, China[J]. Acta Petrologica Sinica, 2015, 31(1): 230-244. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201501017

    [52]

    Zhou J B, Wilde S A, Zhao G C, et al. SHRIMP U-Pb zircon dating of the Wulian complex: Defining the boundary between the North and South China Cratons in the Sulu Orogenic Belt, China[J]. Precambrian Research, 2008, 162(3-4): 559-576. doi: 10.1016/j.precamres.2007.10.008

    [53]

    Zhu G, Jiang D Z, Zhang B L, et al. Destruction of the eastern North China Craton in a backarc setting: evidence from crustal deformation kinematics[J]. Gondwana Research, 2012, 22(1): 86-103. doi: 10.1016/j.gr.2011.08.005

    [54]

    Liu X C, Jahn B M, Liu D Y, et al. SHRIMP U-Pb zircon dating of a metagabbro and eclogites from western Dabieshan (Hong'an block), China, and its tectonic implications[J]. Tectonophysics, 2004, 394(3-4): 171-192. doi: 10.1016/j.tecto.2004.08.004

    [55]

    Liu X C, Wei C J, Li S Z, et al. Thermobaric structure of a traverse across western Dabieshan: implications for collision tectonics between the Sino-Korean and Yangtze cratons[J]. Journal of Metamorphic Geology, 2004, 22(4): 361-379. doi: 10.1111/j.1525-1314.2004.00519.x

    [56]

    Meng Q R, Zhang G W. Geologic framework and tectonic evolution of the Qinling orogen, central China[J]. Tectonophysics, 2000, 323(3-4): 183-196. doi: 10.1016/S0040-1951(00)00106-2

    [57] 李三忠, 杨朝, 赵淑娟, 等.全球早古生代造山带(Ⅰ):碰撞型造山[J].吉林大学学报:地球科学版, 2016, 46(4): 945-967. http://www.cnki.com.cn/Article/CJFDTotal-CCDZ201604003.htm

    LI Sanzhong, YANG Zhao, ZHAO Shujuan, et al. Global Early Paleozoic Orogens (Ⅰ): collision-type orogeny[J]. Journal of Jilin University: Earth Science Edition, 2016, 46(4): 945-967. http://www.cnki.com.cn/Article/CJFDTotal-CCDZ201604003.htm

    [58] 李三忠, 杨朝, 赵淑娟, 等.全球早古生代造山带(Ⅱ):俯冲-增生型造山[J].吉林大学学报:地球科学版, 2016, 46(4): 968-1004. http://www.cnki.com.cn/Article/CJFDTotal-CCDZ201604002.htm

    LI Sanzhong, YANG Zhao, ZHAO Shujuan, et al. Global Early Paleozoic Orogens (Ⅱ): subduction-accretionary-type orogeny[J]. Journal of Jilin University: Earth Science Edition, 2016, 46(4): 968-1004. http://www.cnki.com.cn/Article/CJFDTotal-CCDZ201604002.htm

    [59] 李三忠, 李玺瑶, 赵淑娟, 等.全球早古生代造山带(Ⅲ):华南陆内造山[J].吉林大学学报:地球科学版, 2016, 46(4): 1005-1025. http://www.cnki.com.cn/Article/CJFDTotal-CCDZ201604003.htm

    LI Sanzhong, LI Xiyao, ZHAO Shujuan, et al. Global Early Paleozoic Orogens (Ⅲ): intracontinental orogen in South China[J]. Journal of Jilin University: Earth Science Edition, 2016, 46(4): 1005-1025. http://www.cnki.com.cn/Article/CJFDTotal-CCDZ201604003.htm

    [60] 李三忠, 杨朝, 赵淑娟, 等.全球早古生代造山带(Ⅳ):板块重建与Carolina超大陆[J].吉林大学学报:地球科学版, 2016, 46(4): 1026-1041. http://www.cnki.com.cn/Article/CJFDTotal-CCDZ201604004.htm

    LI Sanzhong, YANG Zhao, ZHAO Shujuan, et al. Global Early Paleozoic Orogens (Ⅳ): plate reconstruction and supercontinent Carolina[J]. Journal of Jilin University: Earth Science Edition, 2016, 46(4): 1026-1041. http://www.cnki.com.cn/Article/CJFDTotal-CCDZ201604004.htm

    [61] 李三忠, 赵淑娟, 李玺瑶, 等.东亚原特提斯洋(Ⅰ):南北边界和俯冲极性[J].岩石学报, 2012, 32(9): 2609-2627. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201609002.htm

    LI Sanzhong, ZHAO Shujuan, LI Xiyao, et al. Proto-Tehtys Ocean in East Asia (I): northern and southern border faults and subduction polarity[J]. Acta Petrologica Sinica, 2012, 32(9): 2609-2627. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201609002.htm

    [62] 李三忠, 赵淑娟, 余珊, 等.东亚原特提斯洋(Ⅱ):早古生代微陆块亲缘性与聚合[J].岩石学报, 2012, 32(9): 2628-2644. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201609003.htm

    LI Sanzhong, ZHAO Shujuan, YU Shan, et al. Proto-Tehtys Ocean in East Asia (Ⅱ): affinity and assmbly of Early Paleozoic micro-continental blocks[J]. Acta Petrologica Sinica, 2012, 32(9): 2628-2644. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201609003.htm

    [63] 赵淑娟, 李三忠, 余珊, 等.东亚原特提斯洋(Ⅲ):北秦岭韧性剪切带构造特征[J].岩石学报, 2012, 32(9): 2645-2655. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201609004.htm

    ZHAO Shujuan, LI Sanzhong, YU Shan, et al. Proto-Tethys Ocean in East Asia (Ⅲ): structures of ductile shear zones in the North Qinling[J]. Acta Petrologica Sinica, 2012, 32(9): 2645-2655. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201609004.htm

    [64] 李三忠, 余珊, 赵淑娟, 等.东亚大陆边缘的板块重建与构造转换[J].海洋地质与第四纪地质, 2013, 33(3): 65-94. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201303008

    LI Sanzhong, YU Shan, ZHAO Shujuan, et al. Tectonic transition and plate reconstructions of the East Asian continental magin[J]. Marine Geology and Quaternary Geology, 2013, 33(3): 65-94. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201303008

    [65]

    Liu X C, Jahn B M, Cui J J, et al. Triassic retrograded eclogites and Cretaceous gneissic granites in the Tongbai Complex, central China: implications for the architecture of the HP/UHP Tongbai-Dabie-Sulu collision zone[J]. Lithos, 2010, 119(3-4): 211-237. doi: 10.1016/j.lithos.2010.06.005

    [66] 徐扬, 杨坤光, 李日辉, 等.北苏鲁超高压变质带前寒武纪基底研究新进展[J].现代地质, 2013, 27(2): 248-259. doi: 10.3969/j.issn.1000-8527.2013.02.002

    XU Yang, YANG Kunguang, LI Rihui, et al. Main progresses in the study of Precambrian basement of the north Sulu ultra-high pressure metamorphic belt, Eastern China[J]. Geoscience, 2013, 27(2): 248-259. doi: 10.3969/j.issn.1000-8527.2013.02.002

    [67] 刘利双, 刘福来, 刘平华, 等.苏鲁超高压变质带中海阳所地区变基性岩的地球化学性质及变质演化特征[J].岩石学报, 2015, 31(10): 2863-2888. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201510004

    LIU Lishuang, LIU Fulai, LIU Pinghua, et al. Geochemical characteristics and metamorphic evolution of meta-mafic rocks from Haiyangsuo area, Sulu ultrahigh-pressure metamorphic belt[J]. Acta Petrologica Sinica, 2015, 31(10): 2863-2888. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201510004

    [68] 宋明春, 王沛成.山东省区域地质[M].山东:山东省地图出版社, 2003.

    SONG Mingchun, WANG Peicheng. Regional Geology of Shandong Province[M]. Shandong: Shandong Cartographic Publishing House, 2003.

    [69] 宋明春, 马文斌.胶南隆起北缘石门-薛家庄韧性剪切带[J].山东地质, 1997, 13(1): 77-84. http://www.cnki.com.cn/Article/CJFDTotal-SDDI199701007.htm

    SONG Mingchun, MA Wenbin. Shimen-Xuejiazhuang ductile shear belt in the North Margin of Jiaonan uplift[J]. Shandong Geology, 1997, 13(1): 77-84. http://www.cnki.com.cn/Article/CJFDTotal-SDDI199701007.htm

    [70] 顾德林, 张长厚, 陈建强, 等.胶南隆起北部地质构造特征及其演化[M].武汉:中国地质大学出版社, 1996: 1-9.

    GU Delin, ZHANG Changhou, CHEN Jianqiang, et al. The Geological and Tectonic Evolution of the Northern of the Jiaonan Uplift, Southeastern Shandong Province[M]. Wuhan: China University of Geosciences Press, 1996: 1-9.

    [71]

    Li S Z, Zhao G C, Dai L M, et al. Mesozoic basins in eastern China and their bearing on the deconstruction of the North China Craton[J]. Journal of Asian Earth Sciences, 2012, 47: 64-79. doi: 10.1016/j.jseaes.2011.06.008

    [72]

    Liu F L, Wang F, Liou J G, et al. Mid-Late Triassic metamorphic event for Changhai meta-sedimentary rocks from the SE Jiao-Liao-Ji Belt, North China Craton: evidence from monazite U-Th-Pb and muscovite Ar-Ar dating[J]. Journal of Asian Earth Sciences, 2014, 94: 205-225. doi: 10.1016/j.jseaes.2014.05.001

    [73] 李三忠, 刘建忠, 赵国春, 等.华北克拉通东部地块中生代变形的关键时限及其对构造的制约——以胶辽地区为例[J].岩石学报, 2004, 20(3): 633-646. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200403027

    LI Sanzhong, LIU Jianzhong, ZHAO Guochun, et al. Key geochronology of Mesozoic deformation in the eastern block of the North China Carton and its constraints on regional tectonics: a case of Jiaodong and Liaodong Peninsula[J]. Acta Petrologica Sinica, 2004, 20(3): 633-646. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200403027

    [74] 李三忠, 刘永江, 杨振升.辽吉地区古元古代造山作用的大陆动力学过程及其壳内响应[J].地球物理学报, 1998, 41(S): 142-152. http://www.cnki.com.cn/Article/CJFDTotal-DQWX1998S1015.htm

    LI Sanzhong, LIU Yongjiang, YANG Zhensheng. Intracrustal response to continental dynamic processes of the Paleoproterozoic orogeny in Liao-Ji area[J]. Acta Geophysica of Sinica, 1998, 41(S): 142-152. http://www.cnki.com.cn/Article/CJFDTotal-DQWX1998S1015.htm

    [75] 刘福来, 刘平华, 王舫, 等.胶-辽-吉古元古代造山/活动带巨量变沉积岩系的研究进展[J].岩石学报, 2015, 31(10): 2816-2846. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201510002

    LIU Fulai, LIU Pinghua, WANG Fang, et al. Progresses and overviews of voluminous meta-sedimentary series within the Paleoproterozoic Jiao-Liao-Ji orogenic/mobile belt, North China Craton[J]. Acta Petrologica Sinica, 2015, 31(10): 2816-2846. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201510002

    [76]

    Jahn B M, Rumble D, Liou J G. Geochemistry and isotope tracer study of UHP metamorphic rocks[M]//Carswell D A, Compagnoni R. Ultrahigh Pressure Metamorphism. EMU Notes in Mineralogy Series. Mineralogical Society of America, 2003: 365-414.

    [77]

    Jahn B M, Chen B. Dabieshan UHP metamorphic terrane: Sr-Nd-Pb isotopic Constraint to Pre-metamorphic Subduction Polarity[J]. International Geology Review, 2007, 49(1): 14-29. doi: 10.2747/0020-6814.49.1.14

    [78]

    Bryant D L, Ayers J C, Gao S, et al. Geochemical, age, and isotopic constraints on the location of the Sino-Korean/Yangtze Suture and evolution of the Northern Dabie Complex, east central China[J]. Geological Society of America Bulletin, 2004, 116(5): 698-717. doi: 10.1130/B25302.2

    [79]

    Huang J, Zheng Y F, Zhao Z F, et al. Melting of subducted continent: element and isotopic evidence for a genetic relationship between Neoproterozoic and Mesozoic granitoids in the Sulu orogen[J]. Chemical Geology, 2006, 229(4): 227-256. doi: 10.1016/j.chemgeo.2005.11.007

    [80]

    Liu S, Hu R Z, Gao S, et al. U-Pb zircon age, geochemical and Sr-Nd-Pb-Hf isotopic constraints on age and origin of alkaline intrusions and associated mafic dikes from Sulu orogenic belt, eastern China[J]. Lithos, 2008, 106(3-4): 365-379. doi: 10.1016/j.lithos.2008.09.004

    [81]

    Wang Q, Wyman D A, Xu J F, et al. Early Cretaceous adakitic granites in the Northern Dabie Complex, central China: implications for partial melting and delamination of thickened lower crust[J]. Geochimica et Cosmochimica Acta, 2007, 71(10): 2609-2636. doi: 10.1016/j.gca.2007.03.008

    [82]

    Xu H J, Ma C Q, Ye K. Early cretaceous granitoids and their implications for the collapse of the Dabie orogen, eastern China: SHRIMP zircon U-Pb dating and geochemistry[J]. Chemical Geology, 2007, 240(3-4): 238-259. doi: 10.1016/j.chemgeo.2007.02.018

    [83]

    Yang J H, Wu F Y, Chung S L, et al. Petrogenesis of Early Cretaceous intrusions in the Sulu ultrahigh-pressure orogenic belt, east China and their relationship to lithospheric thinning[J]. Chemical Geology, 2005, 222(3-4): 200-231. doi: 10.1016/j.chemgeo.2005.07.006

    [84]

    Zhao Z F, Zheng Y F, Wei C S, et al. Zircon isotope evidence for recycling of subducted continental crust in post-collisional granitoids from the Dabie terrane in China[J]. Geophysical Research Letters, 2004, 31(22): L22602. doi: 10.1029-2004GL021061/

    [85]

    Zhao Z F, Zheng Y F, Wei C S, et al. Post-collisional granitoids from the Dabie orogen in China: zircon U-Pb age, element and O isotope evidence for recycling of subducted continental crust[J]. Lithos, 2007, 93(3-4): 248-272. doi: 10.1016/j.lithos.2006.03.067

    [86] 郭敬辉, 陈福坤, 张晓曼, 等.苏鲁超高压带北部中生代岩浆侵入活动与同碰撞-碰撞后构造过程:锆石U-Pb年代学[J].岩石学报, 2005, 21(4): 1281-1301. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200504025

    GUO Jinghui, CHEN Fukun, ZHANG Xiaoman, et al. Evolution of syn-to post-collisional magmatism from north Sulu UHP belt, eastern China: zircon U-Pb geochronology[J]. Acta Petrologica Sinica, 2005, 21(4): 1281-1301. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200504025

    [87] 赵子福, 郑永飞.俯冲大陆岩石圈重熔:大别-苏鲁造山带中生代岩浆岩成因[J].中国科学D辑:地球科学, 2009, 39(7): 888-909. http://www.cnki.com.cn/Article/CJFDTotal-JDXK200907004.htm

    ZHAO Zifu, ZHENG Yongfei. Remelting of subducted continental lithosphere: Petrogenesis of Mesozoic magmatic rocks in the Dabie-Sulu orogenic belt[J]. Science in China Series D: Earth Sciences, 2009, 39(7): 888-909. http://www.cnki.com.cn/Article/CJFDTotal-JDXK200907004.htm

    [88] 陈世悦, 刘焕杰.华北地台东部石炭-二叠纪岩相古地理特征[J].中国区域地质, 1997, 16(4): 379-386. http://www.cnki.com.cn/Article/CJFDTotal-ZQYD704.005.htm

    CHEN Shiyue, LIU Huanjie. Carboniferous-Permian lithofacies and paleogeography in the eastern part of the North China Platform[J]. Regional Geology of China, 1997, 16(4): 379-386. http://www.cnki.com.cn/Article/CJFDTotal-ZQYD704.005.htm

    [89] 陈世悦, 刘焕杰.华北石炭-二叠纪层序地层格架及其特征[J].沉积学报, 1999, 17(1): 63-70. doi: 10.3969/j.issn.1000-0550.1999.01.010

    CHEN Shiyue, LIU Huanjie. Sequence stratigraphic framework and its characteristics of the carboniferous-Permian in North China[J]. Acta Sedimentologica Sinica, 1999, 17(1): 63-70. doi: 10.3969/j.issn.1000-0550.1999.01.010

    [90] 吕大炜, 李增学, 刘海燕, 等.华北晚古生代海平面变化及其层序地层响应[J].中国地质, 2009, 36(5): 1079-1086. doi: 10.3969/j.issn.1000-3657.2009.05.012

    LV Dawei, LI Zengxue, LIU Haiyan, et al. The sea-level change and its response to the Late Paleozoic sequence stratigraphy in North China[J]. Geology in China, 2009, 36(5): 1079-1086. doi: 10.3969/j.issn.1000-3657.2009.05.012

    [91] 邵龙义, 董大啸, 李明培, 等.华北石炭-二叠纪层序-古地理及聚煤规律[J].煤炭学报, 2014, 39(8): 1725-1734. http://d.old.wanfangdata.com.cn/Periodical/mtxb201408045

    SHAO Longyi, DONG Daxiao, LI Mingpei, et al. Sequence-paleogeography and coal accumulation of the Carboniferous-Permian in the North China Basin[J]. Journal of China Coal Society, 2014, 39(8): 1725-1734. http://d.old.wanfangdata.com.cn/Periodical/mtxb201408045

    [92] 张开均.华北板块东缘晚古生代火山活动及其大地构造含义[J].中国煤田地质, 1998, 10(3): 11-12, 20. http://www.cnki.com.cn/Article/CJFDTotal-ZGMT803.002.htm

    ZHANG Kaijun. Late andesitic volcanism of Late Palacozoic era along the eastern margin of North China Plate and its tectonic implications[J]. Coal Geology of China, 1998, 10(3): 11-12, 20. http://www.cnki.com.cn/Article/CJFDTotal-ZGMT803.002.htm

    [93]

    Yu S, Li S Z, Zhao S J, et al. Long history of a Grenville orogen relic-The North Qinling terrane: evolution of the Qinling orogenic belt from Rodinia to Gondwana[J]. Precambrian Research, 2015, 271: 98-117. doi: 10.1016/j.precamres.2015.09.020

    [94]

    Cao H H, Li S Z, Zhao S J, et al. Detrital zircon geochronology of Neoproterozoic to early Paleozoic sedimentary rocks in the North Qinling Orogenic Belt: implications for the tectonic evolution of the Kuanping Ocean[J]. Precambrian Research, 2016, 279: 1-16. doi: 10.1016/j.precamres.2016.04.001

    [95]

    Sun W J, Li S Z, Liu X, et al. Deep structures and surface boundaries among Proto-Tethyan micro-blocks: Constraints from seismic tomography and aeromagnetic anomalies in the Central China Orogen[J]. Tectonophysics, 2015, 659: 109-121. doi: 10.1016/j.tecto.2015.07.033

    [96]

    Wilde S A, Dorsett-Bain H L, Liu J L. The identification of a Late Pan-African granulite facies event in northeastern China: SHRIMP U-Pb zircon dating of the Mashan Group at Liu Mao, Heilongjiang Province, China[C]//Proceedings of the 30th International Geological Congress: Precambrian Geology and Metamorphic Petrology, VSP International. Vol. 17. Amsterdam: VSP International Science Publishers, 1997: 59-74.

    [97]

    Wilde S A, Zhang X Z, Wu F Y. Extension of a newly identified 500 Ma metamorphic terrane in North East China: further U-Pb SHRIMP dating of the Mashan Complex, Heilongjiang Province, China[J]. Tectonophysics, 2000, 328(1-2): 115-130. doi: 10.1016/S0040-1951(00)00180-3

    [98]

    Wilde S A, Wu F Y, Zhang X Z. Late Pan-African magmatism in Northeastern China: SHRIMP U-Pb zircon evidence from granitoids in the Jiamusi Massif[J]. Precambrian Research, 2003, 122(1-4): 311-327. doi: 10.1016/S0301-9268(02)00217-6

    [99]

    Cocks L R M, Torsvik T H. The dynamic evolution of the Palaeozoic geography of eastern Asia[J]. Earth-Science Reviews, 2013, 117: 40-79. doi: 10.1016/j.earscirev.2012.12.001

    [100]

    Han G Q, Liu Y J, Neubauer F, et al. Provenance analysis of Permian sandstones in the central and southern Da Xing'an Mountains, China: constraints on the evolution of the eastern segment of the Central Asian Orogenic Belt[J]. Tectonophysics, 2012, 580: 100-113. doi: 10.1016/j.tecto.2012.08.041

    [101]

    Shu L S, Wang B, Cawood P A, et al. Early Paleozoic and Early Mesozoic intraplate tectonic and magmatic events in the Cathaysia Block, South China[J]. Tectonics, 2015, 34(8): 1600-1621. doi: 10.1002/2015TC003835

    [102]

    Zhou J B, Wilde S A, Zhang X Z, et al. The onset of Pacific margin accretion in NE China: Evidence from the Heilongjiang high-pressure metamorphic belt[J]. Tectonophysics, 2009, 478(3-4): 230-246. doi: 10.1016/j.tecto.2009.08.009

    [103]

    Zhou J B, Wilde S A, Zhao G C, et al. New SHRIMP U-Pb zircon ages from the Heilongjiang high-pressure belt: constraints on the Mesozoic evolution of NE China[J]. American Journal of Science, 2010, 310(9): 1024-1053. doi: 10.2475/09.2010.10

    [104] 周建波, 曾维顺, 曹嘉麟, 等.中国东北地区的构造格局与演化:从500 Ma到180 Ma[J].吉林大学学报:地球科学版, 2012, 42(5): 1298-1316, 1329. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz200905002

    ZHOU Jianbo, ZENG Weishun, CAO Jialin, et al. The tectonic framework and evolution of the NE China: from~500 Ma to~180 Ma[J]. Journal of Jilin University: Earth Science Edition, 2012, 42(5): 1298-1316, 1329. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz200905002

    [105] 周建波, 张兴洲, WILDE S A, 等.黑龙江杂岩的碎屑锆石年代学及其大地构造意义[J].岩石学报, 2009, 25(8): 1924-1936. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200908017

    ZHOU Jianbo, ZHANG Xingzhou, WILDE S A, et al. Detrital zircon U-Pb dating of Heilongjiang complex and its tectonic implications[J]. Acta Petrologica Sinica, 2009, 25(8): 1924-1936. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200908017

    [106] 李伟民, 刘永江, TAKASU A, et al.黑龙江依兰地区蓝片岩的变质演化P - T - t轨迹[J].岩石学报, 2014, 30(10): 3085-3099. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201410022

    LI Weimin, LIU Yongjiang, TAKASU A, et al. Pressure (P)-temperature (T)-time (t) paths of the blueschists from the Yilan area, Heilongjiang Province[J]. Acta Petrologica Sinica, 2014, 30(10): 3085-3099. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201410022

    [107] 黄宝春, 周秀, 朱日祥.从古地磁研究看中国大陆形成与演化过程[J].地学前缘, 2008, 15(3): 348-359. doi: 10.3321/j.issn:1005-2321.2008.03.031

    HUANG Baochun, ZHOU Xiu, ZHU Rixiang. Discussions on Phanerozoic evolution and formation of continental China, based on paleomagnetic studies[J]. Earth Science Frontiers, 2008, 15(3): 348-359. doi: 10.3321/j.issn:1005-2321.2008.03.031

    [108] 黄宝春, 朱日祥, Otofuji Y, 等.华北等中国主要地块早古生代早期古地理位置探讨[J].科学通报, 2000, 45(4): 337-345. http://d.old.wanfangdata.com.cn/Periodical/kxtb200004001

    HUANG Baochun, ZHU Rixiang, Otofugi Y, et al. The Early Paleozoic paleogeography of the North China block and the other major blocks of China[J]. Chinese Science Bulletin, 2000, 45(12):1057-1065. http://d.old.wanfangdata.com.cn/Periodical/kxtb200004001

    [109] 翟永建, 周烑秀.华南和华北陆块显生宙的古地磁及构造演化[J].地球物理学报, 1989, 32(3): 292-307. doi: 10.3321/j.issn:0001-5733.1989.03.006

    ZHAI Yongjian, ZHOU Yaoxiu. Paleomagnetism and tectonic evolutions of North and South China Blocks since the Phanerozoic[J]. Acta Geophysica Sinica, 1989, 32(3): 292-307. doi: 10.3321/j.issn:0001-5733.1989.03.006

    [110]

    Dong Y P, Genser J, Neubauer F, et al. U-Pb and 40Ar/39Ar geochronological constraints on the exhumation history of the North Qinling terrane, China[J]. Gondwana Research, 2011, 19(4): 881-893. doi: 10.1016/j.gr.2010.09.007

    [111] 宋传中, 张国伟, 任升莲, 等.秦岭-大别造山带中几条重要构造带的特征及其意义[J].西北大学学报:自然科学版, 2009, 39(3): 368-380. http://www.cnki.com.cn/Article/CJFDTotal-XBDZ200903006.htm

    SONG Chuanzhong, ZHANG Guowei, REN Shenglian, et al. The research on deformation features of some structural zones in the Qinling-Dabieshan orogenic belt[J]. Journal of Northwest University: Natural Science Edition, 2009, 39(3): 368-380. http://www.cnki.com.cn/Article/CJFDTotal-XBDZ200903006.htm

    [112] 宋传中, 张国伟, 王勇生, 等.秦岭洛南-栾川构造带的变形分解与年代学制约[J].中国科学D辑:地球科学, 2009, 39(2): 144-156. http://www.cnki.com.cn/Article/CJFDTotal-JDXK200902002.htm

    SONG Chuanzhong, ZHANG Guowei, WANG Yongsheng, et al. The constraints of strain partitioning and geochronology in Luonan-Luanchuan tectonic belts on Qinling orogenic belt[J]. Science in China Series D: Earth Sciences, 2009, 52(3): 300-312. http://www.cnki.com.cn/Article/CJFDTotal-JDXK200902002.htm

    [113]

    Zhao S J, Li S Z, Liu X, et al. 2015. The northern boundary of the Proto-Tethys Ocean: Constraints from structural analysis and U-Pb zircon geochronology of the North Qinling Terrane[J]. Journal of Asian Earth Sciences, 2015, 113: 560-574. doi: 10.1016/j.jseaes.2015.09.005

    [114]

    Xiao W J, Huang B C, Han C M, et al. A review of the western part of the Altaids: a key to understanding the architecture of accretionary orogens[J]. Gondwana Research, 2010, 18(2-3): 253-273. doi: 10.1016/j.gr.2010.01.007

    [115] 聂仕琪. 1050~410 Ma全球板块重建: 中国三大地块的洋陆格局及区域构造演化[D].中国科学技术大学硕士学位论文, 2015.

    NIE Shiqi. 1050~410 Ma Global Plate Reconstruction: ocean-continental framework and the tectonic history of the three stable blocks in China[D]. Master Dissertation of University of Science and Technology of China, 2015.

    [116] 余珊.全球背景下中国华北与华南板块重建: 从Rodinia裂解到Gondwana形成[D].中国海洋大学博士学位论文, 2015.

    YU Shan. Plate reconstruction of the North and South China blocks under the global background: from the break-up of Rodinia to the formation of Gondwana[D]. Doctor Dissertation of Ocean University of China, 2015.

    [117] 李三忠, 余珊, 赵淑娟, 等.超大陆旋回与全球板块重建趋势[J].海洋地质与第四纪地质, 2015, 35(1): 51-60. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201501006

    LI Sanzhong, YU Shan, ZHAO Shujuan, et al. Perspectives of supercontinent cycle and global plate reconstruction[J]. Marine Geology and Quaternary Geology, 2015, 35(1): 51-60. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201501006

    [118] 李三忠, 余珊, 赵淑娟, 等.超大陆与全球板块重建派别[J].海洋地质与第四纪地质, 2015, 34(6): 97-117. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201406009

    LI Sanzhong, YU Shan, ZHAO Shujuan, et al. Schools of thought on supercontinent and global plate reconstruction[J]. Marine Geology and Quaternary Geology, 2015, 34(6): 97-117. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201406009

    [119] 李曙光.论华北与扬子陆块的碰撞时代——同位素年代学方法的原理及应用[J].安徽地质, 1992, 2(4): 13-23. http://www.cnki.com.cn/Article/CJFDTotal-AHDZ199204001.htm

    LI Shuguang. On the Time of Collision between the North China and Yangtze Continental segments-the principle and application of isotope chronology[J]. Geology of Anhui, 1992, 2(4): 13-23. http://www.cnki.com.cn/Article/CJFDTotal-AHDZ199204001.htm

    [120]

    Li S Z, Zhao S J, Liu X, et al. Closure of the proto-Tethys ocean and early Paleozoic amalgamation of microcontinental blocks in East Asia[J]. Earth-Science Reviews, 2017, doi: 10.1016/j.earscirev.2017.01.011.

    [121]

    Li Z X, Li X H. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: a flat-slab subduction model[J]. Geology, 2007, 35(2): 179-182. doi: 10.1130/G23193A.1

图(5)
计量
  • 文章访问数:  4268
  • HTML全文浏览量:  1228
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-30
  • 修回日期:  2017-06-18
  • 刊出日期:  2017-08-27

目录

/

返回文章
返回