GUAN Hong-xiang, CHEN Duo-fu, SONG Zhi-guang. BIOMARKERS AND BACTERIAL PROCESSES IN THE SEDIMENTS OF GAS SEEP SITE[J]. Marine Geology & Quaternary Geology, 2007, 27(5): 75-83.
Citation: GUAN Hong-xiang, CHEN Duo-fu, SONG Zhi-guang. BIOMARKERS AND BACTERIAL PROCESSES IN THE SEDIMENTS OF GAS SEEP SITE[J]. Marine Geology & Quaternary Geology, 2007, 27(5): 75-83.

BIOMARKERS AND BACTERIAL PROCESSES IN THE SEDIMENTS OF GAS SEEP SITE

More Information
  • Received Date: March 08, 2007
  • Revised Date: August 19, 2007
  • Methane oxidizing archea (MOA) and sulfate reducing bacteria (SRB) are abundant in cold seep and hydrate sites, where dominant anaerobic oxidation of methane played an important role in the sea carbon cycle and microbial propagation. MOA oxidizes methane into HCO3- and SRB reduces SO42- into HS- at gas seep site, which is anaerobic, and microbes obtain energy here for living and growth. At least MOA consists of three colonies:ANME-1, ANME-2 and ANME-3, showed in biomarkers as isoprenoids and free isoprenoid hydrocarbons. There are two colonies of SRB,that is, Desulfosarcina and Desulfococcus. The typical biomarkers produced by SRB are Dialkyl glycerol diethers (DGDs) and fatty acids. All the biomarkers of cold seep sites have very low carbon isotopic compositions which are between -41.1‰~-95.6‰, indicating that the microbes get carbon from CH4 and that there are activities of MOA and SRB in anaerobic gas seep sites.
  • [1]
    Pancost R D, Chopmans E, Sinninghe J S. Archaeal lipids in Mediterranean Cold Seeps:Molecular proxies for anaerobic methane oxidation[J]. Geochimica et Cosmochimica Acta, 2001, 65:1611-1627.
    [2]
    王家生, Suess E. 天然气水合物伴生的沉积物碳、氧同位素示踪[J].科学通报, 2002,47:1172-1176.[WANG Jia-sheng, Suess E. Indicators of δ13

    C and δ18O of gas hydrate-associated sediments[J]. Chinese Science Bulletin, 2002,47(19):1659-1663.]
    [3]
    Hinrichs K U, Hayes J M, Sylva S P, et al. Methane-consuming archaebacteria in marine sediments[J]. Nature, 1999, 398:802-805.
    [4]
    Boetius A, Ravenschlag K, Schubert C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature, 2000, 407:623-626.
    [5]
    陈多福, 陈先沛, 陈光谦. 冷泉流体沉积碳酸盐岩的地质地球化学特征[J]. 沉积学报, 2002, 20(1):35-40.

    [CHEN Duo-fu, CHEN Xian-pei, CHEN Guang-qian. Geology and geochemistry of cold seepage and venting related carbonates[J]. Acta Sedimentologica Sinica, 2002, 20(1):35-40.]
    [6]
    Zhang C L, Li Y, Wall J D, et al. Lipid and carbon isotopic evidence of methane oxidizing and sulfate-reducing bacteria in association with gas hydrates from the Gulf of Mexico[J]. Geology, 2002, 30:239-242.
    [7]
    Zhang C L, Pancost R D, Sassenc R, et al. Archaeal lipid biomarkers and isotopic evidence of anaerobic methane oxidation associated with gas hydrates in the Gulf of Mexico[J]. Organic Geochemistry, 2003, 34:827-836.
    [8]
    Schouten S, Wakeham S G, Sinninghe Damst J S. Evidence for anaerobic methane oxidation by archaea in euxinic waters of the Black Sea[J]. Organic Geochemistry,2001,32:1277-1281.
    [9]
    Elvert M, Suess E, Whiticar M J. Anaerobic methane oxidation associated with marine gas hydrates:superlight C-isotopes from saturated and unsaturated C20 and C25 irre-gular isoprenoids[J]. Naturwissenschaften, 1999, 86:295-300.
    [10]
    Hinrichs K U, Sylva S P, Summons R E, et al. Molecular and isotopic analysis of anaerobic methane oxidizing communities in marine sediments[J]. Organic Geochemistry, 2000, 31:1685-1701.
    [11]
    Peckmann J, Thiel V. Carbon cycling at ancient methane-seeps[J]. Chemical Geology, 2004, 205:443-467.
    [12]
    Barber C J, Grice K, Baston T P, et al. The identification of crocetane in Australian crude oils[J]. Organic Geochemistry, 2001, 32:943-947.
    [13]
    Nauhaus K, Treude T, Boetius A, et al. Environmental regulation of the anaerobic oxidation of methane:a comparison of ANME-I and ANME-Ⅱ communities[J]. Environmental Microbiology, 2005, 7(1):98-106.
    [14]
    Hallam S J, Putnam N, Preston C M, et al. Reverse methanogenesis:Testing the hypothesis with environmental genomics[J]. Science, 2004, 305:1457-1462.
    [15]
    Hallam S J, Girguis P R, Preston C M, et al. Identification of methyl coenzyme M reductase A (mcrA) genes associated with methaneoxidizing Archaea[J]. Appl. Environ. Microbiol., 2003, 69:5483-5491.
    [16]
    冯东, 陈多福,苏正,等. 海底甲烷缺氧氧化与冷泉碳酸盐岩沉淀动力学[J]. 海洋地质与第四纪地质, 2006, 26(3):125-131.

    [FENG Dong, CHEN Duo-fu, SU Zheng,el al. Anaerobic oxidization of methane and seep carbonate precipitation kinetics at seafloor[J]. Marine Geology and Quaternary Geology, 2006, 26(3):125-131.]
    [17]
    Orphan V J, House C H, Hinrichs K U,et al. Methane-consuming Archaea revealed by directly coupled isotopic and phylogenetic analysis[J]. Science, 2001, 293:484-487.
    [18]
    Orcutt B, Boetius A, Elvert M, et al. Molecular biogeochemistry of sulfate reduction, methanogenesis and the anaerobic oxidation of methane at Gulf of Mexico cold seeps[J]. Geochimica et Cosmochimica Acta, 2005, 69(17):4267-4281.
    [19]
    Knittel K, sekann T L, Boetius A, et al. Diversity and distribution of methanotrophic Archaea at cold seeps[J]. Applied and Environmental Microbiology, 2005:467-479.
    [20]
    Orphan V J, Hinrichs K U, Ussler Ⅲ W, et al. Comparative analysis of methane-oxidizing Archaea and sulfate-reducing bacteria in anoxic marine sediments[J].Appl. Environ. Microbiol., 2001, 67:1922-1934.
    [21]
    Girguis P R, Orphan V J, Hallam S J, et al. Growth and methane oxidation rates of anaerobic methanotrophic Archaea in a continuous-flow bioreactor[J]. Appl. Environ. Microbiol., 2003, 69:5472-5482.
    [22]
    Lanoil B D, Sassen R, La Duc M T, et al. Bacteria and Archaea physically associated with Gulf of Mexico gas hydrates[J].Appl. Environ. Microbiol., 2001, 67:5143-5153.
    [23]
    Mills H J,Hodges C,Wilson K, et al. Microbial diversity in sediments associated with surface-breaching gas hydrate mounds in the Gulf of Mexico[J]. FEMS Microbiol. Ecol., 2003,46(1):39-52.
    [24]
    Boetius A, Ravenschlag K, Schubert C, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J].Nature, 2000, 407:623-626.
    [25]
    Elvert M, Greinert J, Seuss E, et al. Carbon isotopes of biomarkers derived from methane-oxidizing microbes at Hydrate Ridge, Cascadia Covergent Margin, in Natural Gas Hydrates:Occurance, Distribution, and Detection[C]//Geophysical Monograph Series. American Geophysical Union, 2001, 124:115-129.
    [26]
    Sahling H, Rickert D, Lee R W, et al. Macrofaunal community structure and sulfide flux at gas hydrate deposits from the Cascadia convergent margin, NE Pacific[J]. Mar. Ecol. Prog. Ser., 2002,231:121-138.
    [27]
    Colbert M D, Tryon K M, Brown, et al. Fluid and chemical fluxes in and out of sediments hosting methane hydrate deposits on Hydrate Ridge, OR. I. Hydrological provinces[J]. Earth Planet. Sci. Lett., 2002, 201:525-540.
    [28]
    Tryon M D, Brown K M,Torres M E. Fluid and chemical fluxes in and out of sediments hosting methane hydrate deposits on Hydrate Ridge[J]. Earth Planet. Sci. Lett., 2002, 201:541-557.
    [29]
    Baumgartner L K, Reid R P, Dupraz C, et al. Sulfate reducing bacteria in microbial mats:Changing paradigms, new discoveries[J]. Sedimentary Geology, 2006,185:131-145.
    [30]
    Orphan V J, House C H, Hinrichs K U, et al.Methane-consuming Archaea revealed by directly coupled isotopic and phylogenetic analysis[J]. Science, 2001,293:484-487.
    [31]
    Orphan V J, House C H, Hinrichs K U, et al. Multiple Archaeal groups mediate methane oxidation in anoxic cold seep sediments[C]//Proceedings of the National Academy of Sciences of the United States of America. 2002, 99:7663-7668.
    [32]
    Blumenberg M, Seifert R, Reitner J, et al. Membrane lipid patterns typify distinct anaerobic methanotrophic consortia[J]. PNAS, 2004, 30:11111-11116.
    [33]
    Reitner J, Peckmann J, Blumenberg M, et al. Concretionary methane-seep carbonates and associated microbial communities in Black Sea sediments[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 227:18-30.
    [34]
    Joye S B, Boetius A, Orcutt B N, et al. The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps[J]. Chem. Geol., 2003, 205:219-238.
    [35]
    Kvenvolden K A. Gas hydrates geological perspectives and global change[J]. Geophys Rev., 1993, 31:173-187.
    [36]
    Thiel V, Peckmann J, Richnow H H, et al. Molecular signals for anaerobic methane oxidation in Black Sea seep carbonates and a microbial mat[J]. Marine Chemistry, 2001, 73:97-112.
    [37]
    Pape T, Blumenberg M, Seifert R, et al. Lipid geochemistry of methane-seep-related Black Sea carbonates[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 227:31-47.
    [38]
    Birgel D, Thiel V, Hinrichs K U, et al. Lipid biomarker patterns of methane-seep microbialites from the Mesozoic convergent margin of California[J]. Organic Geochemistry, 2006,37(10):1289-1302.
    [39]
    Bouloubassi I, Aloisi G, Pancost R D, et al. Archaeal and bacterial lipids in authigenic carbonate crusts from eastern Mediterranean mud volcanoes[J]. Organic Geochemistry, 2006, 37:484-500.
    [40]
    Hopmans E C, Schouten S, Pancost R D, et al. Analysis of intact tetraether lipids in archaeal cell material and sediments by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2000, 14:585-589.
    [41]
    冯东,陈多福,苏正,等. 海底天然气渗漏系统微生物作用及冷泉碳酸盐岩的特征[J]. 现代地质, 2005, 19(1):26-32.

    [FENG Dong, CHEN Duo-fu, SU Zheng, et al. Characteristics of cold seep carbonates and microbial processes in gas seep system[J]. Geoscience. 2005, 19(1):26-32.]
    [42]
    Bart E, Dongen V, Helen M T, et al. Well preserved Palaeogene and Cretaceous biomarkers from the Kilwa area, Tanzania[J]. Organic Geochemistry, 2006,37(5):539-557.
    [43]
    Stuart G,Wakeham Ellen C, Hopmans, et al. Archaeal lipids and anaerobic oxidation of methane in euxinic water columns:a comparative study of the Black Sea and Cariaco Basin[J]. Chemical Geology, 2004, 205:427-442.
    [44]
    Pape T, Blumenberg M, Seifert R, et al. Lipid geochemistry of methane-seep-related Black Sea carbonates[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 227:31-47.
    [45]
    Werne J P, Sinninghe Damste J S. Mixed sources contribute to the molecular isotopic signature of methane-rich mud breccia sediments of Kazan mudvolcano (eastern Mediterranean)[J].Organic Geochemistry, 2005, 36:13-27.
  • Related Articles

    [1]CAI Song, PENG Guangrong, CHEN Zhaoming, JIANG Dapeng, LI Kecheng, WU Jianyao, ZHANG Chujing. Paleogene tectonic evolution of Kaiping Sag, Pearl River Mouth Basin[J]. Marine Geology & Quaternary Geology, 2023, 43(2): 106-118. DOI: 10.16562/j.cnki.0256-1492.2022072702
    [2]SHI Chuang, LONG Zulie, ZHU Junzhang, JIANG Zhenglong, HUANG Yuping. Element geochemistry of the Enping Formation in the Baiyun Sag of Pearl River Mouth Basin and their environmental implications[J]. Marine Geology & Quaternary Geology, 2020, 40(5): 79-86. DOI: 10.16562/j.cnki.0256-1492.2020042101
    [3]Zhibin SHA, Zhenqiang XU, Shaoying FU, Jinqiang LIANG, Wei ZHANG, Pibo SU, Hongfeng LU, Jing'an LU. Gas sources and its implications for hydrate accumulation in the eastern Pearl River Mouth Basin[J]. Marine Geology & Quaternary Geology, 2019, 39(4): 116-125. DOI: 10.16562/j.cnki.0256-1492.2019010902
    [4]MAO Xuelian, XU Shouli, LIU Xinyu. Late Cenozoic high resolution bio-stratigraphy and its bearing on sea-level fluctuation in the western Pearl River Mouth Basin[J]. Marine Geology & Quaternary Geology, 2019, 39(3): 40-50. DOI: 10.16562/j.cnki.0256-1492.2017081601
    [5]LIU Hanyao, LIN Changsong, ZHANG Zhongtao, ZHANG Bo, JIANG Jing, TIAN Hongxun, LIU Huan. Quaternary sequence stratigraphic evolution of the Pearl River Mouth Basin and controlling factors over depositional systems[J]. Marine Geology & Quaternary Geology, 2019, 39(1): 25-37. DOI: 10.16562/j.cnki.0256-1492.2017060201
    [6]MA Benjun, QIN Zhiliang, WU Shiguo, MI Lijun, GAO Wei, WANG Lei. Types and genesis of the mixed deposits in the Pearl River Mouth Basin of South China Sea[J]. Marine Geology & Quaternary Geology, 2018, 38(6): 149-158. DOI: 10.16562/j.cnki.0256-1492.2018.06.015
    [7]WANG Yongfeng, LI Dong, WANG Yingmin, XU Qiang. DEEPWATER OIL-GAS RESERVOIR DISTRIBUTION PATTERN AND ITS BEARING ON FURTHER EXPLORATION OF PEARL RIVER MOUTH BASIN[J]. Marine Geology & Quaternary Geology, 2016, 36(3): 143-150. DOI: 10.16562/j.cnki.0256-1492.2016.03.014
    [8]DONG Dongdong, SUN Yunbao, WU Shiguo. NUMERICAL SIMULATION OF THE OVERPRESSURE IN THE DEEP-WATER AREA OF THE PEARL RIVER MOUTH BASIN, NORTHERN SOUTH CHINA SEA: A CASE FROM SITE 1148, ODP LEG 184[J]. Marine Geology & Quaternary Geology, 2015, 35(5): 165-172. DOI: 10.16562/j.cnki.0256-1492.2015.05.019
    [9]WU Qilin, HUANG SiJing, DAN Zhiwei, XIAO Wei, ZENG Yi, ZHOU Xiaokang, HOU Zhiping. PREDICTION OF CARBONATE RESERVOIRS IN BLOCK A OF HUIZHOU AREA IN PEARL RIVER MOUTH BASIN[J]. Marine Geology & Quaternary Geology, 2015, 35(2): 149-155. DOI: 10.3724/SP.J.1140.2015.02149
    [10]ZHU Yanhe, ZHU Weilin, XU Qiang, WANG Yingmin, LÜ Ming. SEDIMENTARY CHARACTERISTICS AND SEQUENCE FRAMEWORK OF THE ZHUHAI-ZHUJIANG FORMATION IN THE MIDDLE AREA OF PEARL RIVER MOUTH BASIN[J]. Marine Geology & Quaternary Geology, 2009, 29(4): 77-83. DOI: 10.3724/SP.J.1140.2009.04077

Catalog

    Article views (1771) PDF downloads (20) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return