YE Fang, LIU Zhi-fei, TUO Shou-ting, JIAN Zhi-min. GRAIN SIZE RECORD OF TERRIGENOUS CLAST DURING MID-PLEISTOCENE TRANSITION (0.78~1.0 Ma) IN THE NORTHERN SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2007, 27(2): 77-83.
Citation: YE Fang, LIU Zhi-fei, TUO Shou-ting, JIAN Zhi-min. GRAIN SIZE RECORD OF TERRIGENOUS CLAST DURING MID-PLEISTOCENE TRANSITION (0.78~1.0 Ma) IN THE NORTHERN SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2007, 27(2): 77-83.

GRAIN SIZE RECORD OF TERRIGENOUS CLAST DURING MID-PLEISTOCENE TRANSITION (0.78~1.0 Ma) IN THE NORTHERN SOUTH CHINA SEA

More Information
  • Received Date: January 31, 2007
  • Revised Date: February 10, 2007
  • High accumulation-rate sediments at Ocean Drilling Program (ODP) Site 1144 in the northern slope of the South China Sea provide unique materials for a high-resolution study on paleoenvironment. A high-resolution (200 a) record of the East Asian summer monsoon evolution in the northern South China Sea during the Mid-Pleistocene Transition (0.78~1.0 Ma) was revealed by grain size analysis of terrigenous clast at Site 1144. The result indicates that the terrigenous grain-size ratio of 3.5~8.2 μm/9~23 μm can be used as a proxy of the evolution of the East Asia summer monsoon, with relatively high values presenting strengthened summer monsoon. The ratio increased rapidly at 920 ka, indicating the beginning of the Mid-Pleistocene Transition with an association of the enhanced summer monsoon. Since then, the summer monsoon strengthened and weakened seasonally, showing a gradual change process of the Mid-Pleistocene Transition. The increase of East Asian summer monsoon intensity correlated well to the enhancement of the Northern Hemisphere insolation, demonstrating the orbital forcing of the East Asian monsoon evolution. The spectral analysis of terrigenous grain-size ratio (3.5~8.2 μm)/(9-23 μm) reveals millennial-scale climate fluctuations at intervals of 3.3 and 1.2 ka. The millennial-scale periods varied from pre-to post-920 ka, suggesting that the Mid-Pleistocene Transition behaved not only on orbital scale climate changes, but also on millennial-scale climate fluctuations.
  • [1]
    Shackleton N J, Opdyke N D. Oxygen-isotope and paleomagnetic stratigraphy of Pacific core V28-239:Late Pliocene to latest Pleistocene[J]. Geological Society of America Memoir, 1976, 145:449-464.
    [2]
    Clark P U, Archer D, Pollard D, et al. The middle Pleistocene transition:characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2[J]. Quaternary Science Reviews, 2006, 25:3150-3184.
    [3]
    汪品先, 田军, 成鑫荣. 第四纪冰期旋回转型在南沙深海的记录[J]. 中国科学D辑, 2001, 31(10):793-799.

    [WANG Pin-xian, TIAN Jun, CHENG Xin-rong. Transition of Quaternary glacial cyclicity in deep-sea records at Nansha, the South China Sea[J]. Science in China (Series D), 2001, 44:926-933.]
    [4]
    汪品先. 亚洲形变与全球变冷——探索气候与构造的关系[J]. 第四纪研究, 1998, 3:213-221.[WANG Pin-xian. Deformation of Asia and global cooling:searching links between climate and tectonics[J]. Quaternary Sciences, 1998

    , 3:213-221.]
    [5]
    Milliman J D, Meade R H. World-wide delivery of river sediment to the ocean[J]. Journal of Geology, 1983, 91(1):1-21.
    [6]
    赵泉鸿, 汪品先. 南海第四纪古海洋学研究进展[J]. 第四纪研究, 1999, 6:481-501.[ZHAO Quan-hong, WANG Pin-xian. Progress in Quaternary paleoceanography of the South China Sea:a review[J]. Quaternary Sciences, 1999

    , 6:481-501.]
    [7]
    Wang R, Abelmann A. Radiolarian responses to paleoceanographic events of the southern South China Sea during the Pleistocene[J]. Marine Micropaleontology, 2002, 46:25-44.
    [8]
    Xu J, Wang P, Huang B, et al. Response of planktonic foraminifera to glacial cycles:Mid-Pleistocene change in the southern South China Sea[J]. Marine Micropaleontology, 2005, 54:89-105.
    [9]
    Zheng F, Li Q, Li B, et al. A millennial scale planktonic foraminiferal record of mid-Pleistocene climate transition in the northern South China Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 233:349-363.
    [10]
    李前裕, 汪品先, 陈木宏, 等. 中更新世气候转型时期南海生态环境的南北差异[J]. 地球科学进展, 2006, 21(8):781-792.

    [LI Qian-yu, WANG Pin-xian, CHEN Mu-hong, et al. Paleoecological-environmental contrasts between the southern and northern South China Sea during Mid-Pleistocene climate transition[J]. Advances in Earth Science, 2006, 21(8):781-792.]
    [11]
    Wang P, Prell W L, Blum P, et al. Proceedings of the Ocean Drilling Program, Initial Reports 184[R]. College Station:Ocean Drilling Program, Texas A&M University, 2000:1-103[CD-ROM].
    [12]
    Boulay S, Colin C, Trentesaux A, et al. Mineralogy and sedimentology of Pleistocene sediment in the South China Sea (ODP Site 1144)[R]. Proceedings of the Ocean Drilling Program, Scientific Results, 2003, 184:1-21.
    [13]
    Bühring C, Sarnthein M, Erlenkeuser H. Toward a high-resolution stable isotope stratigraphy of the last 1.1 My:Site 1144, South China Sea[R]. Proceedings of the Ocean Drilling Program, Scientific Results, 2003, 184:1-29.
    [14]
    刘志飞, Trentesaux A, Clemens S, 等. 南海北坡ODP1146站第四纪粘土矿物纪录:洋流搬运与东亚季风演化[J]. 中国科学D辑, 2003, 33(3):271-280.

    [LIU Zhi-fei, Trentesaux A, Clemens S, et al. Quaternary clay mineralogy in the northern South China Sea (ODP Site 1146):implications for oceanic current transport and East Asian monsoon evolution[J]. Science in China (Series D), 2003, 46(12):1223-1235.]
    [15]
    Wang L, Sarnthein M, Erlenkerser H, et al. East Asian monsoon climate during the Late Pleistocene:High-resolution sediment records from the South China Sea[J]. Marine Geology, 1999, 156:245-284.
    [16]
    陈隆勋, 朱乾根, 罗会帮, 等. 东亚季风[M]. 北京:气象出版社, 1991:28-61.[CHEN Long-xun, ZHU Qian-gen, LUO Hui-bang, et al. The East Asian Monsoon[M]. Beijing:Meteorology Press, 1991:28

    -61.]
    [17]
    Pettke T, Halliday A, Hall C, et al. Dust production and deposition in Asia and the North Pacific Ocean over the past 12 Myr[J]. Earth Planetary Science Letters, 2000, 178:397-413.
    [18]
    Jones C, Halliday A, Rea D, et al. Neodymium isotopic variation in North Pacific modern silicate sediment and the insignificance of detrital REE contributions to seawater[J]. Earth Planetary Science Letters, 127:55-66.
    [19]
    黄宝琦, 翦知湣. 南海东北部晚第四纪古生产力变化[J]. 海洋地质与第四纪地质, 2000, 20(2):63-68.

    [HUANG Bao-qi, JIAN Zhi-min. Late Quaternary changes of paleoproductivity in the northeastern South China Sea[J]. Marine Geology and Quaternary Geology, 2000, 20(2):65-68.]
    [20]
    Jian Z, Zhao Q, Cheng X, et al. Pliocene-Pleistocene stable isotope and paleoceanographic changes in the northern South China Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 193:425-442.
    [21]
    Laskar J. The chaotic motion of the solar system:A numerical estimate of the size of the chaotic zones[J]. Icarus, 1990, 88:266-291.
    [22]
    Paillard D, Labeyrie L, Yiou P. Analyseries 1.0:A Macintosh software for the analysis of geographical time-series[J]. Eos, 1996, 77:379.
    [23]
    Schluz M, Mudelsee M. REDFIT:Estimating red-noise spectra directly[J]. Computers & Geosciences, 2002, 28:421-426.
    [24]
    黄维, 翦知湣, Bühring C. 南海北部ODP1144站颜色反射率揭示的千年尺度气候波动[J].海洋地质与第四纪地质, 2003, 23(3):5-10.

    [HUANG Wei, JIAN Zhi-min, Bühring C. The millennial-scale climate fluctuations revealed by the records of color reflectance from ODP Site 1144 in the northern South China Sea[J]. Marine Geology and Quaternary Geology, 2003, 23(3):5-10.]

Catalog

    Article views (1965) PDF downloads (12) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return