LI Yihong,WANG Hu. Advances in underwater in-situ iron analysis technology[J]. Marine Geology & Quaternary Geology,2025,45(4):198-207. DOI: 10.16562/j.cnki.0256-1492.2025052301
Citation: LI Yihong,WANG Hu. Advances in underwater in-situ iron analysis technology[J]. Marine Geology & Quaternary Geology,2025,45(4):198-207. DOI: 10.16562/j.cnki.0256-1492.2025052301

Advances in underwater in-situ iron analysis technology

More Information
  • Received Date: May 22, 2025
  • Revised Date: June 15, 2025
  • Accepted Date: June 15, 2025
  • Available Online: July 06, 2025
  • Iron is a key trace metal in the ocean, and directly affect marine primary productivity and global climate change. Since the 1980s, various in-situ iron analysis systems have been developed based on spectrophotometry, catalytic spectrophotometry, chemiluminescence, or electrochemistry, combined with flow analysis, osmotic pumps, or lab-on-a-chip technology for measuring iron in seawater and hydrothermal plume. With the advancement of ocean observatory technology, more requirements have been put forward for in-situ iron analyzers or sensors capable of long-term, continuous monitoring. This review outlines the principles, performance, advantages, and limitations of current systems developed globally. It further proposes future development directions, specifically targeting integration with seafloor observatory networks, aiming to provide valuable references for the development of future in-situ iron analysis system.

  • [1]
    Morel F M M, Hudson R J M, Price N M. Limitation of productivity by trace metals in the sea[J]. Limnology and Oceanography, 1991, 36(8):1742-1755. doi: 10.4319/lo.1991.36.8.1742
    [2]
    Coale K H, Johnson K S, Fitzwater S E, et al. A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean[J]. Nature, 1996, 383(6600):495-501. doi: 10.1038/383495a0
    [3]
    Mills M M, Ridame C, Davey M, et al. Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic[J]. Nature, 2004, 429(6989):292-294. doi: 10.1038/nature02550
    [4]
    Tagliabue A, Bowie A R, Boyd P W, et al. The integral role of iron in ocean biogeochemistry[J]. Nature, 2017, 543(7643):51-59. doi: 10.1038/nature21058
    [5]
    Martin J H, Coale K H, Johnson K S, et al. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean[J]. Nature, 1994, 371(6493):123-129. doi: 10.1038/371123a0
    [6]
    Wang H, Yang Q H, Ji F W, et al. The geochemical characteristics and Fe(II) oxidation kinetics of hydrothermal plumes at the Southwest Indian Ridge[J]. Marine Chemistry, 2012, 134-135: 29-35.
    [7]
    Wang H, Yan Q Y, Yang Q H, et al. The size fractionation and speciation of iron in the Longqi hydrothermal plumes on the Southwest Indian Ridge[J]. Journal of Geophysical Research: Oceans, 2019, 124(6):4029-4043. doi: 10.1029/2018JC014713
    [8]
    Wang H, Resing J A, Yan Q Y, et al. The characteristics of Fe speciation and Fe-binding ligands in the Mariana back-arc hydrothermal plumes[J]. Geochimica et Cosmochimica Acta, 2021, 292:24-36. doi: 10.1016/j.gca.2020.09.016
    [9]
    Su H, Yang R J, Li Y, et al. Influence of humic substances on iron distribution in the East China Sea[J]. Chemosphere, 2018, 204:450-462. doi: 10.1016/j.chemosphere.2018.04.018
    [10]
    Su H, Yang R J, Zhang A B, et al. Dissolved iron distribution and organic complexation in the coastal waters of the East China Sea[J]. Marine Chemistry, 2015, 173:208-221. doi: 10.1016/j.marchem.2015.03.007
    [11]
    Zhang R F, Zhu X C, Yang C H, et al. Distribution of dissolved iron in the Pearl River (Zhujiang) Estuary and the northern continental slope of the South China Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2019, 167:14-24. doi: 10.1016/j.dsr2.2018.12.006
    [12]
    Zhu X C, Zhang R F, Wu Y, et al. The remobilization and removal of Fe in estuary—a case study in the Changjiang Estuary, China[J]. Journal of Geophysical Research: Oceans, 2018, 123(4):2539-2553. doi: 10.1002/2017JC013671
    [13]
    林明月, 潘大为, 胡雪萍, 等. 烟台近海水体不同形态铁的检测分析[J]. 环境化学, 2016, 35(2):297-304 doi: 10.7524/j.issn.0254-6108.2016.02.2015092301

    LIN Mingyue, PAN Dawei, HU Xueping, et al. Speciation analysis of iron in Yantai coastal waters[J]. Environmental Chemistry, 2016, 35(2):297-304.] doi: 10.7524/j.issn.0254-6108.2016.02.2015092301
    [14]
    Johnson K S, Beehler C L, Sakamoto-Arnold C M. A submersible flow analysis system[J]. Analytica Chimica Acta, 1986, 179:245-257. doi: 10.1016/S0003-2670(00)84469-4
    [15]
    Johnson K S, Beehler C L, Sakamoto-Arnold C M, et al. In situ measurements of chemical distributions in a deep-sea hydrothermal vent field[J]. Science, 1986, 231(4742):1139-1141. doi: 10.1126/science.231.4742.1139
    [16]
    Sarradin P M, Le Bris N, Le Gall C, et al. Fe analysis by the ferrozine method: adaptation to FIA towards in situ analysis in hydrothermal environment[J]. Talanta, 2005, 66(5):1131-1138. doi: 10.1016/j.talanta.2005.01.012
    [17]
    Laës A, Vuillemin R, Leilde B, et al. Impact of environmental factors on in situ determination of iron in seawater by flow injection analysis[J]. Marine Chemistry, 2005, 97(3-4):347-356. doi: 10.1016/j.marchem.2005.06.002
    [18]
    Chapin T P, Jannasch H W, Johnson K S. In situ osmotic analyzer for the year-long continuous determination of Fe in hydrothermal systems[J]. Analytica Chimica Acta, 2002, 463(2):265-274. doi: 10.1016/S0003-2670(02)00423-3
    [19]
    Brendel P J, Luther G W I. Development of a gold amalgam voltammetric microelectrode for the determination of dissolved Fe, Mn, O2, and S(-II) in porewaters of marine and freshwater sediments[J]. Environmental Science & Technology, 1995, 29(3):751-761.
    [20]
    Tercier M L, Buffle J, Graziottin F. A novel voltammetric in-situ profiling system for continuous real-time monitoring of trace elements in natural waters[J]. Electroanalysis, 1998, 10(6):355-363. doi: 10.1002/(SICI)1521-4109(199805)10:6<355::AID-ELAN355>3.0.CO;2-F
    [21]
    Tercier-Waeber M L, Buffle J, Confalonieri F, et al. Submersible voltammetric probes for in situ real-time trace element measurements in surface water, groundwater and sediment-water interface[J]. Measurement Science and Technology, 1999, 10(12):1202-1213. doi: 10.1088/0957-0233/10/12/312
    [22]
    Milani A, Statham P J, Mowlem M C, et al. Development and application of a microfluidic in-situ analyzer for dissolved Fe and Mn in natural waters[J]. Talanta, 2015, 136:15-22. doi: 10.1016/j.talanta.2014.12.045
    [23]
    Jin B, Chen Z W, Zhu S Q. Development of an in situ analyzer for iron in deep sea environment[J]. Advanced Materials Research, 2013, 694-697: 1187-1191.
    [24]
    王洪亮, 赵月霞, 杨磊, 等. 深海溶解态铁、锰和硫化物的快速测量原位分析仪研制[J]. 分析化学, 2021, 49(12):1977-1985

    WANG Hongliang, ZHAO Yuexia, YANG Lei, et al. Development of an in-situ analyzer for rapid measurement of dissolved iron, manganese and sulfide in deep sea[J]. Chinese Journal of Analytical Chemistry, 2021, 49(12):1977-1985.]
    [25]
    Skeggs Jr L T. An automatic method for colorimetric analysis[J]. American Journal of Clinical Pathology, 1957, 28(3):311-322.
    [26]
    Chin C S, Coale K H, Elrod V A, et al. In situ observations of dissolved iron and manganese in hydrothermal vent plumes, Juan de Fuca Ridge[J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B3):4969-4984. doi: 10.1029/93JB02036
    [27]
    Massoth G J, Milbburn H B, Johnson K S, et al. A SUAVE (Submersible System Used to Assess Vented Emissions) approach to plume sensing: the buoyant plume experiment at Cleft segment, Juan de Fuca Ridge, and plume exploration along the EPR 9-11°N[J]. EOS Transactions AGU, 1991, 72:234.
    [28]
    Measures C I, Yuan J, Resing J A. Determination of iron in seawater by flow injection analysis using in-line preconcentration and spectrophotometric detection[J]. Marine Chemistry, 1995, 50(1-4):3-12. doi: 10.1016/0304-4203(95)00022-J
    [29]
    Okamura K, Gamo T, Obata H, et al. Selective and sensitive determination of trace manganese in sea water by flow through technique using luminol-hydrogen peroxide chemiluminescence detection[J]. Analytica Chimica Acta, 1998, 377(2-3):125-131. doi: 10.1016/S0003-2670(98)00617-5
    [30]
    Obata H, Mase A, Gamo T, et al. In-situ analysis of sub-nanomolar level of Fe(II) in open-ocean waters[J]. Analytical Sciences, 2024, 40(11):2017-2025. doi: 10.1007/s44211-024-00637-0
    [31]
    Ṙuz̆ic̆ka J, Hansen E H. Flow injection analyses: part I. A new concept of fast continuous flow analysis[J]. Analytica Chimica Acta, 1975, 78(1):145-157. doi: 10.1016/S0003-2670(01)84761-9
    [32]
    Zagatto E A G, Arruda M A Z, Jacintho A O, et al. Compensation of the Schlieren effect in flow-injection analysis by using dual-wavelength spectrophotometry[J]. Analytica Chimica Acta, 1990, 234:153-160. doi: 10.1016/S0003-2670(00)83550-3
    [33]
    Vuillemin R, Le Roux D, Dorval P, et al. CHEMINI: a new in situ chemical miniaturized analyzer[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2009, 56(8):1391-1399. doi: 10.1016/j.dsr.2009.02.002
    [34]
    Laës-Huon A, Cathalot C, Legrand J, et al. Long-term in situ survey of reactive iron concentrations at the EMSO-Azores observatory[J]. IEEE Journal of Oceanic Engineering, 2016, 41(4):744-752. doi: 10.1109/JOE.2016.2552779
    [35]
    Ghoneim E M. Simultaneous determination of Mn(II), Cu(II) and Fe(III) as 2-(5′-bromo-2′-pyridylazo)-5-diethylaminophenol complexes by adsorptive cathodic stripping voltammetry at a carbon paste electrode[J]. Talanta, 2010, 82(2):646-652. doi: 10.1016/j.talanta.2010.05.025
    [36]
    Lu M, Rees N V, Kabakaev A S, et al. Determination of iron: electrochemical methods[J]. Electroanalysis, 2012, 24(8):1693-1702. doi: 10.1002/elan.201200268
    [37]
    Luther G W, Rozan T F, Taillefert M, et al. Chemical speciation drives hydrothermal vent ecology[J]. Nature, 2001, 410(6830):813-816. doi: 10.1038/35071069
    [38]
    Luther G W, Glazer B T, Ma S F, et al. Use of voltammetric solid-state (micro)electrodes for studying biogeochemical processes: laboratory measurements to real time measurements with an in situ electrochemical analyzer (ISEA)[J]. Marine Chemistry, 2008, 108(3-4):221-235. doi: 10.1016/j.marchem.2007.03.002
    [39]
    Tercier M L, Buffle J. Antifouling membrane-covered voltammetric microsensor for in situ measurements in natural waters[J]. Analytical Chemistry, 1996, 68(20):3670-3678. doi: 10.1021/ac960265p
    [40]
    Belmont C, Tercier M L, Buffle J, et al. Mercury-plated iridium-based microelectrode arrays for trace metals detection by voltammetry: optimum conditions and reliability[J]. Analytica Chimica Acta, 1996, 329(3):203-214. doi: 10.1016/0003-2670(96)00116-X
    [41]
    Tercier-Waeber M L, Confalonieri F, Abdou M, et al. Advanced multichannel submersible probe for autonomous high-resolution in situ monitoring of the cycling of the potentially bioavailable fraction of a range of trace metals[J]. Chemosphere, 2021, 282:131014. doi: 10.1016/j.chemosphere.2021.131014
    [42]
    Braungardt C B, Achterberg E P, Axelsson B, et al. Analysis of dissolved metal fractions in coastal waters: an inter-comparison of five voltammetric in situ profiling (VIP) systems[J]. Marine Chemistry, 2009, 114(1-2):47-55. doi: 10.1016/j.marchem.2009.03.006
    [43]
    Cuartero M. Electrochemical sensors for in-situ measurement of ions in seawater[J]. Sensors and Actuators B: Chemical, 2021, 334:129635. doi: 10.1016/j.snb.2021.129635
    [44]
    Abdou M, Tercier-Waeber M L. New insights into trace metal speciation and interaction with phytoplankton in estuarine coastal waters[J]. Marine Pollution Bulletin, 2022, 181:113845. doi: 10.1016/j.marpolbul.2022.113845
    [45]
    Layglon N, Creffield S, Bakker E, et al. On-field high-resolution quantification of the cobalt fraction available for bio-uptake in natural waters using antifouling gel-integrated microelectrode arrays[J]. Marine Pollution Bulletin, 2023, 189:114807. doi: 10.1016/j.marpolbul.2023.114807
    [46]
    Buffle J, Tercier-Waeber M L. Voltammetric environmental trace-metal analysis and speciation: from laboratory to in situ measurements[J]. TrAC Trends in Analytical Chemistry, 2005, 24(3):172-191. doi: 10.1016/j.trac.2004.11.013
    [47]
    Li Q L, Pei J X, Lu B Y, et al. Time-series sampling of trace metals in surface waters using osmotic sampler with air segmentation and preservative addition[J]. Science of the Total Environment, 2021, 800:149517. doi: 10.1016/j.scitotenv.2021.149517
    [48]
    卢冰艳. 基于渗透泵的时间序列采样器的研制及其在水体重金属监测中的应用[D]. 厦门大学硕士学位论文, 2016

    LU Bingyan. Development of the time-series osmotic pump sample and its application for heavy metals monitoring of water system[D]. Master Dissertation of Xiamen University, 2016.]
    [49]
    龚静. 基于渗透泵和液相微萃取的水体污染物时间序列浓度被动采样器的研制及初步应用[D]. 厦门大学硕士学位论文, 2017

    GONG Jing. Development and preliminary application of a time-series passive sampler for monitoring of pollutants in aquatic environment based on osmotic pump and liquid phase microextraction[D]. Master Dissertation of Xiamen University, 2017.]
    [50]
    Geiβler F, Achterberg E P, Beaton A D, et al. Evaluation of a Ferrozine based autonomous in situ Lab-on-Chip analyzer for dissolved iron species in coastal waters[J]. Frontiers in Marine Science, 2017, 4:322. doi: 10.3389/fmars.2017.00322
    [51]
    Grand M M, Laes-Huon A, Fietz S, et al. Developing autonomous observing systems for micronutrient trace metals[J]. Frontiers in Marine Science, 2019, 6:35. doi: 10.3389/fmars.2019.00035
    [52]
    Oliveira H M, Grand M M, Ruzicka J, et al. Towards chemiluminescence detection in micro-sequential injection lab-on-valve format: a proof of concept based on the reaction between Fe(II) and luminol in seawater[J]. Talanta, 2015, 133:107-111. doi: 10.1016/j.talanta.2014.06.076
  • Related Articles

    [1]YAN Zhonghui, YANG Rui, FENG Jing, LIU Xinxin, LIU Hong, WANG Xiaojie, JIANG Chuntao. Application of high-resolution small group interval processing technology and attribute analysis for hydrate identification[J]. Marine Geology & Quaternary Geology, 2024, 44(6): 46-59. DOI: 10.16562/j.cnki.0256-1492.2024111901
    [2]FANG Zhonghua, LU Kai, YANG Yuan, FENG Jing, YU Deshui, QIN Ke, WEI Jia. Current situation and prospect of marine acoustic geological survey technology[J]. Marine Geology & Quaternary Geology, 2024, 44(3): 82-89. DOI: 10.16562/j.cnki.0256-1492.2023110601
    [3]XU Lei, LIN Xuehui, ZHANG Yuanyuan, HE Xingliang, XU Tingting, ZHANG Jian, WANG Feifei, LIANG Yuan, REN Hongbo, XIN Wencai, ZHU Zhigang, ZHANG Daolai, LI Feng, SONG Xiaoyun, LI Qiuyu, WU Huajie, HE Lelong, YAN Dawei, JIANG Xuejun, JIANG Yunshui, NING Ze, LU Jingfang, WANG Hong, LI Jiapei, WANG Yun, ZHOU Yibo. Progress in marine geological experimental testing technology and research[J]. Marine Geology & Quaternary Geology, 2024, 44(3): 53-70. DOI: 10.16562/j.cnki.0256-1492.2023102001
    [4]LI Yonghang, WEN Mingming, CHEN Zongheng, YAO Huiqiang, WAN Peng, LI Bin, LIN Hai, CHEN Zhijian. Advance, challenge, and suggestion in geophysical technology for underwater archaeology survey[J]. Marine Geology & Quaternary Geology, 2023, 43(6): 191-201. DOI: 10.16562/j.cnki.0256-1492.2023021401
    [5]LV Taiheng, SUN Zhilei, GENG Wei, CAO Hong, ZHANG Xilin, ZHANG Xianrong, XU Cuiling, XU Hao, ZHAI Bin, ZHANG Dong, ZHOU Yucheng, CAO Youwen, LI Xinhai. Progress in in-situ observation of methane flux at sediment-water interface in cold seep[J]. Marine Geology & Quaternary Geology, 2023, 43(4): 167-180. DOI: 10.16562/j.cnki.0256-1492.2022081901
    [6]SUN Zhilei, YIN Ping, XU Sinan, CAO Hong, XU Cuiling, ZHANG Xilin, GENG Wei, SUN Weixiang, WU Nengyou, ZHANG Dong, ZHAI Bin, LV Taiheng, ZHOU Yucheng, CAO Youwen, CHEN Ye. Observation and research progress of modern oceanic methane cycle[J]. Marine Geology & Quaternary Geology, 2022, 42(6): 67-81. DOI: 10.16562/j.cnki.0256-1492.2022042801
    [7]ZHANG Yunshan, JIA Yonggang, WEI Jiangong. A review and prospect of in-situ observation equipment for cold seep[J]. Marine Geology & Quaternary Geology, 2022, 42(2): 200-213. DOI: 10.16562/j.cnki.0256-1492.2021052002
    [8]LIN Fanyu, YIN Xijie, HUANG Wei, HUANG Jiechao, LIANG Yuna. Application of micro-XRF technology to rapid and nondestructive detection of inorganic elements in ocean minerals[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 223-232. DOI: 10.16562/j.cnki.0256-1492.2020071701
    [9]LI Xue, YE Siyuan. PROGRESS IN SEAWATER INTRUSION[J]. Marine Geology & Quaternary Geology, 2016, 36(6): 211-217. DOI: 10.16562/j.cnki.0256-1492.2016.06.023
    [10]LI Bowen, SHAN Hongxian, ZHANG Shaotong, WEN Mingzheng, JIA Yonggang. CONTRIBUTION OF WAVES AND CURRENTS TO SEDIMENT SUSPENSION REVEALED BY IN-SITU OBSERVATION[J]. Marine Geology & Quaternary Geology, 2016, 36(3): 183-190. DOI: 10.16562/j.cnki.0256-1492.2016.03.018
  • Cited by

    Periodical cited type(14)

    1. 田兴雨, 孙承君, 闫艺心, 丁海兵. 雅浦海沟北部深渊沉积物中脂肪酸的分布特征. 海洋科学进展. 2025(03)
    2. 黄彤宇,王强,杨宗永. 俯冲侵蚀的研究历史、现状与展望. 岩石学报. 2024(03): 719-740 .
    3. 唐宇,王根厚,韩芳林,李典,梁晓,冯翼鹏,张莉,王卓胜,韩宁. 西藏加查地区特提斯喜马拉雅带晚三叠世地层重新厘定及构造变形研究. 地学前缘. 2023(02): 35-56 .
    4. 刘喆昊,王冰,张建兴,宋永东,庄丽华,栾振东. 雅浦-卡罗琳海区精细地貌解译与分析. 海洋科学进展. 2023(03): 477-487 .
    5. 韩潇,付永涛. 雅浦俯冲带北段地球物理场及构造活动性分析. 海洋科学进展. 2022(03): 449-460 .
    6. 田原,陈灵,唐立梅,高鹏,方银霞. 西太平洋雅浦海沟地幔演化与岩浆作用研究进展. 地球科学. 2021(03): 840-852 .
    7. 刘海洋,薛颖瑜,孙卫东. 勘察加岛弧岩浆岩研究进展. 岩石学报. 2020(02): 560-574 .
    8. 陈康,徐继尚,李广雪,田举,杨继超,周尚,孙思婷. 雅浦海沟南缘海底表层矿物碎屑粒度特征及其物源指示. 海洋地质与第四纪地质. 2020(05): 46-57 . 本站查看
    9. 赵永芳,郑珊,孙晓霞. 2014年冬季热带西太平洋雅浦Y3海山光合色素分布及其对浮游植物群落的指示作用. 海洋与湖沼. 2019(04): 830-837 .
    10. 张臻,李三忠. 雅浦沟-弧体系构造演化过程. 海洋地质与第四纪地质. 2019(05): 138-146 . 本站查看
    11. 张吉,张国良. 雅浦岛弧变质岩成因和构造环境研究. 海洋地质与第四纪地质. 2018(04): 71-82 . 本站查看
    12. 岳新安,闫艺心,丁海兵,孙承君,杨桂朋. 雅浦海沟沉积物的生物地球化学特征及其海洋学意义. 中国海洋大学学报(自然科学版). 2018(03): 88-96 .
    13. 张国良,王帅,张吉,罗青,李铁刚. 西太平洋若干沟-弧-盆体系及板内岩浆成因研究进展. 海洋与湖沼. 2017(06): 1220-1234 .
    14. 闾国年,熊礼阳,陈旻,汤国安,盛业华,刘学军,宋志尧,陆玉麒,俞肇元,张卡,王美珍. 中国数字地形学研究进展(英文). Journal of Geographical Sciences. 2017(11): 1389-1412 .

    Other cited types(5)

Catalog

    Corresponding author: WANG Hu, wanghu@tongji.edu.cn

    1. On this Site
    2. On Google Scholar
    3. On PubMed
    Article views (59) PDF downloads (7) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return