XU Wenshuo,LYU Huahua,SHI Xuefa,et al. Textures and compositions of phillipsites from cored sediments, Bauer Basin, Southeast Pacific: implications for genesis[J]. Marine Geology & Quaternary Geology,xxxx,x(x): x-xx. DOI: 10.16562/j.cnki.0256-1492.2025041601
Citation: XU Wenshuo,LYU Huahua,SHI Xuefa,et al. Textures and compositions of phillipsites from cored sediments, Bauer Basin, Southeast Pacific: implications for genesis[J]. Marine Geology & Quaternary Geology,xxxx,x(x): x-xx. DOI: 10.16562/j.cnki.0256-1492.2025041601

Textures and compositions of phillipsites from cored sediments, Bauer Basin, Southeast Pacific: implications for genesis

More Information
  • Received Date: April 15, 2025
  • Revised Date: May 08, 2025
  • Accepted Date: May 08, 2025
  • Available Online: June 16, 2025
  • Zeolite is an abundant component of pelagic sediments and the occurrence of zeolite minerals in submarine environments has been the topic of considerable discussion in mineralogical research. Sediment samples were collected from subseafloor cores CJ09 and CJ14 drilled during the DY46 Expedition in the East Southern Pacific Ocean in 2018, the occurrence, composition, and texture of dominant zeolite minerals were analyzed and characterized using polarizing microscopy, scanning electron microscopy, and X-ray powder diffraction. Results show that phillipsite was the unique zeolite subgroup and phillipsite-K is the dominant species, and they coexisted with other minerals, including calcite, smectite, illite, sanidine, andesine, labradorite, apatite, barite, and witherite, also small amounts of phillipsite-Na, phillipsite-K, and abundant iron manganese (hydr) oxides. The phillipsites vary in shape from straight columnar, rossete, cruciform twinning to radiating or irregular aggregates; most crystals are prismatic or spherulitic, 10~200 μm in diameter, and generally show well-developed crystal terminations around their periphery. In addition, their genetic types were summarized in elemental composition, microtexture, and mineral association. These analyses provide detailed information of the precursor materials, media solutions, occurrences, and origins of the phillipsites.

  • [1]
    Rothwell R G. Minerals and Mineraloids Occurring in Marine Sediments[M]. Dordrecht: Springer, 1989:27-35.
    [2]
    Czyscinski K. Authigenic phillipsite formation rates in the central Indian Ocean and the Equatorial Pacific Ocean[J]. Deep Sea Research and Oceanographic Abstracts, 1973, 20(6):555-559. doi: 10.1016/0011-7471(73)90079-X
    [3]
    俞旭, 江超华. 现代海洋沉积矿物及其X射线衍射研究[M]. 北京:科学出版社, 1984:232-240

    YU Xu, JIANG Chaohua. Modern marine sedimentary minerals and their X-ray diffraction studies[M]. Beijing: Science Press, 1984:232-240.]
    [4]
    Stonecipher S A. Origin, distribution and diagenesis of phillipsite and clinoptilolite in deep-sea sediments[J]. Chemical Geology, 1976, 17:307-318. doi: 10.1016/0009-2541(76)90044-9
    [5]
    杨慧宁, 萧绪琪, 吴必豪. 太平洋中部沉积物中的沸石矿物[J]. 海洋学报, 1994, 16(5):68-74

    YANG Huining, XIAO Xuqi, WU Bihao. Zeolite minerals in sediments from the central Pacific[J]. Acta Oceanologica Sinica, 1994, 16(5):68-74.]
    [6]
    彭汉昌, 刘正坤. 深海沉积物中的钙十字沸石[J]. 海洋学报, 1992, 14(6):68-73,138

    PENG Hanchang, LIU Zhengkun. Phillipsite in Deep-Sea sediments[J]. Acta Oceanologica Sinica, 1992, 14(6):68-73,138.]
    [7]
    McMurtry G M. Deep-sea sediment: authigenic deposits[M]//Cochran J K, Bokuniewicz H J, Yager P L. Encyclopedia of Ocean Sciences. Amsterdam:Elsevier, 2019:156-171.
    [8]
    Neuhoff P S. Natural zeolites: occurrence, properties, applications[M]. // David L B, Douglas W M. Reviews in mineralogy and geochemistry. Washington: Mineralogical Society of America and the Geochemical Society, 2001: 69-510.
    [9]
    Gualtieri A F, Passaglia E, Galli E. Ion exchange selectivity of phillipsite[J]. Studies in Surface Science and Catalysis, 2002, 142:1705-1712.
    [10]
    Kato Y, Fujinaga K, Nakamura K, et al. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements[J]. Nature Geoscience, 2011, 4(8):535-539. doi: 10.1038/ngeo1185
    [11]
    Zhou T C, Shi X F, Huang M, et al. The influence of hydrothermal fluids on the REY-Rich deep-sea sediments in the Yupanqui Basin, Eastern South Pacific Ocean: constraints from Bulk Sediment Geochemistry and mineralogical characteristics[J]. Minerals, 2020, 10(12):1141. doi: 10.3390/min10121141
    [12]
    Piper D Z. Rare earth elements in ferromanganese nodules and other marine phases[J]. Geochimica et Cosmochimica Acta, 1974, 38(7):1007-1022. doi: 10.1016/0016-7037(74)90002-7
    [13]
    Dubinin A V. Geochemistry of rare earth elements in oceanic phillipsites[J]. Lithology and Mineral Resources, 2000, 35(2):101-108. doi: 10.1007/BF02782672
    [14]
    Nakamura K, Fujinaga K, Yasukawa K, et al. Chapter 268 - REY-Rich Mud: A deep-sea mineral resource for rare earths and yttrium[M]. // Handbook on the Physics and Chemistry of Rare Earths, 2015, 46:79-127.
    [15]
    Ohta J, Yasukawa K, Machida S, et al. Geological factors responsible for REY-rich mud in the western North Pacific Ocean: Implications from mineralogy and grain size distributions[J]. Geochemical Journal, 2016, 50(6):591-603. doi: 10.2343/geochemj.2.0435
    [16]
    Kashiwabara T, Toda R, Nakamura K, et al. Synchrotron X-ray spectroscopic perspective on the formation mechanism of REY-rich muds in the Pacific Ocean[J]. Geochimica et Cosmochimica Acta, 2018, 240:274-292. doi: 10.1016/j.gca.2018.08.013
    [17]
    Wright J C M. Evolution of the Galapagos Rise and the Bauer Microplate: implication for the Nazca plate[D]. Doctor Dissertation of Texas A&M University, 2005.
    [18]
    Thompson G, Bryan W B, Frey F, et al. Petrology and Geochemistry of Basalts from DSDP Leg 34, Nazca Plate[J]. Initial Reports of the Deep Sea Drilling Project, 1976, 34:215-226.
    [19]
    Cai Y C, Shi X F, Zhou T C, et al. Evaluating the contribution of hydrothermal fluids and clay minerals to the enrichment of rare earth elements and yttrium (REY) in deep-sea sediments[J]. Ore Geology Reviews, 2023, 161:105679. doi: 10.1016/j.oregeorev.2023.105679
    [20]
    Nähr T H, Bohrmann G. Barium-rich authigenic clinoptilolite in sediments from the Japan Sea-a sink for dissolved barium?[J]. Chemical Geology, 1999, 158:227-244. doi: 10.1016/S0009-2541(99)00051-0
    [21]
    张富元, 章伟艳, 张霄宇, 等. 深海沉积物分类与命名的关键技术和方案[J]. 地球科学: 中国地质大学学报, 2012, 37(1):93-104

    ZHANG Fuyuan, ZHANG Weiyan, ZHANG Xiaoyu, et al. Key technique and scheme of classification and nomenclature of deep sea sediments[J]. Earth Science: Journal of China University of Geosciences, 2012, 37(1):93-104.]
    [22]
    Silver E A, Rangin C. Leg 124 of the Ocean Drilling Program[J]. Geophysical Research Letters, 1990, 17:2059-2060. doi: 10.1029/GL017i011p02059
    [23]
    Lisitzina N A, Butuzova G Y. Zeolites in sediments of the lithological profile across the Pacific Ocean[J]. Litologiya i Poleznyye Iskopaemyye (Lithology and Mineral Resources), 1976, 11(2):9-21.
    [24]
    Ogawa Y, Fujioka K, Nishiyama T, et al. Geochemistry at DSDP Hole 84-567A[DS/OL]. (1985). https://doi.pangaea.de/10.1594/PANGAEA.804652.
    [25]
    Utzmann A, Hansteen T H, Schmincke H U. (Table 2) Chemical composition of zeolites from ODP Hole 157-953C[DS/OL]. (2002). https://doi.pangaea.de/10.1594/PANGAEA.666885.
    [26]
    Galli E, Ghittoni A G L. The crystal chemistry of phillipsites[J]. American Mineralogist, 1972, 57(7-8):1125-1145.
    [27]
    Berner R A. Early Diagenesis: A Theoretical Approach[M]. Princeton:Princeton University Press, 1980.
    [28]
    Iijima A. Chapter 3 diagenetic transformations of minerals as exemplified by zeolites and silica minerals-a Japanese view[M]. // Developments in Sedimentology, 1988, 43:147-211.
    [29]
    Shibue Y. Cation-Exchange properties of phillipsite (a zeolite mineral): the differences between Si-Rich and Si-Poor phillipsites[J]. Separation Science and Technology, 1998, 33(3):333-355. doi: 10.1080/01496399808544772
    [30]
    Dimitrov L, Lihareva N, Tzvetanova Y, et al. Synthesis of phillipsite from perlite utilizing mother waters from wet gel EMT preparation and study of the obtained zeolitic material as ion exchanger[J]. Environmental Earth Sciences, 2021, 80(3):86. doi: 10.1007/s12665-021-09378-z
    [31]
    Kurnosov V B. (Table 31) Chemical composition of minerals from veins in basalts of the Costa Rica Rift[DS/OL]. (1986). https://doi.pangaea.de/10.1594/PANGAEA.730175.
    [32]
    Schramm B. Color atlas of low-temperature alteration features in basalts from the Southern East Pacific Rise[J]. Geochemistry, Geophysics, Geosystems, 2004, 5(6):Q06006.
    [33]
    Walton A W, Schiffman P. Alteration of hyaloclastites in the HSDP 2 PHASE 1 Drill Core 1. description and paragenesis[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(5):8709.
    [34]
    Li S Y, Fu Y, Li D F, et al. Phillipsite in pelagic REY-rich sediments and ferromanganese nodules from the Western Pacific: Geochemical characteristics and implications for REY enrichments[J]. Ore Geology Reviews, 2023, 161:105631. doi: 10.1016/j.oregeorev.2023.105631
    [35]
    Floyd P A, Rowbotham G. Chemistry of primary and secondary phases in intraplate basalts and volcaniclastic sediments, deep sea drilling project leg 89[C]//Initial Reports of the Deep Sea Drilling Project. Washington: U. S. Govt. Printing Office, 1986.
    [36]
    Walton A W, Schiffman P, Macpherson G L. Alteration of hyaloclastites in the HSDP 2 Phase 1 Drill Core: 2. Mass balance of the conversion of sideromelane to palagonite and chabazite[J]. Geochemistry, Geophysics, Geosystems, 2005, 6(9):Q09G19.
    [37]
    De Ros L F, Al-Aasm I S. Diagenesis of siliciclastic and volcaniclastic sediments in the Cretaceous and Miocene sequences of the NW African margin (DSDP Leg 47A, Site 397)[J]. Sedimentary Geology, 112(1-2):137-156.
    [38]
    Houghton R L, Rothe P, Galehouse J S. Distribution and chemistry of phillipsite, clinoptilolite, and associated zeolites at DSDP sites 382, 385, and 386 in the Western North Atlantic[C]// Initial Reports of the Deep Sea Drilling Project. Washington: U. S. Govt. Printing Office, 1979.
    [39]
    Iyer S D, Pinto S M, Sardar A A. Characteristics and genesis of phillipsite grains in a sediment core from the Central Indian Ocean Basin[J]. Indian Journal of Geo-Marine Sciences, 2018, 47(6):1121-1131.
    [40]
    Iyer S D, Sudhakar M, Das P. Composition and genesis of zeolitic claystones from the Central Indian Ocean Basin[J]. Acta Geologica Sinica (English Edition), 2007, 81(5):756-770. doi: 10.1111/j.1755-6724.2007.tb01000.x
    [41]
    Iyer S D, Fernandes G Q, Mahender K. Coarse fraction components in a red-clay sediment core, Central Indian Ocean Basin: their occurrence and significance[J]. Journal of Indian Association of Sedimentologists, 2012, 31(1-2):123-135.
    [42]
    Schroeder C J, Scott D B, Medioli F S, et al. Larger agglutinated foraminifera: comparison of assemblages from central North Pacific and western North Atlantic (Nares Abyssal Plain)[J]. Journal of Foraminiferal Research, 1988, 18(1):25-41. doi: 10.2113/gsjfr.18.1.25
    [43]
    Murray J W, Alve E, Cundy A. The origin of modern agglutinated foraminiferal assemblages: evidence from a stratified fjord[J]. Estuarine, Coastal and Shelf Science, 2003, 58(3):677-697. doi: 10.1016/S0272-7714(03)00179-3
    [44]
    Corliss B H, Milliman J D. The use of phillipsite in test construction of agglutinated deep-sea benthonic foraminifera[J]. Sedimentology, 1981, 28(3):401-406. doi: 10.1111/j.1365-3091.1981.tb01688.x
    [45]
    Sumaryono S. Development of cyclone coal burner for fuel oil burner substitution in industries[J]. Indonesian Mining Journal, 2009, 12(13):28-33.
    [46]
    Adisaputra M K, Kusnida D. Paleocene postgenetic accumulation of nannoplankton on the phillipsite minerals in Roo Rise, Indian Ocean[J]. Indonesian Journal on Geoscience, 2010, 5(1):49-56. doi: 10.17014/ijog.5.1.49-56
    [47]
    Middleton G V. , Church M J, Coniglio M, et al. Encyclopedia of Sediments and Sedimentary Rocks[M]. Dordrecht: Springer, 2003:481-506.
    [48]
    Hekinian R. Petrology of the Ocean Floor[M]. Amsterdam: Elsevier, 1982:251-290.
    [49]
    Ghiara M R, Petti C. Chemical alteration of volcanic glasses and related control by secondary minerals: experimental studies[J]. Aquatic Geochemistry, 1995, 1(4):329-354.
    [50]
    Langella A, Cappelletti P, De’ Gennaro R. Zeolites in closed hydrologic systems[J]. Reviews in Mineralogy and Geochemistry, 2001, 45(1):235-260. doi: 10.2138/rmg.2001.45.7
    [51]
    Germineaud C, Cravatte S, Sprintall J, et al. Deep pacific circulation: new insights on pathways through the Solomon Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2021, 171:103510. doi: 10.1016/j.dsr.2021.103510
    [52]
    Ma Z, Ravelo A C, Liu Z, et al. Export production fluctuations in the eastern equatorial Pacific during the Pliocene-Pleistocene: Reconstruction using barite accumulation rates[J]. Paleoceanography, 2015, 30:1455-1469. doi: 10.1002/2015PA002860
    [53]
    胡云喜. 重庆“巴山式”毒重石矿成矿地质背景及成矿模式研究[D]. 成都理工大学硕士学位论文, 2021

    HU Yunxi. Research of metallogenic geological background and metallogenic model of the “Bashan-type” witherite deposit in Chongqing[D]. Master Dissertation of Chengdu University of Technology, 2021.]
    [54]
    Rouillard J, García-Ruiz J M, Gong J, et al. A morphogram for silica-witherite biomorphs and its application to microfossil identification in the early earth rock record[J]. Geobiology, 2018, 16(3):279-296. doi: 10.1111/gbi.12278
    [55]
    Yao W Q, Griffith E, Paytan A. Pelagic Barite: Tracer of Ocean Productivity and a Recorder of Isotopic Compositions of Seawater S, O, Sr, Ca and Ba[M]. Cambridge: Cambridge University Press, 2021:1-13.
    [56]
    Palinkas S S, Pedersen R B, Sahlström F. Sulfide mineralization and fluid inclusion characteristics of active ultramafic- and basalt-hosted hydrothermal vents located along the Arctic Mid-Ocean Ridges (AMOR)[C]// Goldschmidt2020 Abstract (June 21-26, Hawaii, USA): Topic of Advances in Stable Isotope Geochemistry: Chemical Physics, Analytical Techniques, and Applications, 2020.
    [57]
    Koschinsky A, Schmidt K, Garbe-Schönberg D. Geochemical time series of hydrothermal fluids from the slow-spreading Mid-Atlantic Ridge: implications of medium-term stability[J]. Chemical Geology, 2020, 552:119760. doi: 10.1016/j.chemgeo.2020.119760
    [58]
    Elderfield H, Schultz A. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean[J]. Annual Review of Earth and Planetary Sciences, 1996, 24(1):191-224. doi: 10.1146/annurev.earth.24.1.191
    [59]
    Fisher R V, Schmincke H U. Alteration of Volcanic Glass[M]. Berlin: Springer, 1984:312-345.
    [60]
    Miyakawa K, Ishii E, Hirota A, et al. The role of low-temperature organic matter diagenesis in carbonate precipitation within a marine deposit[J]. Applied Geochemistry, 2017, 76:218-231. doi: 10.1016/j.apgeochem.2016.11.001
    [61]
    Henrichs S M. Early diagenesis of organic matter in marine sediments: progress and perplexity[J]. Marine Chemistry, 1992, 39(1-3):119-149. doi: 10.1016/0304-4203(92)90098-U
    [62]
    Maher K, DePaolo D J, Lin J C F. Rates of silicate dissolution in deep-sea sediment: in situ measurement using 234U/238U of pore fluids[J]. Geochimica et Cosmochimica Acta, 2004, 68(22):4629-4648. doi: 10.1016/j.gca.2004.04.024
  • Related Articles

    [1]SONG Jiang, WANG Wenpeng, WANG Hu. The characteristics of Zn species in hydrothermal plumes above arc volcanoes in the Northeast of Lau Basin, Southwest Pacific Ocean[J]. Marine Geology & Quaternary Geology, 2025, 45(1): 122-135. DOI: 10.16562/j.cnki.0256-1492.2024062001
    [2]ZHANG Yanan, ZHONG Yi, CHEN Ting, ZHAO Debo, WANG Dunfan, GAI Congcong, JIANG Zhaoxia, JIANG Xiaodong, LIU Qingsong. Research progress of ocean drilling in the North Pacific Ocean: Paleoceanography and paleoclimate[J]. Marine Geology & Quaternary Geology, 2022, 42(5): 16-32. DOI: 10.16562/j.cnki.0256-1492.2022062501
    [3]ZENG Zhigang, ZHANG Yuxiang, CHEN Zuxing, LI Xiaohui, QI Haiyan, WANG Xiaoyuan, CHEN Shuai, YIN Xuebo. Seafloor hydrothermal system and its magmatic setting in the western Pacific back-arc basins[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 12-24. DOI: 10.16562/j.cnki.0256-1492.2021070101
    [4]Zhang Guowei, Li Sanzhong. West Pacific and North Indian Oceans and Their Ocean-continent Connection Zones: Evolution and Debates[J]. Marine Geology & Quaternary Geology, 2017, 37(4): 1-17. DOI: 10.16562/j.cnki.2056-1492.2017.04.001
    [5]LONG Xiaojun, ZHAO Guangtao, YANG Shengxiong, LENG Chuanxu, QI Qi, CUI Shanggong, HAO Yanan. CHEMICAL COMPOSITION AND PALEOENVIRONMENTAL RECORD OF THE CO-RICH CRUST FROM MAGELLAN SEAMOUNT IN WESTERN PACIFIC[J]. Marine Geology & Quaternary Geology, 2015, 35(5): 47-55. DOI: 10.16562/j.cnki.0256-1492.2015.05.006
    [6]YUAN Xuecheng. OCEAN-CONTINENT COLLISION IN THE WEST PACIFIC[J]. Marine Geology & Quaternary Geology, 2014, 34(6): 41-48. DOI: 10.3724/SP.J.1140.2014.06041
    [7]DING Xue, LI Jun, ZHENG Changqing, HUANG Wei, CUI Ruyong, DOU Yanguang, SUN Zhilei. CHEMICAL COMPOSITION OF THE BASALTS ON EAST PACIFIC RISE (1.5°N~1.5°S) AND SOUTH MID-ATLANTIC RIDGE (13.2°S)[J]. Marine Geology & Quaternary Geology, 2014, 34(5): 57-66. DOI: 10.3724/SP.J.1140.2014.05057
    [8]YANG Dan, HU Chuanyu, YU Peisong, WU Guanghai, NI Jianyu, ZHANG Haisheng, YAO Longkui, LU Bing. A COMPARATIVE STUDY OF THE COMPOSITIONS AND EVOLUTION OF THE LOW-MATURE HYDROCARBON AND THEIR CONTROLLING FACTORS FOR THE CORE SEDIMENTS FROM MID-PACIFIC AND EAST-PACIFIC BASINS[J]. Marine Geology & Quaternary Geology, 2010, 30(6): 99-106. DOI: 10.3724/SP.J.1140.2010.06099
    [9]YAN Quanshu, SHI Xuefa, LI Naisheng. GEOLOGY OF LAU BASIN IN THE SOUTHWEST PACIFIC OCEAN[J]. Marine Geology & Quaternary Geology, 2010, 30(1): 131-140. DOI: 10.3724/SP.J.1140.2010.01131
    [10]NI Jian-yu, ZHANG Mei, ZHOU Huai-yang. BIOGENETIC BARIUM DISTRIBUTION IN EQUATORIAL NORTHEASTERN PACIFIC SEDIMENTS[J]. Marine Geology & Quaternary Geology, 2006, 26(2): 49-54.

Catalog

    LIU Jihua

    1. On this Site
    2. On Google Scholar
    3. On PubMed
    Article views (16) PDF downloads (4) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return