LIU Heng,GUO Jingteng,XIAO Wenshen,et al. Deepsea redox conditions in the Southern Ocean indicating vertical ventilation during the Middle-Late Pleistocene: A cause study from IODP Expedition 374 Hole U1524A [J]. Marine Geology & Quaternary Geology,xxxx,x(x): x-xx. DOI: 10.16562/j.cnki.0256-1492.2025030701
Citation: LIU Heng,GUO Jingteng,XIAO Wenshen,et al. Deepsea redox conditions in the Southern Ocean indicating vertical ventilation during the Middle-Late Pleistocene: A cause study from IODP Expedition 374 Hole U1524A [J]. Marine Geology & Quaternary Geology,xxxx,x(x): x-xx. DOI: 10.16562/j.cnki.0256-1492.2025030701

Deepsea redox conditions in the Southern Ocean indicating vertical ventilation during the Middle-Late Pleistocene: A cause study from IODP Expedition 374 Hole U1524A

More Information
  • Received Date: March 06, 2025
  • Revised Date: April 02, 2025
  • Accepted Date: April 02, 2025
  • Available Online: May 05, 2025
  • The redox conditions in the deep ocean are important parameters for diagnosing carbon storage/release in abyssal waters. After correcting the oxygen consumption by organic matter, deep-sea redox conditions are regulated mainly by deep-water ventilation. However, in most available studies, the decoupling between lateral and vertical ventilation was often ignored, but instead used this indicator to suggest the overall or lateral ventilation intensity, which may not be correct in sea areas with developed vertical ventilation (such as the Southern Ocean). To address this issue, we reconstructed the productivity (opal/Ti), redox conditions (Mn/Ti and Mo/Ti ratios), and lateral current strength (ln (Zr/Rb)) from International Ocean Discovery Program Hole U1524A in the Ross Sea, Antarctica, dated to the Middle-Late Pleistocene in a glacial-interglacial framework established through physical parameters. Results demonstrate distinct glacial patterns. The glacial periods were characterized by weaker oxidation (suboxic conditions), lower productivity, and stronger lateral currents compared to the interglacial periods that had stronger oxidation (oxic conditions), higher productivity, and weaker lateral current. Comparing these records with the record of the intensity of the Antarctic Circumpolar Current (ACC), which represents the vertical upwelling of deep water of the Circumpolar Deep Water (CDW), the vertical ventilation was proposed to be the dominate process of deep-sea redox condition. The specific mechanism is that during the glacial periods, the westerlies moved northward, while the ACC weakened and sea ice expanded, which collectively suppressed CDW upwelling. The reduced vertical ventilation diminished deep-sea oxidation and carbon release to the atmosphere, and consequently decreased the atmospheric pCO2. These findings demonstrate that the Southern Ocean deep-sea redox conditions in the Middle-Late Pleistocene reflected the vertical ventilation, underscoring the importance of distinguishing between vertical and lateral ventilation to properly interpret deep-sea redox signals.

  • [1]
    Hoogakker B A A, Elderfield H, Schmiedl G, et al. Glacial–interglacial changes in bottom-water oxygen content on the Portuguese margin[J]. Nature Geoscience, 2015, 8(1):40-43. doi: 10.1038/ngeo2317
    [2]
    Jaccard S L, Galbraith E D, Martínez-García A, et al. Covariation of deep Southern Ocean oxygenation and atmospheric CO2 through the last ice age[J]. Nature, 2016, 530(7589):207-210. doi: 10.1038/nature16514
    [3]
    Amsler H E, Thöle L M, Stimac I, et al. Bottom water oxygenation changes in the southwestern Indian Ocean as an indicator for enhanced respired carbon storage since the last glacial inception[J]. Climate of the Past, 2022, 18(8):1797-1813. doi: 10.5194/cp-18-1797-2022
    [4]
    Chen T, Liu Q S, Wang X D. Enhanced direct ventilation in the subarctic Pacific Ocean during 3.5-2.73 Ma: new evidence of elemental results from ODP Site 882[J]. Global and Planetary Change, 2022, 215:103867. doi: 10.1016/j.gloplacha.2022.103867
    [5]
    Nilsson-Kerr K, Hoogakker B A A, Macaya D A R, et al. Late Cenozoic intensification of deoxygenation in the Pacific Ocean[J]. Earth and Planetary Science Letters, 2025, 655:119253. doi: 10.1016/j.jpgl.2025.119253
    [6]
    Zhang Y N, Li G, Yu J M, et al. Response of atmospheric CO2 changes to the Abyssal Pacific overturning during the last glacial cycle[J]. Global and Planetary Change, 2025, 244:104636. doi: 10.1016/j.gloplacha.2024.104636
    [7]
    Haug G H, Tiedemann R. Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation[J]. Nature, 1998, 393(6686):673-676. doi: 10.1038/31447
    [8]
    Sigman D M, Hain M P, Haug G H. The polar ocean and glacial cycles in atmospheric CO2 concentration[J]. Nature, 2010, 466(7302):47-55. doi: 10.1038/nature09149
    [9]
    Toggweiler J R, Russell J L, Carson S R. Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages[J]. Paleoceanography and Paleoclimatology, 2006, 21(2):PA2005.
    [10]
    Sigman D M, Jaccard S L, Haug G H. Polar ocean stratification in a cold climate[J]. Nature, 2004, 428(6978):59-63. doi: 10.1038/nature02357
    [11]
    DeVries T, Primeau F. Dynamically and observationally constrained estimates of water-mass distributions and ages in the global ocean[J]. Journal of Physical Oceanography, 2011, 41(12):2381-2401. doi: 10.1175/JPO-D-10-05011.1
    [12]
    Orsi A H, Johnson G C, Bullister J L. Circulation, mixing, and production of Antarctic Bottom Water[J]. Progress in Oceanography, 1999, 43(1):55-109. doi: 10.1016/S0079-6611(99)00004-X
    [13]
    Anderson R F, Ali S, Bradtmiller L I, et al. Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2[J]. Science, 2009, 323(5920):1443-1448. doi: 10.1126/science.1167441
    [14]
    Skinner L C, Fallon S, Waelbroeck C, et al. Ventilation of the deep Southern Ocean and deglacial CO2 rise[J]. Science, 2010, 328(5982):1147-1151. doi: 10.1126/science.1183627
    [15]
    Hasenfratz A P, Jaccard S L, Martínez-García A, et al. The residence time of Southern Ocean surface waters and the 100000-year ice age cycle[J]. Science, 2019, 363(6431):1080-1084. doi: 10.1126/science.aat7067
    [16]
    Rintoul S R. The global influence of localized dynamics in the Southern Ocean[J]. Nature, 2018, 558(7709):209-218. doi: 10.1038/s41586-018-0182-3
    [17]
    Thompson A F, Stewart A L, Spence P, et al. The Antarctic Slope Current in a changing climate[J]. Reviews of Geophysics, 2018, 56(4):741-770. doi: 10.1029/2018RG000624
    [18]
    Lamy F, Winckler G, Arz H W, et al. Five million years of Antarctic Circumpolar Current strength variability[J]. Nature, 2024, 627(8005):789-796. doi: 10.1038/s41586-024-07143-3
    [19]
    Naish T, Powell R, Levy R, et al. Obliquity-paced Pliocene West Antarctic ice sheet oscillations[J]. Nature, 2009, 458(7236):322-328. doi: 10.1038/nature07867
    [20]
    Marschalek J W, Zurli L, Talarico F, et al. A large West Antarctic Ice Sheet explains early Neogene sea-level amplitude[J]. Nature, 2021, 600(7889):450-455. doi: 10.1038/s41586-021-04148-0
    [21]
    Dorschel B, Hehemann L, Viquerat S, et al. The international bathymetric chart of the southern ocean version 2[J]. Scientific Data, 2022, 9(1):275. doi: 10.1038/s41597-022-01366-7
    [22]
    Smith Jr W O, Sedwick P N, Arrigo K R, et al. The Ross Sea in a sea of change[J]. Oceanography, 2012, 25(3):90-103. doi: 10.5670/oceanog.2012.80
    [23]
    Orsi A H, Wiederwohl C L. A recount of Ross Sea waters[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2009, 56(13-14):778-795. doi: 10.1016/j.dsr2.2008.10.033
    [24]
    Conte R, Rebesco M, De Santis L, et al. Bottom current control on sediment deposition between the Iselin Bank and the Hillary Canyon (Antarctica) since the late Miocene: an integrated seismic-oceanographic approach[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2021, 176:103606. doi: 10.1016/j.dsr.2021.103606
    [25]
    Arrigo K R, van Dijken G L. Annual changes in sea-ice, chlorophyll a, and primary production in the Ross Sea, Antarctica[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2004, 51(1-3):117-138. doi: 10.1016/j.dsr2.2003.04.003
    [26]
    McKay R M, De Santis L, Kulhanek D K, et al. Site U1524[M]//McKay R M, De Santis L, Kulhanek D K. The Expedition 374 Scientists, Ross Sea West Antarctic Ice Sheet History. Proceedings of the International Ocean Discovery Program. College Station, TX, 2019: 374.
    [27]
    DeMaster D J. The supply and accumulation of silica in the marine environment[J]. Geochimica et Cosmochimica Acta, 1981, 45(10):1715-1732. doi: 10.1016/0016-7037(81)90006-5
    [28]
    Müller P J, Schneider R. An automated leaching method for the determination of opal in sediments and particulate matter[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1993, 40(3):425-444. doi: 10.1016/0967-0637(93)90140-X
    [29]
    Mortlock R A, Froelich P N. A simple method for the rapid determination of biogenic opal in pelagic marine sediments[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1989, 36(9):1415-1426. doi: 10.1016/0198-0149(89)90092-7
    [30]
    Wu Y M, Guo J T, Zhao X Y, et al. Productivity in the Southern Ocean Antarctic Zone during the Northern Hemisphere Glaciation (NHG) and its link to atmospheric pCO2[J]. Science China Earth Sciences, 2024, 67(7):2242-2252. doi: 10.1007/s11430-024-1346-2
    [31]
    Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: an update[J]. Chemical Geology, 2006, 232(1-2):12-32. doi: 10.1016/j.chemgeo.2006.02.012
    [32]
    Xiong Z F, Li T G, Algeo T, et al. Paleoproductivity and paleoredox conditions during Late Pleistocene accumulation of laminated diatom mats in the tropical West Pacific[J]. Chemical Geology, 2012, 334:77-91. doi: 10.1016/j.chemgeo.2012.09.044
    [33]
    Collier R, Dymond J, Honjo S, et al. The vertical flux of biogenic and lithogenic material in the Ross Sea: moored sediment trap observations 1996-1998[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2000, 47(15-16):3491-3520. doi: 10.1016/S0967-0645(00)00076-X
    [34]
    Holder L, Duffy M, Opdyke B, et al. Controls since the mid‐Pleistocene transition on sedimentation and primary productivity downslope of Totten Glacier, East Antarctica[J]. Paleoceanography and Paleoclimatology, 2020, 35(12):e2020PA003981. doi: 10.1029/2020PA003981
    [35]
    Reilly B T, Tauxe L, Brachfeld S, et al. New magnetostratigraphic insights from Iceberg Alley on the rhythms of Antarctic climate during the Plio‐Pleistocene[J]. Paleoceanography and Paleoclimatology, 2021, 36(2):e2020PA003994. doi: 10.1029/2020PA003994
    [36]
    Ohneiser C, Hulbe C L, Beltran C, et al. West Antarctic ice volume variability paced by obliquity until 400, 000 years ago[J]. Nature Geoscience, 2023, 16(1):44-49. doi: 10.1038/s41561-022-01088-w
    [37]
    Kim S, Lee J I, McKay R M, et al. Late pleistocene paleoceanographic changes in the Ross Sea–Glacial-interglacial variations in paleoproductivity, nutrient utilization, and deep-water formation[J]. Quaternary Science Reviews, 2020, 239:106356. doi: 10.1016/j.quascirev.2020.106356
    [38]
    Weber M E, Bailey I, Hemming S R, et al. Antiphased dust deposition and productivity in the Antarctic Zone over 1.5 million years[J]. Nature Communications, 2022, 13(1):2044. doi: 10.1038/s41467-022-29642-5
    [39]
    Lisiecki L E, Raymo M E. A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20(1):PA1003.
    [40]
    Calvert S E, Pedersen T F. Geochemistry of recent oxic and anoxic marine sediments: implications for the geological record[J]. Marine Geology, 1993, 113(1-2):67-88. doi: 10.1016/0025-3227(93)90150-T
    [41]
    王家凯, 李铁刚, 熊志方, 等. 南极罗斯海氧化还原敏感元素沉积地球化学特征及其古海洋意义[J]. 海洋地质与第四纪地质, 2018, 38(5):112-121

    WANG Jiakai, LI Tiegang, XIONG Zhifang, et al. Sedimentary geochemical characteristics of the Redox-sensitive elements in Ross Sea, Antarctica: implications for paleoceanography[J]. Marine Geology & Quaternary Geology, 2018, 38(5):112-121.]
    [42]
    Salabarnada A, Escutia C, Röhl U, et al. Paleoceanography and ice sheet variability offshore Wilkes Land, Antarctica–Part 1: insights from late Oligocene astronomically paced contourite sedimentation[J]. Climate of the Past, 2018, 14(7):991-1014. doi: 10.5194/cp-14-991-2018
    [43]
    Bertine K K, Turekian K K. Molybdenum in marine deposits[J]. Geochimica et Cosmochimica Acta, 1973, 37(6):1415-1434. doi: 10.1016/0016-7037(73)90080-X
    [44]
    Jaccard S L, Hayes C T, Martínez-García A, et al. Two modes of change in Southern Ocean productivity over the past million years[J]. Science, 2013, 339(6126):1419-1423. doi: 10.1126/science.1227545
    [45]
    Dypvik H, Harris N B. Geochemical facies analysis of fine-grained siliciclastics using Th/U, Zr/Rb and (Zr+Rb)/Sr ratios[J]. Chemical Geology, 2001, 181(1-4):131-146. doi: 10.1016/S0009-2541(01)00278-9
    [46]
    Wu L, Wilson D J, Wang R J, et al. Evaluating Zr/Rb ratio from XRF scanning as an indicator of grain‐size variations of glaciomarine sediments in the Southern Ocean[J]. Geochemistry, Geophysics, Geosystems, 2020, 21(11):e2020GC009350. doi: 10.1029/2020GC009350
    [47]
    McCave I N, Andrews J T. Distinguishing current effects in sediments delivered to the ocean by ice. I. Principles, methods and examples[J]. Quaternary Science Reviews, 2019, 212:92-107. doi: 10.1016/j.quascirev.2019.03.031
    [48]
    Jimenez-Espejo F J, Presti M, Kuhn G, et al. Late Pleistocene oceanographic and depositional variations along the Wilkes Land margin (East Antarctica) reconstructed with geochemical proxies in deep-sea sediments[J]. Global and Planetary Change, 2020, 184:103045. doi: 10.1016/j.gloplacha.2019.103045
    [49]
    Bereiter B, Eggleston S, Schmitt J, et al. Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present[J]. Geophysical Research Letters, 2015, 42(2):542-549. doi: 10.1002/2014GL061957
    [50]
    Hojnacki V, Lepp A, Horowitz Castaldo J, et al. Impact of Eocene‐Oligocene Antarctic glaciation on the paleoceanography of the Weddell Sea[J]. Paleoceanography and Paleoclimatology, 2022, 37(12):e2022PA004440. doi: 10.1029/2022PA004440
    [51]
    Tang Z, Li T G, Xiong Z F, et al. Covariation of deep Antarctic Pacific oxygenation and atmospheric CO2 during the last 770 kyr[J]. Lithosphere, 2022, 2022(S9):1835176.

Catalog

    Article views (29) PDF downloads (6) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return