ZHU Xiaochuan,XING Lei,LI Qianqian,et al. Ambient seismic noise difference between Chukchi Sea and Interior Alaska[J]. Marine Geology & Quaternary Geology,xxxx,x(x): x-xx. DOI: 10.16562/j.cnki.0256-1492.2025022601
Citation: ZHU Xiaochuan,XING Lei,LI Qianqian,et al. Ambient seismic noise difference between Chukchi Sea and Interior Alaska[J]. Marine Geology & Quaternary Geology,xxxx,x(x): x-xx. DOI: 10.16562/j.cnki.0256-1492.2025022601

Ambient seismic noise difference between Chukchi Sea and Interior Alaska

More Information
  • Received Date: February 25, 2025
  • Revised Date: March 16, 2025
  • Accepted Date: March 16, 2025
  • Available Online: April 15, 2025
  • Based on the background of receding Arctic sea ice and increasing exploration activities offshore Alaska, we explored the sea-land differences in seismic noise characteristics between the Chukchi Sea and the inland of Alaska, for which the Chukchi Sea OBS data obtained from the Ninth Arctic Scientific Expedition and the continuous waveform data from Alaska seismic stations were used, the temporal and frequency distribution characteristics of the noise were analyzed using the power spectral density and probability density function methods, and the sources of the noise were identified and described from the information on sea-ice density, ocean waves, river flow, and human activities. Result shows that in the microseismic zone, the ambient seismic noise intensity in the Chukchi Sea varies significantly between ice and ice-free periods: sea ice cover suppressed the dual-frequency microseismic energy, whereas the enhanced wave activity in the ice-free period significantly increased the microseismic noise. Seasonal variations in double-frequency microseismic peaks were revealed in the inland Alaskan stations and correlated with distant-source Arctic Ocean storms, showing a slight shortening of the peak period in summer and autumn. On the short-period scale, the Chukchi Sea OBS (Ocean Bottom Seismometer) records intermittent high-energy noise from wave–ice-floe collisions, while the inland stations are susceptible to a combination of river turbulence and human activities, and show clear seasonal and diurnal variation patterns. The higher ambient seismic noise intensity in the Chukchi Sea over a long period is related to submarine currents, whereas that in the inland stations is generally low and stable.

  • [1]
    李启虎, 王宁, 赵进平, 等. 北极水声学: 一门引人关注的新型学科[J]. 应用声学, 2014, 33(6):471-483

    LI Qihu, WANG Ning, ZHAO Jinping, et al. Arctic underwater acoustics: an attractive new topic in ocean acoustics[J]. Journal of Applied Acoustics, 2014, 33(6):471-483.]
    [2]
    胡海涵, 张智伦, 李新情, 等. 2000—2019年北极多年冰时空变化分析[J]. 极地研究, 2022, 34(4):419-431

    HU Haihan, ZHANG Zhilun, LI Xinqing, et al. Spatiotemporal variations of Arctic multi-year ice from 2000 to 2019[J]. Chinese Journal of Polar Research, 2022, 34(4):419-431.]
    [3]
    Druckenmiller M L, Moon T A, Thoman R L, et al. The arctic[J]. Bulletin of the American Meteorological Society, 2021, 102(8):S263-S316. doi: 10.1175/BAMS-D-21-0086.1
    [4]
    Austin M E, Hannay D E, Bröker K C. Acoustic characterization of exploration drilling in the Chukchi and Beaufort seas[J]. The Journal of the Acoustical Society of America, 2018, 144(1):115-123. doi: 10.1121/1.5044417
    [5]
    Blackwell S B, Nations C S, McDonald T L, et al. Effects of airgun sounds on bowhead whale calling rates: evidence for two behavioral thresholds[J]. PLoS One, 2015, 10(6):e0125720. doi: 10.1371/journal.pone.0125720
    [6]
    Sutton G H, McDonald W G, Prentiss D D, et al. Ocean-bottom seismic observatories[J]. Proceedings of the IEEE, 1965, 53(12):1909-1921. doi: 10.1109/PROC.1965.4468
    [7]
    Hasselmann K. A statistical analysis of the generation of microseisms[J]. Reviews of Geophysics, 1963, 1(2):177-210. doi: 10.1029/RG001i002p00177
    [8]
    Longuet-Higgins M S. A theory of the origin of microseisms[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1950, 243(857):1-35.
    [9]
    Webb S C, Zhang X, Crawford W. Infragravity waves in the deep ocean[J]. Journal of Geophysical Research: Oceans, 1991, 96(C2):2723-2736. doi: 10.1029/90JC02212
    [10]
    刘亚楠, 刘保华, 刘晨光, 等. 南海东部次海盆地震背景噪声分析[J]. 海洋地质与第四纪地质, 2021, 41(2):109-117

    LIU Ya’nan, LIU Baohua, LIU Chenguang, et al. Research on seismic background noise in the Eastern Subbasin of the South China Sea[J]. Marine Geology & Quaternary Geology, 2021, 41(2):109-117.]
    [11]
    Dahm T, Tilmann F, Morgan J P. Seismic broadband ocean-bottom data and noise observed with free-fall stations: experiences from long-term deployments in the North Atlantic and the Tyrrhenian sea[J]. Bulletin of the Seismological Society of America, 2006, 96(2):647-664. doi: 10.1785/0120040064
    [12]
    Davy C, Stutzmann E, Barruol G, et al. Sources of secondary microseisms in the Indian Ocean[J]. Geophysical Journal International, 2015, 202(2):1180-1189. doi: 10.1093/gji/ggv221
    [13]
    Grob M, Maggi A, Stutzmann E. Observations of the seasonality of the Antarctic microseismic signal, and its association to sea ice variability[J]. Geophysical Research Letters, 2011, 38(11):L11302.
    [14]
    Ozanich E, Gerstoft P, Worcester P F, et al. Eastern Arctic ambient noise on a drifting vertical array[J]. The Journal of the Acoustical Society of America, 2017, 142(4):1997-2006. doi: 10.1121/1.5006053
    [15]
    Li Q Q, Liu Y X, Xing L, et al. Analysis of regional ambient seismic noise in the Chukchi sea area in the arctic based on OBS data from the Ninth Chinese national arctic scientific survey[J]. Remote Sensing, 2023, 15(17):4204. doi: 10.3390/rs15174204
    [16]
    Peterson J. Observations and modeling of seismic background noise[R]. Albuquerque: U. S. Geological Survey, 1993.
    [17]
    Zürn W, Widmer R. On noise reduction in vertical seismic records below 2 mHz using local barometric pressure[J]. Geophysical Research Letters, 1995, 22(24):3537-3540. doi: 10.1029/95GL03369
    [18]
    Withers M M, Aster R C, Young C J, et al. High-frequency analysis of seismic background noise as a function of wind speed and shallow depth[J]. Bulletin of the Seismological Society of America, 1996, 86(5):1507-1515. doi: 10.1785/BSSA0860051507
    [19]
    Vila J, Macià R. The broadband seismic station CADI (Tunel del Cadi, Eastern Pyrenees), Part II: long-period variations of background noise[J]. Bulletin of the Seismological Society of America, 2002, 92(8):3329-3334. doi: 10.1785/0120020024
    [20]
    Schmandt B, Gaeuman D, Stewart R, et al. Seismic array constraints on reach-scale bedload transport[J]. Geology, 2017, 45(4):299-302. doi: 10.1130/G38639.1
    [21]
    Olsen K B. Site amplification in the Los Angeles basin from three-dimensional modeling of ground motion[J]. Bulletin of the Seismological Society of America, 2000, 90(6B):S77-S94. doi: 10.1785/0120000506
    [22]
    Frankel A, Stephenson W, Carver D. Sedimentary basin effects in Seattle, Washington: ground-motion observations and 3D simulations[J]. Bulletin of the Seismological Society of America, 2009, 99(3):1579-1611. doi: 10.1785/0120080203
    [23]
    Wilson D, Leon J, Aster R, et al. Broadband seismic background noise at temporary seismic stations observed on a regional scale in the southwestern United States[J]. Bulletin of the Seismological Society of America, 2002, 92(8):3335-3342. doi: 10.1785/0120010234
    [24]
    Marzorati S, Bindi D. Ambient noise levels in north central Italy[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(9):Q09010.
    [25]
    Evangelidis C P, Melis N S. Ambient noise levels in Greece as recorded at the Hellenic unified seismic network[J]. Bulletin of the Seismological Society of America, 2012, 102(6):2507-2517. doi: 10.1785/0120110319
    [26]
    Anthony R E, Ringler A T, Wilson D C. Seismic background noise levels across the continental united states from USArray transportable array: the influence of geology and geography[J]. Bulletin of the Seismological Society of America, 2022, 112(2):646-668. doi: 10.1785/0120210176
    [27]
    Tape C, Christensen D, Moore-Driskell M M, et al. Southern Alaska lithosphere and mantle observation network (SALMON): a seismic experiment covering the active arc by road, boat, plane, and helicopter[J]. Seismological Research Letters, 2017, 88(4):1185-1202. doi: 10.1785/0220160229
    [28]
    Smith K, Tape C. Seismic noise in central Alaska and influences from rivers, wind, and sedimentary basins[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(11):11678-11704. doi: 10.1029/2019JB017695
    [29]
    Ringler A T, Aderhold K, Anthony R E et al. Perspectives on transportable array Alaska background noise levels[M]//Ruppert N A, Jadamec M A, Freymueller J T. Tectonics and Seismic Structure of Alaska and Northwestern Canada: EarthScope and Beyond. Hoboken: John Wiley & Sons, Inc, 2025: 2-38.
    [30]
    雷瑞波. 中国第9次北极科学考察简报[J]. 极地研究, 2019, 31(1):114-116

    LEI Ruibo. Briefing of 9th Chinese national arctic research expedition[J]. Chinese Journal of Polar Research, 2019, 31(1):114-116.]
    [31]
    Bendat J S, Piersol A G. Random data analysis and measurement procedures[J]. Measurement Science and Technology, 2000, 11(12):1825-1826.
    [32]
    McNamara D E, Buland R P. Ambient noise levels in the continental United States[J]. Bulletin of the Seismological Society of America, 2004, 94(4):1517-1527. doi: 10.1785/012003001
    [33]
    Welch P. The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms[J]. IEEE Transactions on Audio and Electroacoustics, 1967, 15(2):70-73. doi: 10.1109/TAU.1967.1161901
    [34]
    Ardhuin F, Stutzmann E, Schimmel M, et al. Ocean wave sources of seismic noise[J]. Journal of Geophysical Research: Oceans, 2011, 116(C9):C09004.
    [35]
    Kousal J, Voermans J J, Liu Q, et al. A two-part model for wave-sea ice interaction: attenuation and break-up[J]. Journal of Geophysical Research: Oceans, 2022, 127(5):e2022JC018571. doi: 10.1029/2022JC018571
    [36]
    Sutherland P, Gascard J C. Airborne remote sensing of ocean wave directional wavenumber spectra in the marginal ice zone[J]. Geophysical Research Letters, 2016, 43(10):5151-5159. doi: 10.1002/2016GL067713
    [37]
    Weber J E. Wave attenuation and wave drift in the marginal ice zone[J]. Journal of Physical Oceanography, 1987, 17(12):2351-2361. doi: 10.1175/1520-0485(1987)017<2351:WAAWDI>2.0.CO;2
    [38]
    Kohout A L, Meylan M H. An elastic plate model for wave attenuation and ice floe breaking in the marginal ice zone[J]. Journal of Geophysical Research: Oceans, 2008, 113(C9):C09016.
    [39]
    Citta J J, Quakenbush L, George J C. Chapter 4-Distribution and behavior of Bering-Chukchi-Beaufort bowhead whales as inferred by telemetry[M]//George J C, Thewissen J G M. The Bowhead Whale. San Diego: Academic Press, 2021: 31-56.
  • Related Articles

    [1]CHEN Kean, ZHANG Huichao, FANG Haoyuan, TAO Chunhui, LIANG Jin, YANG Weifang, LIAO Shili. Mode of silver occurrence in pyrite from the Edmond hydrothermal field, Central Indian Ridge: mineralogical evidence[J]. Marine Geology & Quaternary Geology, 2023, 43(3): 84-92. DOI: 10.16562/j.cnki.0256-1492.2022101101
    [2]HU Yujie, LI Xiaoyan, SONG Zhaojun, ZHANG Bin, YIN Zhengxin, ZHANG Hui, HU Qiannan, DING Xuan. Distribution and influencing factors of planktonic foraminifera in surface sediments of the Ninetyeast Ridge in Indian Ocean[J]. Marine Geology & Quaternary Geology, 2023, 43(1): 105-117. DOI: 10.16562/j.cnki.0256-1492.2022032102
    [3]QI Wenjing, LI Xiaoyan, FAN Dejiang, ZHANG Hui, YIN Zhengxin, LIU Shengfa. Rare earth element composition of the surface sediments from the Ninetyeast Ridge and its implications for provenance[J]. Marine Geology & Quaternary Geology, 2022, 42(2): 92-100. DOI: 10.16562/j.cnki.0256-1492.2021050701
    [4]WANG Xiaojie, YAN Zhonghui, LIU Jun, LIU Xinxin, YANG Jiajia. Generalized free surface multiple suppression technique based on model optimization and its application to the deep water of the Indian Ocean[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 221-230. DOI: 10.16562/j.cnki.0256-1492.2020101202
    [5]SHANG Luning, HU Gang, YUAN Zhongpeng, QI Jianghao, PAN Jun. Tectonic structure and origin of the 85°E ridge, Northeastern Indian Ocean: A review and new observations[J]. Marine Geology & Quaternary Geology, 2020, 40(4): 1-16. DOI: 10.16562/j.cnki.0256-1492.2020042201
    [6]CAO Hong, SUN Zhilei, LIU Changling, JIANG Xuejun, HUANG Wei, XU Cuiling, LIU Liping, HE Yongjun. Mineralogical composition and its significance of hydrothermal sulfides from the Longqi hydrothermal field on the Southwest Indian Ridge[J]. Marine Geology & Quaternary Geology, 2018, 38(4): 179-192. DOI: 10.16562/j.cnki.0256-1492.2018.04.016
    [7]GONG Jianming, LIAO Jing, YIN Weihan, ZHANG Li, HE Yongjun, SUN Zhilei, YANG Chuansheng, WANG Jianqiang, HUANG Wei, MENG Ming, CHENG Haiyan. Gas hydrate accumulation models of Makran accretionary wedge, northern Indian Ocean[J]. Marine Geology & Quaternary Geology, 2018, 38(2): 148-155. DOI: 10.16562/j.cnki.0256-1492.2018.02.015
    [8]Zhang Guowei, Li Sanzhong. West Pacific and North Indian Oceans and Their Ocean-continent Connection Zones: Evolution and Debates[J]. Marine Geology & Quaternary Geology, 2017, 37(4): 1-17. DOI: 10.16562/j.cnki.2056-1492.2017.04.001
    [9]SHAO Ke, CHEN Jianping, REN Mengyi. QUANTITATIVE PREDICTION AND EVALUATION OF POLYMETALLIC SULFIDE MINERAL DEPOSITS ALONG THE CENTRAL INDIAN OCEAN RIDGE[J]. Marine Geology & Quaternary Geology, 2015, 35(5): 125-133. DOI: 10.16562/j.cnki.0256-1492.2015.05.015
    [10]CAO Hong, CAO Zhimin. REVIEW OF SUBMARINE HYDROTHERMAL ACTIVITIES IN SOUTHWEST INDIAN RIDGE[J]. Marine Geology & Quaternary Geology, 2011, 31(1): 67-75. DOI: 10.3724/SP.J.1140.2011.01067
  • Cited by

    Periodical cited type(1)

    1. 杨华臣,张建中. 拖缆与OBN资料联合成像域最小二乘逆时偏移成像. 地球物理学报. 2022(10): 4099-4110 .

    Other cited types(2)

Catalog

    Article views (22) PDF downloads (6) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return