ZHU Xiaochuan,XING Lei,LI Qianqian,et al. Ambient seismic noise difference between Chukchi Sea and Interior Alaska[J]. Marine Geology & Quaternary Geology,xxxx,x(x): x-xx. DOI: 10.16562/j.cnki.0256-1492.2025022601
Citation: ZHU Xiaochuan,XING Lei,LI Qianqian,et al. Ambient seismic noise difference between Chukchi Sea and Interior Alaska[J]. Marine Geology & Quaternary Geology,xxxx,x(x): x-xx. DOI: 10.16562/j.cnki.0256-1492.2025022601

Ambient seismic noise difference between Chukchi Sea and Interior Alaska

More Information
  • Received Date: February 25, 2025
  • Revised Date: March 16, 2025
  • Accepted Date: March 16, 2025
  • Available Online: April 15, 2025
  • Based on the background of receding Arctic sea ice and increasing exploration activities offshore Alaska, we explored the sea-land differences in seismic noise characteristics between the Chukchi Sea and the inland of Alaska, for which the Chukchi Sea OBS data obtained from the Ninth Arctic Scientific Expedition and the continuous waveform data from Alaska seismic stations were used, the temporal and frequency distribution characteristics of the noise were analyzed using the power spectral density and probability density function methods, and the sources of the noise were identified and described from the information on sea-ice density, ocean waves, river flow, and human activities. Result shows that in the microseismic zone, the ambient seismic noise intensity in the Chukchi Sea varies significantly between ice and ice-free periods: sea ice cover suppressed the dual-frequency microseismic energy, whereas the enhanced wave activity in the ice-free period significantly increased the microseismic noise. Seasonal variations in double-frequency microseismic peaks were revealed in the inland Alaskan stations and correlated with distant-source Arctic Ocean storms, showing a slight shortening of the peak period in summer and autumn. On the short-period scale, the Chukchi Sea OBS (Ocean Bottom Seismometer) records intermittent high-energy noise from wave–ice-floe collisions, while the inland stations are susceptible to a combination of river turbulence and human activities, and show clear seasonal and diurnal variation patterns. The higher ambient seismic noise intensity in the Chukchi Sea over a long period is related to submarine currents, whereas that in the inland stations is generally low and stable.

  • [1]
    李启虎, 王宁, 赵进平, 等. 北极水声学: 一门引人关注的新型学科[J]. 应用声学, 2014, 33(6):471-483

    LI Qihu, WANG Ning, ZHAO Jinping, et al. Arctic underwater acoustics: an attractive new topic in ocean acoustics[J]. Journal of Applied Acoustics, 2014, 33(6):471-483.]
    [2]
    胡海涵, 张智伦, 李新情, 等. 2000—2019年北极多年冰时空变化分析[J]. 极地研究, 2022, 34(4):419-431

    HU Haihan, ZHANG Zhilun, LI Xinqing, et al. Spatiotemporal variations of Arctic multi-year ice from 2000 to 2019[J]. Chinese Journal of Polar Research, 2022, 34(4):419-431.]
    [3]
    Druckenmiller M L, Moon T A, Thoman R L, et al. The arctic[J]. Bulletin of the American Meteorological Society, 2021, 102(8):S263-S316. doi: 10.1175/BAMS-D-21-0086.1
    [4]
    Austin M E, Hannay D E, Bröker K C. Acoustic characterization of exploration drilling in the Chukchi and Beaufort seas[J]. The Journal of the Acoustical Society of America, 2018, 144(1):115-123. doi: 10.1121/1.5044417
    [5]
    Blackwell S B, Nations C S, McDonald T L, et al. Effects of airgun sounds on bowhead whale calling rates: evidence for two behavioral thresholds[J]. PLoS One, 2015, 10(6):e0125720. doi: 10.1371/journal.pone.0125720
    [6]
    Sutton G H, McDonald W G, Prentiss D D, et al. Ocean-bottom seismic observatories[J]. Proceedings of the IEEE, 1965, 53(12):1909-1921. doi: 10.1109/PROC.1965.4468
    [7]
    Hasselmann K. A statistical analysis of the generation of microseisms[J]. Reviews of Geophysics, 1963, 1(2):177-210. doi: 10.1029/RG001i002p00177
    [8]
    Longuet-Higgins M S. A theory of the origin of microseisms[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1950, 243(857):1-35.
    [9]
    Webb S C, Zhang X, Crawford W. Infragravity waves in the deep ocean[J]. Journal of Geophysical Research: Oceans, 1991, 96(C2):2723-2736. doi: 10.1029/90JC02212
    [10]
    刘亚楠, 刘保华, 刘晨光, 等. 南海东部次海盆地震背景噪声分析[J]. 海洋地质与第四纪地质, 2021, 41(2):109-117

    LIU Ya’nan, LIU Baohua, LIU Chenguang, et al. Research on seismic background noise in the Eastern Subbasin of the South China Sea[J]. Marine Geology & Quaternary Geology, 2021, 41(2):109-117.]
    [11]
    Dahm T, Tilmann F, Morgan J P. Seismic broadband ocean-bottom data and noise observed with free-fall stations: experiences from long-term deployments in the North Atlantic and the Tyrrhenian sea[J]. Bulletin of the Seismological Society of America, 2006, 96(2):647-664. doi: 10.1785/0120040064
    [12]
    Davy C, Stutzmann E, Barruol G, et al. Sources of secondary microseisms in the Indian Ocean[J]. Geophysical Journal International, 2015, 202(2):1180-1189. doi: 10.1093/gji/ggv221
    [13]
    Grob M, Maggi A, Stutzmann E. Observations of the seasonality of the Antarctic microseismic signal, and its association to sea ice variability[J]. Geophysical Research Letters, 2011, 38(11):L11302.
    [14]
    Ozanich E, Gerstoft P, Worcester P F, et al. Eastern Arctic ambient noise on a drifting vertical array[J]. The Journal of the Acoustical Society of America, 2017, 142(4):1997-2006. doi: 10.1121/1.5006053
    [15]
    Li Q Q, Liu Y X, Xing L, et al. Analysis of regional ambient seismic noise in the Chukchi sea area in the arctic based on OBS data from the Ninth Chinese national arctic scientific survey[J]. Remote Sensing, 2023, 15(17):4204. doi: 10.3390/rs15174204
    [16]
    Peterson J. Observations and modeling of seismic background noise[R]. Albuquerque: U. S. Geological Survey, 1993.
    [17]
    Zürn W, Widmer R. On noise reduction in vertical seismic records below 2 mHz using local barometric pressure[J]. Geophysical Research Letters, 1995, 22(24):3537-3540. doi: 10.1029/95GL03369
    [18]
    Withers M M, Aster R C, Young C J, et al. High-frequency analysis of seismic background noise as a function of wind speed and shallow depth[J]. Bulletin of the Seismological Society of America, 1996, 86(5):1507-1515. doi: 10.1785/BSSA0860051507
    [19]
    Vila J, Macià R. The broadband seismic station CADI (Tunel del Cadi, Eastern Pyrenees), Part II: long-period variations of background noise[J]. Bulletin of the Seismological Society of America, 2002, 92(8):3329-3334. doi: 10.1785/0120020024
    [20]
    Schmandt B, Gaeuman D, Stewart R, et al. Seismic array constraints on reach-scale bedload transport[J]. Geology, 2017, 45(4):299-302. doi: 10.1130/G38639.1
    [21]
    Olsen K B. Site amplification in the Los Angeles basin from three-dimensional modeling of ground motion[J]. Bulletin of the Seismological Society of America, 2000, 90(6B):S77-S94. doi: 10.1785/0120000506
    [22]
    Frankel A, Stephenson W, Carver D. Sedimentary basin effects in Seattle, Washington: ground-motion observations and 3D simulations[J]. Bulletin of the Seismological Society of America, 2009, 99(3):1579-1611. doi: 10.1785/0120080203
    [23]
    Wilson D, Leon J, Aster R, et al. Broadband seismic background noise at temporary seismic stations observed on a regional scale in the southwestern United States[J]. Bulletin of the Seismological Society of America, 2002, 92(8):3335-3342. doi: 10.1785/0120010234
    [24]
    Marzorati S, Bindi D. Ambient noise levels in north central Italy[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(9):Q09010.
    [25]
    Evangelidis C P, Melis N S. Ambient noise levels in Greece as recorded at the Hellenic unified seismic network[J]. Bulletin of the Seismological Society of America, 2012, 102(6):2507-2517. doi: 10.1785/0120110319
    [26]
    Anthony R E, Ringler A T, Wilson D C. Seismic background noise levels across the continental united states from USArray transportable array: the influence of geology and geography[J]. Bulletin of the Seismological Society of America, 2022, 112(2):646-668. doi: 10.1785/0120210176
    [27]
    Tape C, Christensen D, Moore-Driskell M M, et al. Southern Alaska lithosphere and mantle observation network (SALMON): a seismic experiment covering the active arc by road, boat, plane, and helicopter[J]. Seismological Research Letters, 2017, 88(4):1185-1202. doi: 10.1785/0220160229
    [28]
    Smith K, Tape C. Seismic noise in central Alaska and influences from rivers, wind, and sedimentary basins[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(11):11678-11704. doi: 10.1029/2019JB017695
    [29]
    Ringler A T, Aderhold K, Anthony R E et al. Perspectives on transportable array Alaska background noise levels[M]//Ruppert N A, Jadamec M A, Freymueller J T. Tectonics and Seismic Structure of Alaska and Northwestern Canada: EarthScope and Beyond. Hoboken: John Wiley & Sons, Inc, 2025: 2-38.
    [30]
    雷瑞波. 中国第9次北极科学考察简报[J]. 极地研究, 2019, 31(1):114-116

    LEI Ruibo. Briefing of 9th Chinese national arctic research expedition[J]. Chinese Journal of Polar Research, 2019, 31(1):114-116.]
    [31]
    Bendat J S, Piersol A G. Random data analysis and measurement procedures[J]. Measurement Science and Technology, 2000, 11(12):1825-1826.
    [32]
    McNamara D E, Buland R P. Ambient noise levels in the continental United States[J]. Bulletin of the Seismological Society of America, 2004, 94(4):1517-1527. doi: 10.1785/012003001
    [33]
    Welch P. The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms[J]. IEEE Transactions on Audio and Electroacoustics, 1967, 15(2):70-73. doi: 10.1109/TAU.1967.1161901
    [34]
    Ardhuin F, Stutzmann E, Schimmel M, et al. Ocean wave sources of seismic noise[J]. Journal of Geophysical Research: Oceans, 2011, 116(C9):C09004.
    [35]
    Kousal J, Voermans J J, Liu Q, et al. A two-part model for wave-sea ice interaction: attenuation and break-up[J]. Journal of Geophysical Research: Oceans, 2022, 127(5):e2022JC018571. doi: 10.1029/2022JC018571
    [36]
    Sutherland P, Gascard J C. Airborne remote sensing of ocean wave directional wavenumber spectra in the marginal ice zone[J]. Geophysical Research Letters, 2016, 43(10):5151-5159. doi: 10.1002/2016GL067713
    [37]
    Weber J E. Wave attenuation and wave drift in the marginal ice zone[J]. Journal of Physical Oceanography, 1987, 17(12):2351-2361. doi: 10.1175/1520-0485(1987)017<2351:WAAWDI>2.0.CO;2
    [38]
    Kohout A L, Meylan M H. An elastic plate model for wave attenuation and ice floe breaking in the marginal ice zone[J]. Journal of Geophysical Research: Oceans, 2008, 113(C9):C09016.
    [39]
    Citta J J, Quakenbush L, George J C. Chapter 4-Distribution and behavior of Bering-Chukchi-Beaufort bowhead whales as inferred by telemetry[M]//George J C, Thewissen J G M. The Bowhead Whale. San Diego: Academic Press, 2021: 31-56.
  • Related Articles

    [1]LIU Jianbo, LI Jianyong, HAN Yueting, YANG Rui, HAN Xiaoxiao, XU Hao. Integrated reconstruction of fire history and climatic changes in Northwest China since mid-late Holocene[J]. Marine Geology & Quaternary Geology, 2024, 44(1): 156-169. DOI: 10.16562/j.cnki.0256-1492.2023022302
    [2]TIAN Min, TIAN Qingchun, YIN Jianan, ZHANG Zhongwu, GAO Jiangtao. Relationship between temporal-spatial distribution of Mid-Holocene sites and climate evolution in southern Shanxi[J]. Marine Geology & Quaternary Geology, 2023, 43(3): 175-184. DOI: 10.16562/j.cnki.0256-1492.2022120601
    [3]WANG Jiangyue, BAI Weiming, WANG Zhaobo, WANG Minghui, LI Baojie. The Holocene climatic evolution in Eastern China and its bearing on climatic events[J]. Marine Geology & Quaternary Geology, 2022, 42(2): 167-177. DOI: 10.16562/j.cnki.0256-1492.2021122001
    [4]LI Shuaili, WANG Jilong, PENG Bo, WU Bin, YU Junjie, DAI Lu. Palynological evidence for palaeoenviromental change and human activity in Ningde of Fujian Province during Holocene[J]. Marine Geology & Quaternary Geology, 2021, 41(3): 170-181. DOI: 10.16562/j.cnki.0256-1492.2020102201
    [5]YE Xiaoxian, Harunur Rashid. Changes of the upper water column at the 45°N North Atlantic since marine isotope stage 3[J]. Marine Geology & Quaternary Geology, 2021, 41(3): 114-123. DOI: 10.16562/j.cnki.0256-1492.2020073102
    [6]ZHAO Chenchen, WANG Yongbo, XU Qinmian. Climate changes on Chinese continent since 2.5 Ma: Evidence from fossil pollen records[J]. Marine Geology & Quaternary Geology, 2020, 40(4): 175-191. DOI: 10.16562/j.cnki.0256-1492.2019070301
    [7]XIE Yulong, WU Fuli, FANG Xiaomin. Cenozoic palynological assemblages and their relations with climate-environment evolution in Yunnan[J]. Marine Geology & Quaternary Geology, 2019, 39(2): 164-176. DOI: 10.16562/j.cnki.0256-1492.2017090601
    [8]WEI Leihua, JIANG Hanchao, HE Honglin, XU Yueren, GAO Wei, WEI Zhanyu. Heinrich-5Event revealed by high-resolution grain-size and magnetic susceptibility records and its significance of climate evolution in the last glacial at Hongtong, Shanxi, China[J]. Marine Geology & Quaternary Geology, 2018, 38(4): 193-202. DOI: 10.16562/j.cnki.0256-1492.2018.04.017
    [9]ZHAO Kan, WANG Yongjin. ASIAN MONSOON CHANGES ON CENTENNIAL-SCALE AND CHARACTERS OF HEINRICH EVENTS DURING THE MIS 3/2 TRANSITION FROM A STALAGMITE RECORD IN SOUTHWEST CHINA[J]. Marine Geology & Quaternary Geology, 2011, 31(2): 121-128. DOI: 10.3724/SP.J.1140.2011.02121
    [10]LI Qian-yu, ZHENG Fan, LIU Chuan-lian. STRATIGRAPHIC EVENTS ACROSS THE OLIGOCENE/MIOCENE BOUNDARY[J]. Marine Geology & Quaternary Geology, 2007, 27(5): 57-64.

Catalog

    ZHANG Hongmao

    1. On this Site
    2. On Google Scholar
    3. On PubMed
    Article views (44) PDF downloads (9) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return