Citation: | ZHAN Shuie,WU Jinglu,WANG Jingzhong,et al. Characteristics of grain size and chemical elements in the Aral Sea sediments and its environmental significance in the arid zone of Central Asia[J]. Marine Geology & Quaternary Geology,xxxx,x(x): x-xx. DOI: 10.16562/j.cnki.0256-1492.2024110701 |
In order to reveal the dust storm record and environmental evolutionary history of lake deposits in the arid zone over the last hundred years, the grain size and chemical elements (Al, Ca, Fe, K, Na, Sr, Ti, Mn, V, Zn, Cr, Co, Ni, Cu, As, Cd, and Pb) of sediments from cores in the Aral Sea of Central Asia, and different types of surface sediments basin wide were analyzed in combination with the 210Pb and 137Cs dating, based on which the sandstorm activities, environmental changes, and their causes in the Aral Sea basin over the last 120 years were explored. Grain size and its parameters, principal component analysis, particle size frequency curve and the end-member model analysis showed that the plurality value of 66.9 μm represented the threshold particle size of surface wind-sand erosion. The environmentally sensitive grain size fractions in the Aral Sea sediments at different times were extracted by the grain size-standard deviation method. Results show that coarse particles (>24.1 μm) carried by sandstorm controlled the grain size composition due to the enhancement in the intensity and frequency of regional winds due to agricultural activities during 1935~1955, which is consistent with the monitoring data and historical records. Elemental sedimentary records indicate that environmental changes in the Aral Sea over the past 120 years could be divided into four stages: (1) 1900—1935 AD, the concentrations of Al, Fe, K, Ti, Mn, V, Zn, Cr, Co, Ni, Cu, As, Cd and Pb were high, indicating stronger human activities; (2) except for Ca, Sr, and As, the contents of other elements significantly decreased while the grain size significantly increased during 1935—1955 AD, suggesting strong influence of sandstrom activities; (3) 1955—2000 AD, the elemental (Al, Ca, Fe, K, Ti, Mn, V, Zn, Cr, Co, Ni, Cu, and Pb) contents fluctuated significantly, with a general trend of increasing, and then decreasing, due to regional industrial and agricultural activities; (4) 2000—2019 AD, the evaporation effect was the dominant factor, and the Sr and Na contents significantly increased. This study provided useful methodology and scientific reference for analyzing the grain size characteristics of sandstorm records, chemical elements origination, and environmental evolution in arid regions.
[1] |
Huang X T, Oberhänsli H, von Suchodoletz H, et al. Dust deposition in the Aral Sea: implications for changes in atmospheric circulation in Central Asia during the past 2000 years[J]. Quaternary Science Reviews, 2011, 30(25-26):3661-3674. doi: 10.1016/j.quascirev.2011.09.011
|
[2] |
吴敬禄, 占水娥, 沈贝贝, 等. 中亚国家大湖流域水土环境与风险评估[M]. 北京: 科学出版社, 2024
WU Jinglu, ZHAN Shuie, SHEN Beibei, et al. Soil and Water Environment and Risk Assessment in the Great Lakes Basin of Central Asian Countries[M]. Beijing: Science Press, 2024.]
|
[3] |
Schiermeier Q. Ecologists plot to turn the tide for shrinking lake[J]. Nature, 2001, 412(6849):756-756.
|
[4] |
吴敬禄, 马龙, 吉力力•阿不都外力. 中亚干旱区咸海的湖面变化及其环境效应[J]. 干旱区地理, 2009, 32(3):418-422
WU Jinglu, MA Long, Abuduwaili J. Lake surface change of the Aral Sea and its environmental effects in the arid region of the central Asia[J]. Arid Land Geography, 2009, 32(3):418-422.]
|
[5] |
Yang X W, Wang N L, Chen A A, et al. Changes in area and water volume of the Aral Sea in the arid Central Asia over the period of 1960-2018 and their causes[J]. CATENA, 2020, 191:104566. doi: 10.1016/j.catena.2020.104566
|
[6] |
Sorrel P, Popescu S M, Head M J, et al. Hydrographic development of the Aral Sea during the last 2000 years based on a quantitative analysis of dinoflagellate cysts[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 234(2-4):304-327. doi: 10.1016/j.palaeo.2005.10.012
|
[7] |
Sorrel P, Oberhänsli H, Boroffka N, et al. Control of wind strength and frequency in the Aral Sea basin during the late Holocene[J]. Quaternary Research, 2007, 67(3):371-382. doi: 10.1016/j.yqres.2006.12.003
|
[8] |
叶尔波拉提, 德勒恰提·加娜塔依, Last W M, 等. 近500年来咸海湖泊沉积记录的环境演变[J]. 沉积学报, 2015, 33(1):91-96
Yeerbolati, Deleqiati J, Last W M, et al. Environmental changes recorded by lake sediments from Aral Sea during recent 500 Years[J]. Acta Sedimentologica Sinica, 2015, 33(1):91-96.]
|
[9] |
Opp C, Groll M, Aslanov I, et al. Aeolian dust deposition in the southern Aral Sea region (Uzbekistan): ground-based monitoring results from the LUCA project[J]. Quaternary International, 2017, 429:86-99. doi: 10.1016/j.quaint.2015.12.103
|
[10] |
Aili A, Abuduwaili J, Xu H L, et al. A cluster analysis of forward trajectory to identify the transport pathway of salt-dust particles from dried bottom of Aral Sea, Central Asia[J]. Atmosphere, 2021, 12(6):764. doi: 10.3390/atmos12060764
|
[11] |
Wang J Z, Wu J L, Zeng H A. Sediment record of abrupt environmental changes in Lake Chenpu, upper reaches of Yellow River Basin, north China[J]. Environmental Earth Sciences, 2015, 73(10):6355-6363. doi: 10.1007/s12665-014-3857-6
|
[12] |
俞鑫晨, 李鸿威, 杨小平, 等. 浑善达克沙地沉积物粒度特征及其指示意义[J]. 地理学报, 2023, 78(7):1809-1824 doi: 10.11821/dlxb202307018
YU Xinchen, LI Hongwei, YANG Xiaoping, et al. Grain size characteristics of sediments in the Hunshandake Sandy Land and its implications[J]. Acta Geographica Sinica, 2023, 78(7):1809-1824.] doi: 10.11821/dlxb202307018
|
[13] |
汪敬忠, 吴敬禄, 曾海鳌. 内蒙古河套地区陈普海子湖泊沉积物粒度特征及其环境意义[J]. 海洋地质与第四纪地质, 2014, 34(5):137-144
WANG Jingzhong, WU Jinglu, ZENG Haiao. Grain-size characteristics and its environmental significance of Lake Chenpuhai sediments in Hetao Plain, Inner Mongolia[J]. Marine Geology & Quaternary Geology, 2014, 34(5):137-144.]
|
[14] |
李鑫鑫, 毛东雷, 来风兵, 等. 策勒河下游风积地貌沉积物粒度特征及沙源分析[J]. 干旱区研究, 2024, 41(8):1413-1422
LI Xinxin, MAO Donglei, LAI Fengbing, et al. Grain size characteristics and sand source analysis of three Aeolian landforms in the lower reaches of the Qira River floodplain[J]. Arid Zone Research, 2024, 41(8):1413-1422.]
|
[15] |
Lamy A, Robin N, Smyth T A G, et al. Impact of temporal beach grain size variability on Aeolian sediment transport and topographic evolution in a microtidal environment[J]. Geomorphology, 2024, 453:109126. doi: 10.1016/j.geomorph.2024.109126
|
[16] |
Magesh N S, Tiwari A, Botsa S M, et al. Hazardous heavy metals in the pristine lacustrine systems of Antarctica: insights from PMF model and ERA techniques[J]. Journal of Hazardous Materials, 2021, 412:125263. doi: 10.1016/j.jhazmat.2021.125263
|
[17] |
金院, 汪勇, 胡洁, 等. 升金湖沉积物1000年以来的元素地球化学记录及其水文意义[J]. 沉积学报, 2023, 41(1):219-232
JIN Yuan, WANG Yong, HU Jie, et al. Geochemical element records and hydrological significance of Lake Shengjin sediments during the past millennium[J]. Acta Sedimentologica Sinica, 2023, 41(1):219-232.]
|
[18] |
Zavialov P O. Physical Oceanography of the Dying Aral Sea[M]. Berlin, Heidelberg: Springer, 2005.
|
[19] |
Qi J G, Kulmatov R. An overview of environmental issues in Central Asia[M]//Qi J G, Evered K T. Environmental Problems of Central Asia and their Economic, Social and Security Impacts. Dordrecht: Springer, 2008: 3-14.
|
[20] |
Micklin P. The future Aral Sea: hope and despair[J]. Environmental Earth Sciences, 2016, 75(9):844. doi: 10.1007/s12665-016-5614-5
|
[21] |
Micklin P. The Aral Sea disaster[J]. Annual Review of Earth and Planetary Sciences, 2007, 35:47-72. doi: 10.1146/annurev.earth.35.031306.140120
|
[22] |
Orlovsky N, Orlovsky L, 杨有林, 等. 20世纪60年代以来中亚地区的盐尘暴[J]. 中国沙漠, 2003, 23(1):18-27 doi: 10.3321/j.issn:1000-694X.2003.01.004
Orlovsky N, Orlovsky L, YANG Youlin, et al. Salt duststorms of Central Asia since 1960s[J]. Journal of Desert Research, 2003, 23(1):18-27.] doi: 10.3321/j.issn:1000-694X.2003.01.004
|
[23] |
Weltje G J. End-member modeling of compositional data: numerical-statistical algorithms for solving the explicit mixing problem[J]. Mathematical Geology, 1997, 29(4):503-549. doi: 10.1007/BF02775085
|
[24] |
杨娅敏, 张礼中, 沈睿文, 等. 渤海湾唐山港海域表层沉积物粒度和黏土矿物分布特征及其物源指示[J]. 海洋地质与第四纪地质, 2023, 43(5):136-147
YANG Yamin, ZHANG Lizhong, SHEN Ruiwen, et al. Characteristics of grain size and clay mineral distribution of surface sediments and their provenance implication in Tangshan Harbor, Bohai Bay[J]. Marine Geology & Quaternary Geology, 2023, 43(5):136-147.]
|
[25] |
Zhan S E, Wu J L, Wang J Z, et al. Comparisons of pollution level and environmental changes from the elemental geochemical records of three lake sediments at different elevations, Central Asia[J]. Journal of Asian Earth Sciences, 2022, 237:105348. doi: 10.1016/j.jseaes.2022.105348
|
[26] |
Appleby P G, Oldfield F. The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment[J]. CATENA, 1978, 5(1):1-8. doi: 10.1016/S0341-8162(78)80002-2
|
[27] |
Zhu T T, Wang X P, Lin H, et al. Accumulation of pollutants in proglacial lake sediments: impacts of glacial meltwater and anthropogenic activities[J]. Environmental Science & Technology, 2020, 54(13):7901-7910.
|
[28] |
强明瑞, 陈发虎, 周爱锋, 等. 苏干湖沉积物粒度组成记录尘暴事件的初步研究[J]. 第四纪研究, 2006, 26(6):915-922 doi: 10.3321/j.issn:1001-7410.2006.06.005
QIANG Mingrui, CHEN Fahu, ZHOU Aifeng, et al. Preliminary study on dust storm events documented by grain size component of Sugan lake sediments, North Qaidam Basin[J]. Quaternary Sciences, 2006, 26(6):915-922.] doi: 10.3321/j.issn:1001-7410.2006.06.005
|
[29] |
Qiang M R, Chen F H, Zhang J W, et al. Grain size in sediments from Lake Sugan: a possible linkage to dust storm events at the northern margin of the Qinghai-Tibetan Plateau[J]. Environmental Geology, 2007, 51(7):1229-1238. doi: 10.1007/s00254-006-0416-9
|
[30] |
De Deckker P, Corrège T, Head J. Late Pleistocene record of cyclic eolian activity from tropical Australia suggesting the Younger Dryas is not an unusual climatic event[J]. Geology, 1991, 19(6):602-605. doi: 10.1130/0091-7613(1991)019<0602:LPROCE>2.3.CO;2
|
[31] |
Wan D J, Mu G J, Jin Z D, et al. The effects of oasis on Aeolian deposition under different weather conditions: a case study at the southern margin of the Taklimakan desert[J]. Environmental Earth Sciences, 2013, 68(1):103-114. doi: 10.1007/s12665-012-1719-7
|
[32] |
马龙, 吴敬禄, 吉力力•阿不都外力. 新疆柴窝堡湖沉积物中环境敏感粒度组分揭示的环境信息[J]. 沉积学报, 2012, 30(5):945-954
MA Long, WU Jinglu, Abuduwaili J. Environmental changes inferred from environmentally sensitive grain-size component records in Chaiwopu Lake, Xinjiang[J]. Acta Sedimentologica Sinica, 2012, 30(5):945-954.]
|
[33] |
Whish-Wilson P. The Aral Sea environmental health crisis[J]. Journal of Rural and Remote Environmental Health, 2002, 1(2):29-34.
|
[34] |
Korosi J B, Thienpont J R, Smol J P, et al. Paleo-ecotoxicology: what can lake sediments tell us about ecosystem responses to environmental pollutants?[J]. Environmental Science & Technology, 2017, 51(17):9446-9457.
|
[35] |
Zhan S E, Wu J L, Wang J Z, et al. Distribution characteristics, sources identification and risk assessment of n-alkanes and heavy metals in surface sediments, Tajikistan, Central Asia[J]. Science of the Total Environment, 2020, 709:136278. doi: 10.1016/j.scitotenv.2019.136278
|
[36] |
Chen R H, Chen H Y, Song L T, et al. Characterization and source apportionment of heavy metals in the sediments of Lake Tai (China) and its surrounding soils[J]. Science of the Total Environment, 2019, 694:133819. doi: 10.1016/j.scitotenv.2019.133819
|
[37] |
Wang J Z, Wu J L, Zhan S E, et al. Spatial enrichment assessment, source identification and health risks of potentially toxic elements in surface sediments, Central Asian countries[J]. Journal of Soils and Sediments, 2021, 21(12):3906-3916. doi: 10.1007/s11368-021-03061-3
|
[38] |
Izhitskiy A S, Kirillin G B, Goncharenko I V, et al. The world’s largest heliothermal lake newly formed in the Aral Sea basin[J]. Environmental Research Letters, 2021, 16(11):115009. doi: 10.1088/1748-9326/ac2d66
|
[39] |
丁之勇, 马龙, 吉力力•阿不都外力, 等. 新疆艾比湖湖泊沉积物元素地球化学记录及其生态环境意义[J]. 中国沙漠, 2018, 38(1):101-110 doi: 10.7522/j.issn.1000-694X.2016.00116
DING Zhiyang, MA Long, Abuduwaili J, et al. Elemental geochemical records and its eco-environment significance of sediment core in Ebinur Lake, Xinjiang, China[J]. Journal of Desert Research, 2018, 38(1):101-110.] doi: 10.7522/j.issn.1000-694X.2016.00116
|
[40] |
Hamidov A, Helming K, Balla D. Impact of agricultural land use in Central Asia: a review[J]. Agronomy for Sustainable Development, 2016, 36(1):6. doi: 10.1007/s13593-015-0337-7
|
[41] |
Fu J, Zhao C P, Luo Y P, et al. Heavy metals in surface sediments of the Jialu River, China: their relations to environmental factors[J]. Journal of Hazardous Materials, 2014, 270:102-109. doi: 10.1016/j.jhazmat.2014.01.044
|
[42] |
Mîndrescu M, Haliuc A, Zhang W G, et al. A 600 years sediment record of heavy metal pollution history in the Danube Delta[J]. Science of the Total Environment, 2022, 823:153702. doi: 10.1016/j.scitotenv.2022.153702
|
[43] |
Pomfret R. State-directed diffusion of technology: the mechanization of cotton harvesting in Soviet Central Asia[J]. The Journal of Economic History, 2002, 62(1):170-188.
|
[44] |
刘爽, 白洁, 罗格平, 等. 咸海流域社会经济用水分析与预测[J]. 地理学报, 2021, 76(5):1257-1273 doi: 10.11821/dlxb202105016
LIU Shuang, BAI Jie, LUO Geping, et al. Analysis and prediction of socio-economic water use in the Aral Sea Basin[J]. Acta Geographica Sinica, 2021, 76(5):1257-1273.] doi: 10.11821/dlxb202105016
|
[45] |
Conrad C, Schönbrodt-Stitt S, Löw F, et al. Cropping intensity in the Aral Sea basin and its dependency from the runoff formation 2000-2012[J]. Remote Sensing, 2016, 8(8):630. doi: 10.3390/rs8080630
|