JIA Qi,LI Tiegang,XIONG Zhifang,et al. Comparison in Sr/Ca ratios of different morphotypes of surface dwelling planktonic foraminifera species[J]. Marine Geology & Quaternary Geology,2023,43(4):10-16. DOI: 10.16562/j.cnki.0256-1492.2023071401
Citation: JIA Qi,LI Tiegang,XIONG Zhifang,et al. Comparison in Sr/Ca ratios of different morphotypes of surface dwelling planktonic foraminifera species[J]. Marine Geology & Quaternary Geology,2023,43(4):10-16. DOI: 10.16562/j.cnki.0256-1492.2023071401

Comparison in Sr/Ca ratios of different morphotypes of surface dwelling planktonic foraminifera species

More Information
  • Received Date: July 13, 2023
  • Revised Date: August 07, 2023
  • Available Online: September 12, 2023
  • Surface-dwelling foraminifera species Globigerinoides ruber (white) and Trilobatus sacculifer are the main proxy carriers for past oceanic environments. The Sr/Ca ratios of foraminifera play an important role in reflecting paleo-oceanic environmental changes. To understand the potential differences between the Sr/Ca ratios of these different morphotypes of G. ruber (white) and T. sacculifer and relevant affecting factors, we compared the Sr/Ca measurements of the two basic morphotypes of G. ruber (G. ruber sensu stricto and G. ruber sensu lato) and T. sacculifer (with sac and without sac) via the analysis of surface and downcore samples of sediment from Core MD06-3047B in the Western Philippine Sea. Results reveal that the Sr/Ca ratios of the two morphotypes of G. ruber (white) show a little difference since MIS 3 (~48 ka), while those of two types of T. sacculifer are significantly different from each other, of which that of T. sacculifer (without sac) is generally greater than that of the with-sac type. By comparing the seawater temperature and salinity from the same site, we found that the Sr/Ca ratios of G. ruber s.s., G. ruber s.l. and T. sacculifer (without sac) in our study area might be affected mainly by seawater temperature, and those of T. sacculifer (with sac) are mainly affected by surface salinity.
  • [1]
    Mohtadi M, Steinke S, Lückge A, et al. Glacial to Holocene surface hydrography of the tropical eastern Indian Ocean[J]. Earth and Planetary Science Letters, 2010, 292(1-2): 89-97. doi: 10.1016/j.jpgl.2010.01.024
    [2]
    Stott L, Poulsen C, Lund S, et al. Super ENSO and global climate oscillations at millennial time scales[J]. Science, 2002, 297(5579): 222-226. doi: 10.1126/science.1071627
    [3]
    Koutavas A, Joanides S. El Niño-southern oscillation extrema in the Holocene and Last Glacial Maximum[J]. Paleoceanography, 2012, 27(4): PA4208.
    [4]
    Steinke S, Chiu H Y, Yu P S, et al. Mg/Ca ratios of two Globigerinoides ruber (white) morphotypes: Implications for reconstructing past tropical/subtropical surface water conditions[J]. Geochemistry, Geophysics, Geosystems, 2005, 6(11): Q11005.
    [5]
    Gussone N, Eisenhauer A, Tiedemann R, et al. Reconstruction of Caribbean Sea surface temperature and salinity fluctuations in response to the Pliocene closure of the Central American Gateway and radiative forcing, using δ44/40Ca, δ18O and Mg/Ca ratios[J]. Earth and Planetary Science Letters, 2004, 227(3-4): 201-214. doi: 10.1016/j.jpgl.2004.09.004
    [6]
    Wang L J. Isotopic signals in two morphotypes of Globigerinoides ruber (white) from the South China Sea: implications for monsoon climate change during the last glacial cycle[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 161(3-4): 381-394. doi: 10.1016/S0031-0182(00)00094-8
    [7]
    Kawahata H. Stable isotopic composition of two morphotypes of Globigerinoides ruber (white) in the subtropical gyre in the North Pacific[J]. Paleontological Research, 2005, 9(1): 27-35. doi: 10.2517/prpsj.9.27
    [8]
    Antonarakou A, Kontakiotis G, Mortyn P G, et al. Biotic and geochemical (δ18O, δ13C, Mg/Ca, Ba/Ca) responses of Globigerinoides ruber morphotypes to upper water column variations during the last deglaciation, Gulf of Mexico[J]. Geochimica et Cosmochimica Acta, 2015, 170: 69-93. doi: 10.1016/j.gca.2015.08.003
    [9]
    Steinke S, Kienast M, Groeneveld J, et al. Proxy dependence of the temporal pattern of deglacial warming in the tropical South China Sea: toward resolving seasonality[J]. Quaternary Science Reviews, 2008, 27(7-8): 688-700. doi: 10.1016/j.quascirev.2007.12.003
    [10]
    Wara M W, Ravelo A C, Delaney M L. Permanent El Niño-like conditions during the Pliocene warm period[J]. Science, 2005, 309(5735): 758-761. doi: 10.1126/science.1112596
    [11]
    Elderfield H, Vautravers M, Cooper M. The relationship between shell size and Mg/Ca, Sr/Ca, δ18O, and δ13C of species of planktonic foraminifera[J]. Geochemistry, Geophysics, Geosystems, 2002, 3(8): 1-13.
    [12]
    André A, Weiner A, Quillévéré F, et al. The cryptic and the apparent reversed: lack of genetic differentiation within the morphologically diverse plexus of the planktonic foraminifer Globigerinoides sacculifer[J]. Paleobiology, 2013, 39(1): 21-39. doi: 10.1666/0094-8373-39.1.21
    [13]
    Anand P, Elderfield H, Conte M H. Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series[J]. Paleoceanography, 2003, 18(2): 1050.
    [14]
    Stoll H M, Schrag D P, Clemens S C. Are seawater Sr/Ca variations preserved in Quaternary foraminifera?[J]. Geochimica et Cosmochimica Acta, 1999, 63(21): 3535-3547. doi: 10.1016/S0016-7037(99)00129-5
    [15]
    Lea D W, Mashiotta T A, Spero H J. Controls on magnesium and strontium uptake in planktonic foraminifera determined by live culturing[J]. Geochimica et Cosmochimica Acta, 1999, 63(16): 2369-2379. doi: 10.1016/S0016-7037(99)00197-0
    [16]
    陈萍, 方念乔, 胡超涌. 有孔虫壳体Sr/Ca对冰川旋回中海平面变化的响应[J]. 安徽理工大学学报: 自然科学版, 2008, 28(4): 8-11 [CHEN Ping, FANG Nianqiao, HU Chaoyong. Sr/Ca Ratio of foraminifera shell response to the change of sea level with glacial-interglacial cycles[J]. Journal of Anhui University of Science and Technology: Natural Science, 2008, 28(4): 8-11.

    CHEN Ping, FANG Nianqiao, HU Chaoyong. Sr/Ca Ratio of foraminifera shell response to the change of sea level with glacial-interglacial cycles[J]. Journal of Anhui University of Science and Technology: Natural Science, 2008, 28(4): 8-11.
    [17]
    Cléroux C, Cortijo E, Anand P, et al. Mg/Ca and Sr/Ca ratios in planktonic foraminifera: Proxies for upper water column temperature reconstruction[J]. Paleoceanography, 2008, 23(3): PA3214.
    [18]
    Hilde T W C, Lee C S. Origin and evolution of the west Philippine basin: a new interpretation[J]. Tectonophysics, 1984, 102(1-4): 85-104. doi: 10.1016/0040-1951(84)90009-X
    [19]
    Jia Q, Li T G, Xiong Z F, et al. Hydrological variability in the western tropical Pacific over the past 700 kyr and its linkage to Northern Hemisphere climatic change[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 493: 44-54. doi: 10.1016/j.palaeo.2017.12.039
    [20]
    Locarnini R A, Mishonov A V, Antonov J I, et al. World Ocean Atlas 2013, volume 1: temperature[M]//Levitus S, Technical A M. NOAA Atlas NESDIS 73. NOAA, 2013.
    [21]
    Barker S, Greaves M, Elderfield H. A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(9): 8407.
    [22]
    Lisiecki L E, Raymo M E. A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20(1): PA1003.
    [23]
    Thompson P R, Bé A W H, Duplessy J C, et al. Disappearance of pink-pigmented Globigerinoides ruber at 120, 000-yr Bp in the Indian and Pacific Oceans[J]. Nature, 1979, 280(5723): 554-558. doi: 10.1038/280554a0
    [24]
    Brown S J, Elderfield H. Variations in Mg/Ca and Sr/Ca ratios of planktonic foraminifera caused by postdepositional dissolution: evidence of shallow Mg-dependent dissolution[J]. Paleoceanography, 1996, 11(5): 543-551. doi: 10.1029/96PA01491
    [25]
    Elderfield H, Cooper M, Ganssen G. Sr/Ca in multiple species of planktonic foraminifera: Implications for reconstructions of seawater Sr/Ca[J]. Geochemistry, Geophysics, Geosystems, 2000, 1(11): 1017.
    [26]
    Kısakürek B, Eisenhauer A, Böhm F, et al. Controls on shell Mg/Ca and Sr/Ca in cultured planktonic foraminiferan, Globigerinoides ruber (white)[J]. Earth and Planetary Science Letters, 2008, 273(3-4): 260-269. doi: 10.1016/j.jpgl.2008.06.026
    [27]
    Dissard D, Reichart G J, Menkes C, et al. Mg∕Ca, Sr∕Ca and stable isotopes from the planktonic foraminifera T. sacculifer: testing a multi-proxy approach for inferring paleotemperature and paleosalinity[J]. Biogeosciences, 2021, 18(2): 423-439. doi: 10.5194/bg-18-423-2021
    [28]
    Martin P A, Lea D W, Mashiotta T A, et al. Variation of foraminiferal Sr/Ca over Quaternary glacial-interglacial cycles: Evidence for changes in mean ocean Sr/Ca?[J]. Geochemistry, Geophysics, Geosystems, 2000, 1(12): 1004.
    [29]
    Stoll H M, Schrag D P, Clemens S C. Are seawater Sr/Ca variations preserved in Quaternary foraminifera? [J], Geochimica et Cosmochimica Acta, 1999, 63(21): 3535-3547.
    [30]
    Kiefer T, Kienast M. Patterns of deglacial warming in the Pacific Ocean: a review with emphasis on the time interval of Heinrich event 1[J]. Quaternary Science Reviews, 2005, 24(7-9): 1063-1081. doi: 10.1016/j.quascirev.2004.02.021
    [31]
    Lea D W, Martin P A, Pak D K, et al. Reconstructing a 350 ky history of sea level using planktonic Mg/Ca and oxygen isotope records from a Cocos Ridge core[J]. Quaternary Sci Rev, 2002, 21(1-3): 283-293. doi: 10.1016/S0277-3791(01)00081-6
  • Related Articles

    [1]CAI Chuanshuang, ZHAO Guangming, SU Dapeng, DING Xigui, NI Xin, ZHANG Yao. Risk assessment and source analysis of heavy metal pollution in wetland sediments in the northern Yellow River Delta[J]. Marine Geology & Quaternary Geology, 2024, 44(5): 176-188. DOI: 10.16562/j.cnki.0256-1492.2024030801
    [2]DUAN Yunying, PEI Shaofeng, LIAO Mingwen, ZHAI Shikui, ZHANG Haibo, XU Gang, YUAN Hongming. Spatial distribution of heavy metals in the surface sediments of Laizhou Bay and their sources and pollution assessment[J]. Marine Geology & Quaternary Geology, 2021, 41(6): 67-81. DOI: 10.16562/j.cnki.0256-1492.2020112601
    [3]GUO Yuxuan, QIAO Shuqing, SHI Xuefa, WU Bin, YUAN Long, REN Yijun, GAO Jingjing, ZHU Aimei, . Variation trend and contamination source of heavy metals in sediments from estuary area of Bangkok Bay in the past century[J]. Marine Geology & Quaternary Geology, 2019, 39(2): 61-69. DOI: 10.16562/j.cnki.0256-1492.2018031901
    [4]WU Zhouyang, YANG Shouye, SU Ni, GUO Yulong, BI Lei. Distribution and pollution assessment of heavy metals in the sediments of Jiaojiang River[J]. Marine Geology & Quaternary Geology, 2018, 38(1): 96-107. DOI: 10.16562/j.cnki.0256-1492.2018.01.010
    [5]ZHU Qingguang, FENG Zhenxing, XU Xianan, WANG Yaping, GAO Jianhua. EVOLUTION OF TIDAL FLAT PROFILES UNDER THE INFLUENCE OF LAND RECLAMATION IN JIANGSU PROVINCE[J]. Marine Geology & Quaternary Geology, 2014, 34(3): 21-29. DOI: 10.3724/SP.J.1140.2014.03021
    [6]MI Beibei, LAN Xianhong, ZHANG Zhixun, LIU Shengfa. DISTRIBUTION OF HEAVY METALS IN SURFACE SEDIMENTS OFF YANGTZE RIVER ESTUARY AND ENVIRONMENTAL QUALITY ASSESSMENT[J]. Marine Geology & Quaternary Geology, 2013, 33(6): 47-54. DOI: 10.3724/SP.J.1140.2013.06047
    [7]ZHANG Xianrong, ZHANG Yong, YE Qing, FAN Dejiang, BI Shipu, WANG Liang, ZHANG Xilin, KONG Xianghuai. ENVIRONMENT QUALITY OF LIAODONG BAY AND POLLUTION EVOLUTION OF HEAVY METALS[J]. Marine Geology & Quaternary Geology, 2012, 32(2): 21-29. DOI: 10.3724/SP.J.1140.2012.02021
    [8]LU Haiyan, CAO Junji, HAN Yongming, WU Feng. HISTORY OF HEAVY ELEMENTS IN THE LAST 250 YEARS RECORDED BY SEDIMENTS IN HUGUANG MAAR LAKE (HUGUANGYAN)[J]. Marine Geology & Quaternary Geology, 2010, 30(1): 47-53. DOI: 10.3724/SP.J.1140.2010.01047
    [9]ZHANG Cun-yong, FENG Xiu-li, CHEN Bin-lin. ANALYSIS OF HEAVY METAL POLLUTION IN CORES FROM THE SOUTH HAIZHOU BAY[J]. Marine Geology & Quaternary Geology, 2008, 28(5): 37-43.
    [10]WANG Bei, ZHAI Shi-kui, XU Shu-mei. POLLUTION AND POTENTIAL ECOLOGICAL RISK ASSESSMENT OF HEAVY METALS IN THE SURFACE SEDIMENTS OF THE YANGTZE RIVER ESTUARY AND ADJACENT AREA AFTER THE FIRST-STAGE WATER STORAGE OF THE THREE GORGES PROJECT[J]. Marine Geology & Quaternary Geology, 2008, 28(4): 19-26. DOI: 10.3724/SP.J.1140.2008.03019

Catalog

    QIN Bingbin

    1. On this Site
    2. On Google Scholar
    3. On PubMed
    Article views (586) PDF downloads (37) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return