YE Zijing,ZHOU Huaiyang,GAO Hang. A review on genesis of authigenic carbonate fluorapatite in marine sediments[J]. Marine Geology & Quaternary Geology,2025,45(1):109-121. DOI: 10.16562/j.cnki.0256-1492.2023070901
Citation: YE Zijing,ZHOU Huaiyang,GAO Hang. A review on genesis of authigenic carbonate fluorapatite in marine sediments[J]. Marine Geology & Quaternary Geology,2025,45(1):109-121. DOI: 10.16562/j.cnki.0256-1492.2023070901

A review on genesis of authigenic carbonate fluorapatite in marine sediments

More Information
  • Received Date: July 08, 2023
  • Revised Date: August 23, 2023
  • Accepted Date: August 23, 2023
  • Authigenic carbon fluorapatite (CFA) is a crucial phosphorus sink in marine sediments and is the primary phosphorus-bearing mineral in submarine phosphorites. Understanding the genesis of CFA is of great scientific significance for understanding the changes in marine productivity, phosphorus cycling, and global climate and environmental effects throughout geological history. We overviewed the material sources, formation environment, and precipitation mechanisms of CFA in marine sediments. The enrichment of phosphorus in porewater involves the microbial decomposition of organic matter, the adsorption and release of phosphate by ferric oxyhydroxides, and the storage and utilization of polyphosphates by large sulfide bacteria. Fluctuations in redox conditions exert a significant influence on these processes. The formation of calcium phosphate (CaP) precursor phase is an important pathway for CFA precipitation. Moreover, the interface coupled dissolution and precipitation (ICDP) mechanism of CaP on calcium carbonate surfaces reveals the alteration genesis of CFA from a microscopic perspective. Based on these findings, future research directions for investigating the genesis of authigenic CFA in marine sediments are also proposed.

  • [1]
    Föllmi K B. The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits[J]. Earth-Science Reviews, 1996, 40(1-2):55-124. doi: 10.1016/0012-8252(95)00049-6
    [2]
    Ashley K, Cordell D, Mavinic D. A brief history of phosphorus: From the philosopher's stone to nutrient recovery and reuse[J]. Chemosphere, 2011, 84(6):737-746. doi: 10.1016/j.chemosphere.2011.03.001
    [3]
    Tyrrell T. The relative influences of nitrogen and phosphorus on oceanic primary production[J]. Nature, 1999, 400(6744):525-531. doi: 10.1038/22941
    [4]
    Bjerrum C J, Canfield D E. Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides[J]. Nature, 2002, 417(6885):159-162. doi: 10.1038/417159a
    [5]
    周强, 姜允斌, 郝记华, 等. 磷的生物地球化学循环研究进展[J]. 高校地质学报, 2021, 27(2):183-199 doi: 10.16108/j.issn1006-7493.2020002

    ZHOU Qiang, JIANG Yunbin, HAO Jihua, et al. Advances in the study of biogeochemical cycles of phosphorus[J]. Geological Journal of China Universities, 2021, 27(2):183-199.] doi: 10.16108/j.issn1006-7493.2020002
    [6]
    McElroy M B. Marine biological controls on atmospheric CO2 and climate[J]. Nature, 1983, 302(5906):328-329. doi: 10.1038/302328a0
    [7]
    Algeo T J, Ingall E. Sedimentary Corg: P ratios, paleocean ventilation, and Phanerozoic atmospheric pO2[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 256(3-4):130-155. doi: 10.1016/j.palaeo.2007.02.029
    [8]
    Ruttenberg K C. The global phosphorus cycle[M]//Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier, 2014, 10:499-558.
    [9]
    Defforey D, Paytan A. Phosphorus cycling in marine sediments: Advances and challenges[J]. Chemical Geology, 2018, 477:1-11. doi: 10.1016/j.chemgeo.2017.12.002
    [10]
    Froelich P N, Bender M L, Luedtke N A, et al. The marine phosphorus cycle[J]. American Journal of Science, 1982, 282(4):474-511. doi: 10.2475/ajs.282.4.474
    [11]
    Arning E T, Lückge A, Breuer C, et al. Genesis of phosphorite crusts off Peru[J]. Marine Geology, 2009, 262(1-4):68-81. doi: 10.1016/j.margeo.2009.03.006
    [12]
    Delaney M L. Phosphorus accumulation in marine sediments and the oceanic phosphorus cycle[J]. Global Biogeochemical Cycles, 1998, 12(4):563-572. doi: 10.1029/98GB02263
    [13]
    Tribble J S, Arvidson R S, Lane M III, et al. Crystal chemistry, and thermodynamic and kinetic properties of calcite, dolomite, apatite, and biogenic silica: applications to petrologic problems[J]. Sedimentary Geology, 1995, 95(1-2):11-37. doi: 10.1016/0037-0738(94)00094-B
    [14]
    Paytan A, McLaughlin K. The oceanic phosphorus cycle[J]. ChemInform, 2007, 38(20):563-576.
    [15]
    Filippelli G M, Delaney M L. Phosphorus geochemistry of equatorial Pacific sediments[J]. Geochimica et Cosmochimica Acta, 1996, 60(9):1479-1495. doi: 10.1016/0016-7037(96)00042-7
    [16]
    刘世荣, 胡瑞忠, 周国富, 等. 织金新华磷矿碎屑磷灰石的矿物成分研究[J]. 矿物学报, 2008, 28(3):244-250 doi: 10.16461/j.cnki.1000-4734.2008.03.004

    LIU Shirong, HU Ruizhong, ZHOU Guofu, et al. Study on the mineral composition of the clastic phosphate in Zhijin phosphate deposits, China[J]. Acta Mineralogica Sinica, 2008, 28(3):244-250.] doi: 10.16461/j.cnki.1000-4734.2008.03.004
    [17]
    Hughes J M, Rakovan J F. Structurally robust, chemically diverse: apatite and apatite supergroup minerals[J]. Elements, 2015, 11(3):165-170. doi: 10.2113/gselements.11.3.165
    [18]
    Jarvis I. Phosphorite geochemistry: state-of-the-art and environmental concerns[J]. Eclogae Geologicae Helvetiae, 1994, 87(3):643-700.
    [19]
    Pan Y, Fleet M E. Compositions of the apatite-group minerals: Substitution mechanisms and controlling factors[J]. Reviews in Mineralogy & Geochemistry, 2002, 48(1):13-49.
    [20]
    Nathan Y, Sass E. Stability relations of apatites and calcium carbonates[J]. Chemical Geology, 1981, 34(1-2):103-111. doi: 10.1016/0009-2541(81)90075-9
    [21]
    Piper D Z, Perkins R B. Geochemistry of a marine phosphate deposit: A signpost to phosphogenesis[M]//Treatise on Geochemistry. 2nd ed. Amsterdam Elsevier, 2014, 13: 293-312.
    [22]
    Ruttenberg K C. Development of a sequential extraction method for different forms of phosphorus in marine sediments[J]. Limnology and Oceanography, 1992, 37(7):1460-1482. doi: 10.4319/lo.1992.37.7.1460
    [23]
    Ruttenberg K C, Berner R A. Authigenic apatite formation and burial in sediments from non-upwelling, continental margin environments[J]. Geochimica et Cosmochimica Acta, 1993, 57(5):991-1007. doi: 10.1016/0016-7037(93)90035-U
    [24]
    Benitez-Nelson R C. The biogeochemical cycling of phosphorus in marine systems[J]. Earth-Science Reviews, 2000, 51(1-4):109-135. doi: 10.1016/S0012-8252(00)00018-0
    [25]
    Filippelli G M. Phosphate rock formation and marine phosphorus geochemistry: The deep time perspective[J]. Chemosphere, 2011, 84(6):759-766. doi: 10.1016/j.chemosphere.2011.02.019
    [26]
    Faul K L, Paytan A, Delaney M L. Phosphorus distribution in sinking oceanic particulate matter[J]. Marine Chemistry, 2005, 97(3-4):307-333. doi: 10.1016/j.marchem.2005.04.002
    [27]
    Ruttenberg K C. Reassessment of the oceanic residence time of phosphorus[J]. Chemical Geology, 1993, 107(3-4):405-409. doi: 10.1016/0009-2541(93)90220-D
    [28]
    Howarth R W, Jensen H, Marino R, et al. Transport to and processing of P in near-shore and oceanic waters[M]//Phosphorus in the Global Environment. Chichester: John Wiley & Sons, 1995, 54:323-345.
    [29]
    Slomp C P, Epping E H G, Helder W, et al. A key role for iron-bound phosphorus in authigenic apatite formation in North Atlantic continental platform sediments[J]. Journal of Marine Research, 1996, 54(6):1179-1205. doi: 10.1357/0022240963213745
    [30]
    Froelich P N, Klinkhammer G P, Bender M L, et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis[J]. Geochimica et Cosmochimica Acta, 1979, 43(7):1075-1090. doi: 10.1016/0016-7037(79)90095-4
    [31]
    Glud R N. Oxygen dynamics of marine sediments[J]. Marine Biology Research, 2008, 4(4):243-289. doi: 10.1080/17451000801888726
    [32]
    郑旻, 罗敏, 潘彬彬, 等. 海洋沉积物溶解氧消耗研究进展[J]. 地球科学进展, 2023, 38(3):236-255

    ZHENG Min, LUO Min, PAN Binbin, et al. Research progress of oxygen consumption in marine sediments[J]. Advances in Earth Science, 2023, 38(3):236-255.]
    [33]
    Suess E. Phosphate regeneration from sediments of the Peru continental margin by dissolution of fish debris[J]. Geochimica et Cosmochimica Acta, 1981, 45(4):577-588. doi: 10.1016/0016-7037(81)90191-5
    [34]
    Schenau S J, De Lange G J. Phosphorus regeneration vs. burial in sediments of the Arabian Sea[J]. Marine Chemistry, 2001, 75(3):201-217. doi: 10.1016/S0304-4203(01)00037-8
    [35]
    Omelon S, Ariganello M, Bonucci E, et al. A review of phosphate mineral nucleation in biology and geobiology[J]. Calcified Tissue International, 2013, 93(4):382-396. doi: 10.1007/s00223-013-9784-9
    [36]
    Atlas E, Culberson C, Pytkowicz R M. Phosphate association with Na+, Ca2+ and Mg2+ in seawater[J]. Marine Chemistry, 1976, 4(3):243-254. doi: 10.1016/0304-4203(76)90011-6
    [37]
    Slomp C P, Van Cappellen P. The global marine phosphorus cycle: sensitivity to oceanic circulation[J]. Biogeosciences, 2007, 4(2):155-171. doi: 10.5194/bg-4-155-2007
    [38]
    Froelich P N, Arthur M A, Burnett W C, et al. Early diagenesis of organic matter in Peru continental margin sediments: Phosphorite precipitation[J]. Marine Geology, 1988, 80(3-4):309-343. doi: 10.1016/0025-3227(88)90095-3
    [39]
    Schulz H N, Schulz H D. Large sulfur bacteria and the formation of phosphorite[J]. Science, 2005, 307(5708):416-418. doi: 10.1126/science.1103096
    [40]
    Arning E T. Phosphogenesis in coastal upwelling systems—bacterially-induced phosphorite formation[D]. Bremen: Technische Universität Bergakademie Freiberg, 2008.
    [41]
    Berndmeyer C, Birgel D, Brunner B, et al. The influence of bacterial activity on phosphorite formation in the Miocene Monterey Formation, California[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 317-318:171-181. doi: 10.1016/j.palaeo.2012.01.004
    [42]
    Cosmidis J, Benzerara K, Menguy N, et al. Microscopy evidence of bacterial microfossils in phosphorite crusts of the Peruvian shelf: Implications for phosphogenesis mechanisms[J]. Chemical Geology, 2013, 359:10-22. doi: 10.1016/j.chemgeo.2013.09.009
    [43]
    Diaz J, Ingall E, Benitez-Nelson C, et al. Marine polyphosphate: A key player in geologic phosphorus sequestration[J]. Science, 2008, 320(5876):652-655. doi: 10.1126/science.1151751
    [44]
    Brock J, Schulz-Vogt H N. Sulfide induces phosphate release from polyphosphate in cultures of a marine Beggiatoa strain[J]. The ISME Journal, 2011, 5(3):497-506. doi: 10.1038/ismej.2010.135
    [45]
    Mänd K, Kirsimäe K, Lepland A, et al. Authigenesis of biomorphic apatite particles from Benguela upwelling zone sediments off Namibia: The role of organic matter in sedimentary apatite nucleation and growth[J]. Geobiology, 2018, 16(6):640-658. doi: 10.1111/gbi.12309
    [46]
    Williams L A, Reimers C. Role of bacterial mats in oxygen-deficient marine basins and coastal upwelling regimes: Preliminary report[J]. Geology, 1983, 11(5):267-269. doi: 10.1130/0091-7613(1983)11<267:ROBMIO>2.0.CO;2
    [47]
    Arning E T, Birgel D, Brunner B, et al. Bacterial formation of phosphatic laminites off Peru[J]. Geobiology, 2009, 7(3):295-307. doi: 10.1111/j.1472-4669.2009.00197.x
    [48]
    Lumiste K, Mänd K, Bailey J, et al. Constraining the conditions of phosphogenesis: Stable isotope and trace element systematics of Recent Namibian phosphatic sediments[J]. Geochimica et Cosmochimica Acta, 2021, 302:141-159. doi: 10.1016/j.gca.2021.03.022
    [49]
    McArthur J M, Benmore R A, Coleman M L, et al. Stable isotopic characterisation of francolite formation[J]. Earth and Planetary Science Letters, 1986, 77(1):20-34. doi: 10.1016/0012-821X(86)90129-9
    [50]
    Paytan A, Kastner M, Campbell D, et al. Sulfur isotopic composition of Cenozoic seawater sulfate[J]. Science, 1998, 282(5393):1459-1462. doi: 10.1126/science.282.5393.1459
    [51]
    马芮, 苏莉, 宋宇昊, 等. 多聚磷酸盐: 菌体内多功能调控子和环境压力守护者[J]. 微生物学通报, 2017, 44(7):1736-1746

    MA Rui, SU Li, SONG Yuhao, et al. Inorganic polyphosphate: the multifunctional regulator and the guardian of environmental stresses in bacteria[J]. Microbiology China, 2017, 44(7):1736-1746.]
    [52]
    Goldhammer T, Brüchert V, Ferdelman T G, et al. Microbial sequestration of phosphorus in anoxic upwelling sediments[J]. Nature Geoscience, 2010, 3(8):557-561. doi: 10.1038/ngeo913
    [53]
    Lomnitz U, Sommer S, Dale A W, et al. Benthic phosphorus cycling in the Peruvian oxygen minimum zone[J]. Biogeosciences, 2016, 13(5):1367-1386. doi: 10.5194/bg-13-1367-2016
    [54]
    Glock N, Romero D, Roy A S, et al. A hidden sedimentary phosphate pool inside benthic foraminifera from the Peruvian upwelling region might nucleate phosphogenesis[J]. Geochimica et Cosmochimica Acta, 2020, 289:14-32. doi: 10.1016/j.gca.2020.08.002
    [55]
    LeKieffre C, Bernhard J M, Mabilleau G, et al. An overview of cellular ultrastructure in benthic foraminifera: New observations of rotalid species in the context of existing literature[J]. Marine Micropaleontology, 2018, 138:12-32. doi: 10.1016/j.marmicro.2017.10.005
    [56]
    Crawford R M. The protoplasmic ultrastructure of the vegetative cell of Melosira varians C. A. Agardh[J]. Journal of Phycology, 1973, 9(1):50-61. doi: 10.1111/j.0022-3646.1973.00050.x
    [57]
    Ruttenberg K C, Dyhrman S T. Temporal and spatial variability of dissolved organic and inorganic phosphorus, and metrics of phosphorus bioavailability in an upwelling-dominated coastal system[J]. Journal of Geophysical Research:Oceans, 2005, 110(C10):C10S13.
    [58]
    张明亮, 郭伟, 沈俊, 等. 古海洋氧化还原地球化学指标研究新进展[J]. 地质科技情报, 2017, 36(4):95-106 doi: 10.19509/j.cnki.dzkq.2017.0412

    ZHANG Mingliang, GUO Wei, SHEN Jun, et al. New progress on geochemical indicators of ancient oceanic redox condition[J]. Geological Science and Technology Information, 2017, 36(4):95-106.] doi: 10.19509/j.cnki.dzkq.2017.0412
    [59]
    Gächter R, Meyer J S, Mares A. Contribution of bacteria to release and fixation of phosphorus in lake sediments[J]. Limnology and Oceanography, 1988, 33(6):1542-1558.
    [60]
    Ingall E, Jahnke R. Influence of water-column anoxia on the elemental fractionation of carbon and phosphorus during sediment diagenesis[J]. Marine Geology, 1997, 139(1-4):219-229. doi: 10.1016/S0025-3227(96)00112-0
    [61]
    Krajewski K P, van Cappellen P, Trichet J, et al. Biological processes and apatite formation in sedimentary environments[J]. Eclogae Geologicae Helvetiae, 1994, 87(3):701-745.
    [62]
    Borkiewicz O, Rakovan J, Cahill C L. Time-resolved in situ studies of apatite formation in aqueous solutions[J]. American Mineralogist, 2010, 95(8-9):1224-1236. doi: 10.2138/am.2010.3168
    [63]
    Wang L J, Nancollas G H. Calcium orthophosphates: crystallization and dissolution[J]. Chemical Reviews, 2008, 108(11):4628-4669. doi: 10.1021/cr0782574
    [64]
    Cappellen P V, Berner R A. Fluorapatite crystal growth from modified seawater solutions[J]. Geochimica et Cosmochimica Acta, 1991, 55(5):1219-1234. doi: 10.1016/0016-7037(91)90302-L
    [65]
    Gunnars A, Blomqvist S, Martinsson C. Inorganic formation of apatite in brackish seawater from the Baltic Sea: an experimental approach[J]. Marine Chemistry, 2004, 91(1-4):15-26. doi: 10.1016/j.marchem.2004.01.008
    [66]
    Rokidi S, Combes C, Koutsoukos P G. The calcium phosphate-calcium carbonate system: Growth of Octa calcium phosphate on calcium carbonates[J]. Crystal Growth & Design, 2011, 11(5):1683-1688.
    [67]
    Wang L J, Ruiz-Agudo E, Putnis C V, et al. Kinetics of calcium phosphate nucleation and growth on calcite: implications for predicting the fate of dissolved phosphate species in alkaline soils[J]. Environmental Science & Technology, 2012, 46(2):834-842.
    [68]
    Ren C, Li Y F, Zhou Q, et al. Phosphate uptake by calcite: Constraints of concentration and pH on the formation of calcium phosphate precipitates[J]. Chemical Geology, 2021, 579:120365. doi: 10.1016/j.chemgeo.2021.120365
    [69]
    Sundby B, Gobeil C, Silverberg N, et al. The phosphorus cycle in coastal marine sediments[J]. Limnology & Oceanography, 1992, 37(6):1129-1145.
    [70]
    Xu N, Yin H W, Chen Z G, et al. Mechanisms of phosphate retention by calcite: effects of magnesium and pH[J]. Journal of Soils and Sediments, 2014, 14(3):495-503. doi: 10.1007/s11368-013-0807-y
    [71]
    Xu N, Chen M, Zhou K R, et al. Retention of phosphorus on calcite and dolomite: speciation and modeling[J]. RSC Advances, 2014, 4(66):35205-35214. doi: 10.1039/C4RA05461J
    [72]
    Lamboy M. Phosphatization of calcium carbonate in phosphorites: microstructure and importance[J]. Sedimentology, 1993, 40(1):53-62. doi: 10.1111/j.1365-3091.1993.tb01090.x
    [73]
    潘家华, 刘淑琴, 罗照华, 等. 太平洋海山磷酸盐的产状、特征及成因意义[J]. 矿床地质, 2007, 26(2):195-203 doi: 10.16111/j.0258-7106.2007.02.006

    PAN Jiahua, LIU Shuqin, LUO Zhaohua, et al. Modes of occurrence and characteristics of phosphorates on Pacific Guyots and their genetic significance[J]. Mineral Deposits, 2007, 26(2):195-203.] doi: 10.16111/j.0258-7106.2007.02.006
    [74]
    Benninger L M, Hein J R. Diagenetic evolution of seamount phosphate[M]//Glenn C R, Prévôt L, Lucas J. Marine Authigenesis: from Global to Microbial. Tulsa, Oklahoma: SEPM, 2000:245-256.
    [75]
    Benites M, Hein J R, Mizell K, et al. Miocene phosphatization of rocks from the summit of Rio Grande Rise, southwest Atlantic Ocean[J]. Paleoceanography and Paleoclimatology, 2021, 36(9):e2020PA004197. doi: 10.1029/2020PA004197
    [76]
    McArthur J M, Coleman M L, Bremner J M. Carbon and oxygen isotopic composition of structural carbonate in sedimentary francolite[J]. Journal of the Geological Society, 1980, 137(6):669-673. doi: 10.1144/gsjgs.137.6.0669
    [77]
    Benmore R A, Coleman M L, McArthur J M. Origin of sedimentary francolite from its sulphur and carbon isotope composition[J]. Nature, 1983, 302(5908):516-518. doi: 10.1038/302516a0
    [78]
    潘家华, 刘淑琴, 杨忆, 等. 太平洋水下海山磷酸盐的成因及形成环境[J]. 地球学报, 2004, 25(4):453-458

    PAN Jiahua, LIU Shuqin, YANG Yi, et al. The origin and formation environment of phosphates on submarine guyots of the Pacific Ocean[J]. Acta Geoscientica Sinica, 2004, 25(4):453-458.]
    [79]
    Birch G F. A model of penecontemporaneous phosphatization by diagenetic and authigenic mechanisms from the western margin of southern Africa[M]//Bentor Y. Marine Phosphorites—Geochemistry, Occurrence, Genesis. Jerusalem, Israel: SEPM, 1980: 70-100.
  • Related Articles

    [1]GAO Yu, LIU Chunyang, HU Yu, CHEN Linying, LIANG Qianyong, FENG Dong, CHEN Duofu. The impact of change in fluid seepage intensity on iron and phosphorus cycling in chimney-like seep carbonates[J]. Marine Geology & Quaternary Geology, 2024, 44(6): 96-104. DOI: 10.16562/j.cnki.0256-1492.2023100802
    [2]WANG Xudong, ZHUANG Guangchao, FENG Dong. Advancements in studying the biogeochemistry of methane in marine depositional systems through trace element geochemistry[J]. Marine Geology & Quaternary Geology, 2024, 44(6): 82-95. DOI: 10.16562/j.cnki.0256-1492.2023123001
    [3]CAI Wenqin, HUANG Enqing, LIU Shuangquan, TIAN Jun. Massive deposition of oceanic diatom mat and its impact on the carbon-nitrogen cycle over glacial-interglacial periods[J]. Marine Geology & Quaternary Geology, 2024, 44(1): 96-108. DOI: 10.16562/j.cnki.0256-1492.2023041801
    [4]WU Xiaodan, CHANG Fengming, WU Bin, SUN Hanjie, ZHONG Weijie. Forms of sedimentary phosphorus in the South Yellow Sea and the implication to regional eutrophication trend[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 106-118. DOI: 10.16562/j.cnki.0256-1492.2023073101
    [5]YANG Shouye, JIA Qi, XU Xinning, WU Xuechao, LIAN Ergang. Submarine reverse weathering and its effect on oceanic elements cycling[J]. Marine Geology & Quaternary Geology, 2023, 43(3): 26-34. DOI: 10.16562/j.cnki.0256-1492.2023052901
    [6]SUN Zhilei, YIN Ping, XU Sinan, CAO Hong, XU Cuiling, ZHANG Xilin, GENG Wei, SUN Weixiang, WU Nengyou, ZHANG Dong, ZHAI Bin, LV Taiheng, ZHOU Yucheng, CAO Youwen, CHEN Ye. Observation and research progress of modern oceanic methane cycle[J]. Marine Geology & Quaternary Geology, 2022, 42(6): 67-81. DOI: 10.16562/j.cnki.0256-1492.2022042801
    [7]HE Xingliang, TAN Lijv, DUAN Xiaoyong, YIN Ping, XIE Yongqing, YANG Lei, DONG Chao, WANG Jiangtao. Carbon cycle within the sulfate-methane transition zone in the marine sediments of Hangzhou Bay[J]. Marine Geology & Quaternary Geology, 2020, 40(3): 51-60. DOI: 10.16562/j.cnki.0256-1492.2020021401
    [8]ZHANG Guoliang, ZHAN Mingjun. Carbon cycle and deep carbon storage during subduction and magamatic processes[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 36-45. DOI: 10.16562/j.cnki.0256-1492.2019092201
    [9]LIU Hui, LU Zhengquan, MEI Yanxiong, PEI Rongfu. DEPOSITIONAL ENVIRONMENT AND WORLD DISTRIBUTION OF MARINE PHOSPHORITES[J]. Marine Geology & Quaternary Geology, 2014, 34(3): 49-56. DOI: 10.3724/SP.J.1140.2014.03049
    [10]ZHU Ai-mei, YE Si-yuan, LU Wen-xi, WANG Hong-jin. GEOCHEMISTRY OF NITROGEN,PHOSPHORUS AND IRON AT THE WATER-SEDIMENT INTERFACE IN JIAOZHOU BAY[J]. Marine Geology & Quaternary Geology, 2006, 26(6): 55-64.
  • Cited by

    Periodical cited type(8)

    1. 沈传波,葛翔,吴阳,曾小伟,刘昭茜. 盆地断层活动定年技术进展及发展趋势. 地球科学. 2023(02): 735-748 .
    2. 李坤,黄镜嘉,江涛,殷际航,董柔. 莱州湾凹陷同沉积断层活动性综合评价. 石油地质与工程. 2023(02): 13-20 .
    3. 何明勇,栾锡武,魏新元,冉伟民,穆敬轩,叶传红,刘洁,陈建宏. 塔宁巴尔海槽断裂特征与构造演化. 地球科学进展. 2022(03): 290-302 .
    4. 闫恒,栾锡武,李振春,叶传红,魏新元,贺华瑞. 安达曼海东部凹陷渐新世以来断裂–构造演化特征及其成因探讨. 海洋学报. 2022(09): 87-99 .
    5. 王嘉,栾锡武,何兵寿,冉伟民,张豪,杨佳佳. 南海北部珠江口盆地西南段断裂特征与成因讨论. 地球科学. 2021(03): 916-928 .
    6. 魏新元,栾锡武,冉伟民,石艳锋,王阔,张豪. 东帝汶海槽断裂特征与构造演化模式. 地质通报. 2021(Z1): 364-375 .
    7. 王嘉,栾锡武,何兵寿,冉伟民,魏新元,胡庆,韦明盟,龚梁轩. 珠江口盆地开平凹陷断裂构造特征与动力学机制探讨. 海洋学报. 2021(08): 41-53 .
    8. 张豪,栾锡武,冉伟民,王阔,魏新元,石艳锋,Mohammad Saiful Islam,王嘉. 珠江口盆地西部文昌A凹陷断裂特征与成因探讨. 海洋地质与第四纪地质. 2020(04): 96-106 . 本站查看

    Other cited types(4)

Catalog

    Article views (50) PDF downloads (42) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return