Citation: | ZENG Zhigang,CHEN Zuxing,QI Haiyan,et al. Chemical and sulfur isotopic compositions of anhydrite from the Tangyin hydrothermal field in the Okinawa Trough[J]. Marine Geology & Quaternary Geology,2023,43(5):1-16. DOI: 10.16562/j.cnki.0256-1492.2023060601 |
[1] |
Zeng Z G, Qin Y S, Zhai S K. He, Ne and Ar isotope compositions of fluid inclusions in hydrothermal sulfides from the TAG hydrothermal field Mid-Atlantic Ridge[J]. Science in China Series D: Earth Sciences, 2001, 44(3): 221-228. doi: 10.1007/BF02882256
|
[2] |
Zeng Z G, Chen D G, Yin X B, et al. Elemental and isotopic compositions of the hydrothermal sulfide on the east Pacific rise near 13ºN[J]. Science China Earth Sciences, 2010, 53(2): 253-266. doi: 10.1007/s11430-010-0013-3
|
[3] |
Zeng Z G, Chen S, Selby D, et al. Rhenium-osmium abundance and isotopic compositions of massive sulfides from modern deep-sea hydrothermal systems: Implications for vent associated ore forming processes[J]. Earth and Planetary Science Letters, 2014, 396: 223-234. doi: 10.1016/j.jpgl.2014.04.017
|
[4] |
Zeng Z G, Ma Y, Yin X B, et al. Factors affecting the rare earth element compositions in massive sulfides from deep-sea hydrothermal systems[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(8): 2679-2693. doi: 10.1002/2015GC005812
|
[5] |
Zeng Z G, Niedermann S, Chen S, et al. Noble gases in sulfide deposits of modern deep-sea hydrothermal systems: implications for heat fluxes and hydrothermal fluid processes[J]. Chemical Geology, 2015, 409: 1-11. doi: 10.1016/j.chemgeo.2015.05.007
|
[6] |
Zeng Z G, Li X H, Chen S, et al. Iron, copper, and zinc isotopic fractionation in seafloor basalts and hydrothermal sulfides[J]. Marine Geology, 2021, 436: 106491. doi: 10.1016/j.margeo.2021.106491
|
[7] |
Zeng Z G, Chen Z X, Qi H Y, et al. Chemical and isotopic composition of sulfide minerals from the Noho hydrothermal field in the Okinawa Trough[J]. Journal of Marine Science and Engineering, 2022, 10(5): 678. doi: 10.3390/jmse10050678
|
[8] |
Zeng Z G, Ma Y, Chen S, et al. Sulfur and lead isotopic compositions of massive sulfides from deep-sea hydrothermal systems: implications for ore genesis and fluid circulation[J]. Ore Geology Reviews, 2017, 87: 155-171. doi: 10.1016/j.oregeorev.2016.10.014
|
[9] |
Zeng Z G, Chen Z X, Qi H Y. Two processes of anglesite formation and a model of secondary supergene enrichment of Bi and Ag in seafloor hydrothermal sulfide deposits[J]. Journal of Marine Science and Engineering, 2022, 10(1): 35.
|
[10] |
Zeng Z G, Wang X Y, Chen C T A, et al. Boron isotope compositions of fluids and plumes from the Kueishantao hydrothermal field off northeastern Taiwan: implications for fluid origin and hydrothermal processes[J]. Marine Chemistry, 2013, 157: 59-66. doi: 10.1016/j.marchem.2013.09.001
|
[11] |
Zeng Z G, Wang X Y, Qi H Y, et al. Arsenic and antimony in hydrothermal plumes from the eastern Manus Basin, Papua New Guinea[J]. Geofluids, 2018, 2018: 6079586.
|
[12] |
Zeng Z G, Wang X Y, Murton B J, et al. Dispersion and intersection of hydrothermal plumes in the Manus back-arc basin, western Pacific[J]. Geofluids, 2020, 2020: 4260806.
|
[13] |
Rong K B, Zeng Z G, Yin X B, et al. Smectite formation in metalliferous sediments near the east Pacific rise at 13°N[J]. Acta Oceanologica Sinica, 2018, 37(9): 67-81. doi: 10.1007/s13131-018-1265-6
|
[14] |
Zeng Z G, Wang X Y, Zhang G L, et al. Formation of Fe-oxyhydroxides from the east Pacific rise near latitude 13°N: evidence from mineralogical and geochemical data[J]. Science in China Series D: Earth Sciences, 2008, 51(2): 206-215. doi: 10.1007/s11430-007-0131-8
|
[15] |
Zeng Z G, Ouyang H G, Yin X B, et al. Formation of Fe-Si-Mn oxyhydroxides at the PACMANUS hydrothermal field, Eastern Manus Basin: mineralogical and geochemical evidence[J]. Journal of Asian Earth Sciences, 2012, 60: 130-146. doi: 10.1016/j.jseaes.2012.08.009
|
[16] |
Zeng Z G, Chen S, Wang X Y, et al. Mineralogical and micromorphological characteristics of Si-Fe-Mn oxyhydroxides from the PACMANUS hydrothermal field, eastern Manus Basin[J]. Science China Earth Sciences, 2012, 55(12): 2039-2048. doi: 10.1007/s11430-012-4536-7
|
[17] |
Zeng Z G, Qi H Y, Chen S, et al. Hydrothermal alteration of plagioclase microphenocrysts and glass in basalts from the east Pacific rise near 13°N: an SEM-EDS study[J]. Science China Earth Sciences, 2014, 57(7): 1427-1437. doi: 10.1007/s11430-014-4868-6
|
[18] |
Wang X Y, Zeng Z G, Qi H Y, et al. Fe-Si-Mn-oxyhydroxide encrustations on basalts at east Pacific rise near 13˚N: an SEM-EDS study[J]. Journal of Ocean University of China, 2014, 13(6): 917-925. doi: 10.1007/s11802-014-2358-2
|
[19] |
Huang X, Zeng Z G, Chen S, et al. Component characteristics of organic matter in hydrothermal barnacle shells from southwest Indian Ridge[J]. Acta Oceanologica Sinica, 2013, 32(12): 60-67. doi: 10.1007/s13131-013-0388-z
|
[20] |
Chen J B, Zeng Z G. Metasomatism of the peridotites from southern Mariana fore-arc: trace element characteristics of clinopyroxene and amphibole[J]. Science in China Series D: Earth Sciences, 2007, 50(7): 1005-1012. doi: 10.1007/s11430-007-0023-y
|
[21] |
Wang X M, Zeng Z G, Chen J B. Serpentinization of peridotites from the southern Mariana forearc[J]. Progress in Natural Science, 2009, 19(10): 1287-1295. doi: 10.1016/j.pnsc.2009.04.004
|
[22] |
Zeng Z G, Wang Q Y, Wang X M, et al. Geochemistry of abyssal peridotites from the super slow-spreading southwest Indian Ridge near 65°E: implications for magma source and seawater alteration[J]. Journal of Earth System Science, 2012, 121(5): 1317-1336. doi: 10.1007/s12040-012-0229-z
|
[23] |
Zeng Z G, Li X H, Zhang Y X, et al. Lithium, oxygen and magnesium isotope systematics of volcanic rocks in the Okinawa Trough: implications for plate subduction studies[J]. Journal of Marine Science and Engineering, 2022, 10(1): 40.
|
[24] |
Zeng Z G, Li X H, Chen S, et al. Iron-copper-zinc isotopic compositions of Andesites from the Kueishantao hydrothermal field off northeastern Taiwan[J]. Sustainability, 2022, 14(1): 359.
|
[25] |
Zeng Z G, Chen Z X, Zhang Y X, et al. Geological, physical, and chemical characteristics of seafloor hydrothermal vent fields[J]. Journal of Oceanology and Limnology, 2020, 38(4): 985-1007. doi: 10.1007/s00343-020-0123-5
|
[26] |
Haymon R M. Growth history of hydrothermal black smoker chimneys[J]. Nature, 1983, 301(5902): 695-698. doi: 10.1038/301695a0
|
[27] |
Tivey M K. Modeling chimney growth and associated fluid flow at seafloor hydrothermal vent sites[M]//Humphris S E, Zierenberg R A, Mullineaux L S, et al. Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. Washington: American Geophysical Union, 1995: 158-177.
|
[28] |
Binns R A. Bikpela: a large siliceous chimney from the PACMANUS hydrothermal field, Manus Basin, Papua New Guinea[J]. Economic Geology, 2014, 109(8): 2243-2259. doi: 10.2113/econgeo.109.8.2243
|
[29] |
Chiba H, Uchiyama N, Teagle D A H. 1998. Stable isotope study of anhydrite and sulfide minerals at the TAG hydrothermal mound, Mid-Atlantic Ridge, 26°N[C]//Proceedings of the Ocean Drilling Program, Mid-Atlantic Ridge. St. John: Texas A&M University, 1998: 85-90.
|
[30] |
Juniper S K, Martineu P. Alvinellids and sulfides at hydrothermal vents of the Eastern Pacific: a review[J]. American Zoologist, 1995, 35(2): 174-185. doi: 10.1093/icb/35.2.174
|
[31] |
Haymon R M, Kastner M. Hot spring deposits on the east Pacific rise at 21°N: preliminary description of mineralogy and genesis[J]. Earth and Planetary Science Letters, 1981, 53(3): 363-381. doi: 10.1016/0012-821X(81)90041-8
|
[32] |
Paradis S, Jonasson I R, Le Cheminant G M, et al. Two zinc-rich chimneys from the plume site, southern Juan de Fuca[J]. The Canadian Mineralogist, 1988, 26(3): 637-654.
|
[33] |
Huang X, Chen S, Zeng Z G, et al. Characteristics of hydrocarbons in sediment core samples from the northern Okinawa Trough[J]. Marine Pollution Bulletin, 2017, 115(1-2): 507-514. doi: 10.1016/j.marpolbul.2016.12.034
|
[34] |
Zeng Z G, Yu S X, Wang X Y, et al. Geochemical and isotopic characteristics of volcanic rocks from the northern east China Sea shelf margin and the Okinawa Trough[J]. Acta Oceanologica Sinica, 2010, 29(4): 48-61. doi: 10.1007/s13131-010-0050-y
|
[35] |
Guo K, Zhai S K, Wang X Y, et al. The dynamics of the southern Okinawa Trough magmatic system: new insights from the microanalysis of the an contents, trace element concentrations and Sr isotopic compositions of plagioclase hosted in basalts and silicic rocks[J]. Chemical Geology, 2018, 497: 146-161. doi: 10.1016/j.chemgeo.2018.09.002
|
[36] |
Guo K, Zhai S K, Yu Z H, et al. Geochemical characteristics of major and trace elements in the Okinawa Trough basaltic glass[J]. Acta Oceanologica Sinica, 2018, 37(2): 14-24. doi: 10.1007/s13131-017-1075-2
|
[37] |
Chen Z X, Zeng Z G, Wang X Y, et al. Mineral chemistry indicates the petrogenesis of rhyolite from the southwestern Okinawa Trough[J]. Journal of Ocean University of China, 2017, 16(6): 1097-1108. doi: 10.1007/s11802-017-3344-2
|
[38] |
Chen Z X, Zeng Z G, Wang X Y, et al. U-Th/He dating and chemical compositions of apatite in the Dacite from the southwestern Okinawa Trough: implications for petrogenesis[J]. Journal of Asian Earth Sciences, 2018, 161: 1-13. doi: 10.1016/j.jseaes.2018.04.032
|
[39] |
Chen Z X, Zeng Z G, Yin X B, et al. Petrogenesis of highly fractionated rhyolites in the southwestern Okinawa Trough: constraints from whole-rock geochemistry data and Sr-Nd-Pb-O isotopes[J]. Geological Journal, 2019, 54(1): 316-332. doi: 10.1002/gj.3179
|
[40] |
Zhang Y X, Zeng Z G, Li X H, et al. High‐potassium volcanic rocks from the Okinawa Trough: implications for a cryptic potassium-rich and DUPAL-like source[J]. Geological Journal, 2018, 53(5): 1755-1766. doi: 10.1002/gj.3000
|
[41] |
Zhang Y X, Zeng Z G, Chen S, et al. New insights into the origin of the bimodal volcanism in the middle Okinawa Trough: not a basalt-rhyolite differentiation process[J]. Frontiers of Earth Science, 2018, 12(2): 325-338. doi: 10.1007/s11707-017-0638-z
|
[42] |
Li X H, Zeng Z G, Chen S, et al. Geochemical and Sr-Nd-Pb isotopic compositions of volcanic rocks from the Iheya Ridge, the middle Okinawa Trough: implications for petrogenesis and a mantle source[J]. Acta Oceanologica Sinica, 2018, 37(1): 73-88. doi: 10.1007/s13131-017-1118-8
|
[43] |
Li X H, Zeng Z G, Wang X Y, et al. Petrogenesis of basalt from the middle Okinawa Trough: new insights from olivine-hosted melt inclusions[J]. Geological Journal, 2018, 53(6): 3129-3146. doi: 10.1002/gj.3150
|
[44] |
Guo K, Zeng Z G, Chen S, et al. The influence of a subduction component on magmatism in the Okinawa Trough: evidence from thorium and related trace element ratios[J]. Journal of Asian Earth Sciences, 2017, 145: 205-216. doi: 10.1016/j.jseaes.2017.05.033
|
[45] |
Li X H, Zeng Z G, Yang H X, et al. Geochemistry of silicate melt inclusions in middle and southern Okinawa Trough rocks: implications for petrogenesis and variable subducted sediment component injection[J]. Geological Journal, 2019, 54(3): 1160-1189. doi: 10.1002/gj.3217
|
[46] |
Li X H, Zeng Z G, Yang H X, et al. Integrated major and trace element study of clinopyroxene in basic, intermediate and acidic volcanic rocks from the middle Okinawa Trough: Insights into petrogenesis and the influence of subduction component[J]. Lithos, 2020, 352-353: 105320. doi: 10.1016/j.lithos.2019.105320
|
[47] |
Zeng Z G, Chen Z X, Zhang Y X. Zircon record of an Archaean crustal fragment and supercontinent amalgamation in Quaternary back-arc volcanic rocks[J]. Scientific Reports, 2021, 11(1): 12367. doi: 10.1038/s41598-021-90578-9
|
[48] |
Kimura M. Back-arc rifting in the Okinawa Trough[J]. Marine and Petroleum Geology, 1985, 2(3): 222-240. doi: 10.1016/0264-8172(85)90012-1
|
[49] |
Ishibashi J I, Ikegami F, Tsuji T, et al. Hydrothermal activity in the Okinawa Trough back-arc basin: geological background and hydrothermal mineralization[M]//Ishibashi J I, Okino K, Sunamura M. Subseafloor Biosphere Linked to Hydrothermal Systems: TAIGA Concept. Tokyo: Springer, 2015: 337-359.
|
[50] |
Sibuet J C, Deffontaines B, Hsu S K, et al. Okinawa Trough backarc basin: early tectonic and magmatic evolution[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B12): 30245-30267. doi: 10.1029/98JB01823
|
[51] |
Zeng Z G, Chen S, Ma Y, et al. Chemical compositions of mussels and clams from the Tangyin and Yonaguni Knoll IV hydrothermal fields in the southwestern Okinawa Trough[J]. Ore Geology Reviews, 2017, 87: 172-191. doi: 10.1016/j.oregeorev.2016.09.015
|
[52] |
Zeng Z G, Ma Y, Wang X Y, et al. Elemental compositions of crab and snail shells from the Kueishantao hydrothermal field in the southwestern Okinawa Trough[J]. Journal of Marine Systems, 2018, 180: 90-101. doi: 10.1016/j.jmarsys.2016.08.012
|
[53] |
Kawagucci S, Ueno Y, Takai K, et al. Geochemical origin of hydrothermal fluid methane in sediment-associated fields and its relevance to the geographical distribution of whole hydrothermal circulation[J]. Chemical Geology, 2013, 339: 213-225. doi: 10.1016/j.chemgeo.2012.05.003
|
[54] |
Nakagawa S, Takai K, Inagaki F, et al. Variability in microbial community and venting chemistry in a sediment-hosted backarc hydrothermal system: impacts of subseafloor phase-separation[J]. FEMS Microbiology Ecology, 2005, 54(1): 141-155. doi: 10.1016/j.femsec.2005.03.007
|
[55] |
Kawagucci S, Chiba H, Ishibashi J I, et al. Hydrothermal fluid geochemistry at the Iheya north field in the mid-Okinawa Trough: implication for origin of methane in subseafloor fluid circulation systems[J]. Geochemical Journal, 2011, 45(2): 109-124. doi: 10.2343/geochemj.1.0105
|
[56] |
Kawagucci S, Miyazaki J, Nakajima R, et al. Post-drilling changes in fluid discharge pattern, mineral deposition, and fluid chemistry in the Iheya north hydrothermal field, Okinawa Trough[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(11): 4774-4790. doi: 10.1002/2013GC004895
|
[57] |
Kawagucci S. Fluid geochemistry of high-temperature hydrothermal fields in the Okinawa Trough[M]//Ishibashi J I, Okino K, Sunamura M. Subseafloor Biosphere Linked to Hydrothermal Systems: TAIGA Concept. Tokyo: Springer, 2015: 387-403.
|
[58] |
Sakai H, Gamo T, Kim E S, et al. Unique chemistry of the hydrothermal solution in the mid-Okinawa Trough backarc basin[J]. Geophysical Research Letters, 1990, 17(12): 2133-2136. doi: 10.1029/GL017i012p02133
|
[59] |
Ishibashi J, Sano Y, Wakita H, et al. Helium and carbon geochemistry of hydrothermal fluids from the Mid-Okinawa Trough back arc basin, southwest of Japan[J]. Chemical Geology, 1995, 123(1-4): 1-15. doi: 10.1016/0009-2541(95)00051-M
|
[60] |
Zeng Z G, Qin Y S, Zhai S K. Helium, neon and argon isotope compositions of fluid inclusions in massive sulfides from the Jade hydrothermal field, the Okinawa Trough[J]. Acta Oceanologica Sinica, 2004, 23(4): 655-661.
|
[61] |
Zeng Z G, Yu S X, Yin X B, et al. Element enrichment and U-series isotopic characteristics of the hydrothermal sulfides at Jade site in the Okinawa Trough[J]. Science in China Series D: Earth Sciences, 2009, 52(7): 913-924. doi: 10.1007/s11430-009-0107-y
|
[62] |
Ishibashi J I, Noguchi T, Toki T, et al. Diversity of fluid geochemistry affected by processes during fluid upwelling in active hydrothermal fields in the Izena Hole, the middle Okinawa Trough back-arc basin[J]. Geochemical Journal, 2014, 48(4): 357-369. doi: 10.2343/geochemj.2.0311
|
[63] |
Watanabe M, Hoshino K, Shiokawa R, et al. Metallic mineralization associated with pillow basalts in the Yaeyama Central Graben, southern Okinawa Trough, Japan[J]. JAMSTEC Report of Research and Development, 2006, 3: 1-8. doi: 10.5918/jamstecr.3.1
|
[64] |
Fukuba T, Noguchi T, Fujii T. The Irabu Knoll: hydrothermal site at the eastern edge of the Yaeyama graben[M]//Ishibashi J I, Okino K, Sunamura M. Subseafloor Biosphere Linked to Hydrothermal Systems: TAIGA Concept. Tokyo: Springer, 2015: 493-496.
|
[65] |
Kawagucci S, Toki T, Ishibashi J, et al. Isotopic variation of molecular hydrogen in 20°-375℃ hydrothermal fluids as detected by a new analytical method[J]. Journal of Geophysical Research: Biogeosciences, 2010, 115(G3): G03021.
|
[66] |
Kishida K, Sohrin Y, Okamura K, et al. Tungsten enriched in submarine hydrothermal fluids[J]. Earth and Planetary Science Letters, 2004, 222(3-4): 819-827. doi: 10.1016/j.jpgl.2004.03.034
|
[67] |
Konno U, Tsunogai U, Nakagawa F, et al. Liquid CO2 venting on the seafloor: Yonaguni knoll IV hydrothermal system, Okinawa Trough[J]. Geophysical Research Letters, 2006, 33(16): L16607. doi: 10.1029/2006GL026115
|
[68] |
Suzuki R, Ishibashi J I, Nakaseama M, et al. Diverse range of mineralization induced by phase separation of hydrothermal fluid: case study of the Yonaguni Knoll IV hydrothermal field in the Okinawa Trough back-arc basin[J]. Resource Geology, 2008, 58(3): 267-288. doi: 10.1111/j.1751-3928.2008.00061.x
|
[69] |
Wang X Y, Zeng Z G, Chen S, et al. Rare earth elements in hydrothermal fluids from Kueishantao, off northeastern Taiwan: Indicators of shallow-water, sub-seafloor hydrothermal processes[J]. Chinese Science Bulletin, 2013, 58(32): 4012-4020. doi: 10.1007/s11434-013-5849-4
|
[70] |
Zeng Z G, Liu C H, Chen C A, et al. Origin of a native sulfur chimney in the Kueishantao hydrothermal field, offshore northeast Taiwan[J]. Science in China Series D: Earth Sciences, 2007, 50(11): 1746-1753. doi: 10.1007/s11430-007-0092-y
|
[71] |
Zeng Z G, Chen C T A, Yin X B, et al. Origin of native sulfur ball from the Kueishantao hydrothermal field offshore northeast Taiwan: evidence from trace and rare earth element composition[J]. Journal of Asian Earth Sciences, 2011, 40(2): 661-671. doi: 10.1016/j.jseaes.2010.10.019
|
[72] |
Zhang Y X, Zeng Z G, Yin X B, et al. Petrology and mineralogy of pumice from the Iheya North Knoll, Okinawa Trough: implications for the differentiation of crystal‐poor and volatile-rich melts in the magma chamber[J]. Geological Journal, 2018, 53(6): 2732-2745. doi: 10.1002/gj.3106
|
[73] |
Zeng Z G, Wang X Y, Chen C T A, et al. Understanding the compositional variability of the major components of hydrothermal plumes in the Okinawa Trough[J]. Geofluids, 2018, 2018: 1536352.
|
[74] |
Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004
|
[75] |
Liu Y S, Zong K Q, Kelemen P B, et al. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: subduction and ultrahigh-pressure metamorphism of lower crustal cumulates[J]. Chemical Geology, 2008, 247(1-2): 133-153. doi: 10.1016/j.chemgeo.2007.10.016
|
[76] |
Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
|
[77] |
Bao Z A, Chen L, Zong C L, et al. Development of pressed sulfide powder tablets for in situ sulfur and lead isotope measurement using LA-MC-ICP-MS[J]. International Journal of Mass Spectrometry, 2017, 421: 255-262. doi: 10.1016/j.ijms.2017.07.015
|
[78] |
Chen L, Chen K Y, Bao Z A, et al. Preparation of standards for in situ sulfur isotope measurement in sulfides using femtosecond laser ablation MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(1): 107-116. doi: 10.1039/C6JA00270F
|
[79] |
Chen K Y, Bao Z A, Liang P, et al. Preparation of sulfur-bearing reference materials for in situ sulfur isotope measurements using laser ablation multicollector inductively coupled plasma-mass spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2022, 188: 106344. doi: 10.1016/j.sab.2021.106344
|
[80] |
Yuan H L, Liu X, Chen L, et al. Simultaneous measurement of sulfur and lead isotopes in sulfides using nanosecond laser ablation coupled with two multi-collector inductively coupled plasma mass spectrometers[J]. Journal of Asian Earth Sciences, 2018, 154: 386-396. doi: 10.1016/j.jseaes.2017.12.040
|
[81] |
Turekian K K. Oceans[M]. Englewood Cliffs: Prentice-Hall, 1968.
|
[82] |
Ishibashi J I, Urabe T. Hydrothermal activity related to arc-back magmatism in the western Pacific[M]//Taylor B. Backarc Basins: Tectonics and Magmatism. New York: Springer, 1995: 451-495.
|
[83] |
Baker E T, Massoth G J, Collier R W, et al. Evidence for high-temperature hydrothermal venting on the Gorda Ridge, northeast Pacific Ocean[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1987, 34(8): 1461-1476. doi: 10.1016/0198-0149(87)90137-3
|
[84] |
Hongo Y, Obata H, Gamo T, et al. Rare earth elements in the hydrothermal system at Okinawa Trough back-arc basin[J]. Geochemical Journal, 2007, 41(1): 1-15. doi: 10.2343/geochemj.41.1
|
[85] |
Shu Y C, Nielsen S G, Zeng Z G, et al. Tracing subducted sediment inputs to the Ryukyu arc-Okinawa Trough system: evidence from thallium isotopes[J]. Geochimica et Cosmochimica Acta, 2017, 217: 462-491. doi: 10.1016/j.gca.2017.08.035
|
[86] |
Yeats C J, Hollis S P, Halfpenny A, et al. Actively forming Kuroko-type volcanic-hosted massive sulfide (VHMS) mineralization at Iheya North, Okinawa Trough, Japan[J]. Ore Geology Reviews, 2017, 84: 20-41. doi: 10.1016/j.oregeorev.2016.12.014
|
[87] |
Tivey M K, Stakes D S, Cook T L, et al. A model for growth of steep-sided vent structures on the endeavour segment of the Juan de Fuca Ridge: results of a petrologic and geochemical study[J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B10): 22859-22883. doi: 10.1029/1999JB900107
|
[88] |
Marques A F A, Barriga F, Chavagnac V, et al. Mineralogy, geochemistry, and Nd isotope composition of the rainbow hydrothermal field, Mid-Atlantic Ridge[J]. Mineralium Deposita, 2006, 41: 52-67. doi: 10.1007/s00126-005-0040-8
|
[89] |
张春晖, 李景春, 刘斌. 中国银矿床分类[J]. 地质与资源, 2006, 15(3): 238-240 doi: 10.13686/j.cnki.dzyzy.2006.03.014
ZHANG Chunhui, LI Jingchun, LIU Bin. A review on the classification of silver deposits in China[J]. Geology and Resources, 2006, 15(3): 238-240. doi: 10.13686/j.cnki.dzyzy.2006.03.014
|
[90] |
Gamo T. Wide variation of chemical characteristics of submarine hydrothermal fluids due to secondary modification processes after high temperature water-rock interaction: a review[M]//Sakai H, Nozaki Y. Biogeochemical Processes and Ocean Flux in the Western Pacific. Tokyo: Terra Scientific Publishing Co (TERRAPUB), 1995: 425-451.
|
[91] |
Alt J C. The chemistry and sulfur isotope composition of massive sulfide and associated deposits on Green seamount, eastern Pacific[J]. Economic Geology, 1988, 83(5): 1026-1033. doi: 10.2113/gsecongeo.83.5.1026
|
[92] |
Mills R A, Elderfield H. Rare earth element geochemistry of hydrothermal deposits from the active TAG mound, 26°N Mid-Atlantic Ridge[J]. Geochimica et Cosmochimica Acta, 1995, 59(17): 3511-3524. doi: 10.1016/0016-7037(95)00224-N
|
[93] |
Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallographica, 1976, A32(5): 751-767.
|
[94] |
Rimskaya-Korsakova M N, Dubinin A V. Rare earth elements in sulfides of submarine hydrothermal vents of the Atlantic Ocean[J]. Doklady Earth Sciences, 2003, 389(3): 432-436.
|
[95] |
Michard A, Albarède F. The REE content of some hydrothermal fluids[J]. Chemical Geology, 1986, 55(1-2): 51-60. doi: 10.1016/0009-2541(86)90127-0
|
[96] |
Klinkhammer G P, Elderfield H, Edmond J M, et al. Geochemical implications of rare earth element patterns in hydrothermal fluids from mid-ocean ridges[J]. Geochimica et Cosmochimica Acta, 1994, 58(23): 5105-5113. doi: 10.1016/0016-7037(94)90297-6
|
[97] |
Douville E, Bienvenu P, Charlou J L, et al. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems[J]. Geochimica et Cosmochimica Acta, 1999, 63(5): 627-643. doi: 10.1016/S0016-7037(99)00024-1
|
[98] |
Schmidt K, Koschinsky A, Garbe-Schönberg D, et al. Geochemistry of hydrothermal fluids from the ultramafic-hosted Logatchev hydrothermal field, 15°N on the Mid-Atlantic Ridge: temporal and spatial investigation[J]. Chemical Geology, 2007, 242(1-2): 1-21. doi: 10.1016/j.chemgeo.2007.01.023
|
[99] |
Barrett T J, Jarvis I, Jarvis K E. Rare earth element geochemistry of massive sulfides-sulfates and gossans on the southern Explorer Ridge[J]. Geology, 1990, 18(7): 583-586. doi: 10.1130/0091-7613(1990)018<0583:REEGOM>2.3.CO;2
|
[100] |
Gillis K M, Smith A D, Ludden J N. Trace element and Sr-isotopic contents of hydrothermal clays and sulfides from the Snake pit hydrothermal field: ODP site 649[C]//Proceedings of the Ocean Drilling Program, Mid-Atlantic Ridge. St. John: Texas A&M University, 1990: 315-319.
|
[101] |
Sverjensky D A. Europium redox equilibria in aqueous solution[J]. Earth and Planetary Science Letters, 1984, 67(1): 70-78. doi: 10.1016/0012-821X(84)90039-6
|
[102] |
Schade J, Cornell D H, Theart H F J. Rare earth element and isotopic evidence for the genesis of the Prieska massive sulfide deposit, South Africa[J]. Economic Geology, 1989, 84(1): 49-63. doi: 10.2113/gsecongeo.84.1.49
|
[103] |
Wood S A, Williams-Jones A E. The aqueous geochemistry of the rare-earth elements and yttrium 4. Monazite solubility and REE mobility in exhalative massive sulfide-depositing environments[J]. Chemical Geology, 1994, 115(1-2): 47-60. doi: 10.1016/0009-2541(94)90144-9
|
[104] |
Haas J R, Shock E L, Sassani D C. Rare earth elements in hydrothermal systems: estimates of standard partial Molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures[J]. Geochimica et Cosmochimica Acta, 1995, 59(21): 4329-4350. doi: 10.1016/0016-7037(95)00314-P
|
[105] |
Allen D E, Seyfried W E Jr. REE controls in ultramafic hosted MOR hydrothermal systems: an experimental study at elevated temperature and pressure[J]. Geochimica et Cosmochimica Acta, 2005, 69(3): 675-683. doi: 10.1016/j.gca.2004.07.016
|
[106] |
de Baar H J W, Brewer P G, Bacon M P. Anomalies in rare earth distributions in seawater: Gd and Tb[J]. Geochimica et Cosmochimica Acta, 1985, 49(9): 1961-1969. doi: 10.1016/0016-7037(85)90090-0
|
[107] |
Piepgras D J, Wasserburg G J. Strontium and neodymium isotopes in hot springs on the east Pacific Rise and Guaymas Basin[J]. Earth and Planetary Science Letters, 1985, 72(4): 341-356. doi: 10.1016/0012-821X(85)90057-3
|
[108] |
Langmuir C, Humphris S, Fornari D, et al. Hydrothermal vents near a mantle hot spot: the lucky strike vent field at 37°N on the Mid-Atlantic Ridge[J]. Earth and Planetary Science Letters, 1997, 148(1-2): 69-91. doi: 10.1016/S0012-821X(97)00027-7
|
[109] |
Sakai H, Des Marais D J, Ueda A, et al. Concentrations and isotope ratios of carbon, nitrogen and sulfur in ocean-floor basalts[J]. Geochimica et Cosmochimica Acta, 1984, 48(12): 2433-2441. doi: 10.1016/0016-7037(84)90295-3
|
[110] |
Alt J C, Anderson T F, Bonnell L. The geochemistry of sulfur in a 1.3 km section of hydrothermally altered oceanic crust, DSDP Hole 504B[J]. Geochimica et Cosmochimica Acta, 1989, 53(5): 1011-1023. doi: 10.1016/0016-7037(89)90206-8
|
[111] |
Shanks W C III, Böhlke J K, Seal R R II. Stable isotopes in mid-ocean ridge hydrothermal systems: interactions between fluids, minerals, and organisms[M]//Humphris S E, Zierenberg R A, Mullineaux L S, et al. Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological interactions. Washington: American Geophysical Union, 1995: 194-221.
|
[112] |
Alt J C, Shanks W C III. Serpentinization of abyssal peridotites from the MARK area, Mid-Atlantic Ridge: sulfur geochemistry and reaction modeling[J]. Geochimica et Cosmochimica Acta, 2003, 67(4): 641-653. doi: 10.1016/S0016-7037(02)01142-0
|
[113] |
Rees C E, Jenkins W J, Monster J. The sulphur isotopic composition of ocean water sulphate[J]. Geochimica et Cosmochimica Acta, 1978, 42(4): 377-381. doi: 10.1016/0016-7037(78)90268-5
|
[114] |
Fouquet Y, Knott R, Cambon P, et al. Formation of large sulfide mineral deposits along fast spreading ridges. Example from off-axial deposits at 12°43′N on the east Pacific Rise[J]. Earth and Planetary Science Letters, 1996, 144(1-2): 147-162. doi: 10.1016/0012-821X(96)00142-2
|
[115] |
Gamo T, Sakai H, Kim E S, et al. High alkalinity due to sulfate reduction in the CLAM hydrothermal field, Okinawa Trough[J]. Earth and Planetary Science Letters, 1991, 107(2): 328-338. doi: 10.1016/0012-821X(91)90080-2
|
[116] |
Takai K, Nakagawa S, Nunoura T. Comparative investigation of microbial communities associated with hydrothermal activities in the Okinawa Trough[M]//Ishibashi J I, Okino K, Sunamura M. Subseafloor Biosphere Linked to Hydrothermal Systems: TAIGA Concept. Tokyo: Springer, 2015: 421-435.
|
[117] |
Ueda A, Sakai H. Sulfur isotope study of Quaternary volcanic rocks from the Japanese islands arc[J]. Geochimica et Cosmochimica Acta, 1984, 48(9): 1837-1848. doi: 10.1016/0016-7037(84)90037-1
|
1. |
张雅茹,张广璐,杨俊,赵彦彦,管红香,刘盛. 南海不同沉积环境黄铁矿的矿物学及原位微区地球化学研究. 古地理学报. 2024(06): 1498-1515+1543-1545 .
![]() |