ZENG Zhigang,CHEN Zuxing,QI Haiyan,et al. Chemical and sulfur isotopic compositions of anhydrite from the Tangyin hydrothermal field in the Okinawa Trough[J]. Marine Geology & Quaternary Geology,2023,43(5):1-16. DOI: 10.16562/j.cnki.0256-1492.2023060601
Citation: ZENG Zhigang,CHEN Zuxing,QI Haiyan,et al. Chemical and sulfur isotopic compositions of anhydrite from the Tangyin hydrothermal field in the Okinawa Trough[J]. Marine Geology & Quaternary Geology,2023,43(5):1-16. DOI: 10.16562/j.cnki.0256-1492.2023060601

Chemical and sulfur isotopic compositions of anhydrite from the Tangyin hydrothermal field in the Okinawa Trough

More Information
  • Received Date: June 05, 2023
  • Revised Date: July 26, 2023
  • Available Online: October 29, 2023
  • Anhydrite is one of the earliest minerals in forming the hydrothermal chimney walls, which is important for understanding the fluid-seawater mixing, and elemental migration and cycling in the seafloor hydrothermal system. Anhydrite minerals samples from the Tangyin hydrothermal field in the southwestern Okinawa Trough, western Pacific were investigated on the in-situ element concentrations and sulfur (S) isotopic compositions. The crystal morphology of anhydrite could be divided into two types. Type I anhydrite formed earlier is subhedral or anhedral and occurred in radial or irregular crystal aggregation, and Type II anhydrite formed later is euhedral and occurred in plate or granular crystal aggregation. When the hydrothermal fluid first met with seawater, Type I anhydrite precipitated rapidly and formed the wall of the hydrothermal chimney. Subsequently, Type II anhydrite experienced relatively longer growth stage. However, the Ba, Al, Sr, Ni, Fe, Mn, and Cr contents of anhydrite are significantly higher than that of seawater, suggesting that those elements are derived mainly from hydrothermal fluid duo to the subseafloor fluid-rock and/or sediment interactions. The Mg content of anhydrite is significantly lower / higher than that of seawater / vent fluids, which was resulted from the fluid-seawater mixing. Most of the Sr contents of Type I anhydrite are significantly lower than that of Type II anhydrite, suggesting that more Sr from fluids were involved into Type II anhydrite and formed euhedral, plate, or granular minerals. The Fe, As, Sr, Ba, and Pb contents of anhydrite are significantly higher than that of vent fluids in the Okinawa Trough, which indicates that these elements enter preferentially anhydrite from the fluids, and resulted in the enrichment of these elements in the anhydrite. REEs of anhydrite and their REE patterns show positive Ce and negative Eu anomalies, which could be resulted from fluids leaching out from local sub-seafloor volcanic rocks and/or sediments and having undergone fluid-seawater mixing. Furthermore, S in the anhydrite was mainly from seawater during fluid-seawater mixing.
  • [1]
    Zeng Z G, Qin Y S, Zhai S K. He, Ne and Ar isotope compositions of fluid inclusions in hydrothermal sulfides from the TAG hydrothermal field Mid-Atlantic Ridge[J]. Science in China Series D: Earth Sciences, 2001, 44(3): 221-228. doi: 10.1007/BF02882256
    [2]
    Zeng Z G, Chen D G, Yin X B, et al. Elemental and isotopic compositions of the hydrothermal sulfide on the east Pacific rise near 13ºN[J]. Science China Earth Sciences, 2010, 53(2): 253-266. doi: 10.1007/s11430-010-0013-3
    [3]
    Zeng Z G, Chen S, Selby D, et al. Rhenium-osmium abundance and isotopic compositions of massive sulfides from modern deep-sea hydrothermal systems: Implications for vent associated ore forming processes[J]. Earth and Planetary Science Letters, 2014, 396: 223-234. doi: 10.1016/j.jpgl.2014.04.017
    [4]
    Zeng Z G, Ma Y, Yin X B, et al. Factors affecting the rare earth element compositions in massive sulfides from deep-sea hydrothermal systems[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(8): 2679-2693. doi: 10.1002/2015GC005812
    [5]
    Zeng Z G, Niedermann S, Chen S, et al. Noble gases in sulfide deposits of modern deep-sea hydrothermal systems: implications for heat fluxes and hydrothermal fluid processes[J]. Chemical Geology, 2015, 409: 1-11. doi: 10.1016/j.chemgeo.2015.05.007
    [6]
    Zeng Z G, Li X H, Chen S, et al. Iron, copper, and zinc isotopic fractionation in seafloor basalts and hydrothermal sulfides[J]. Marine Geology, 2021, 436: 106491. doi: 10.1016/j.margeo.2021.106491
    [7]
    Zeng Z G, Chen Z X, Qi H Y, et al. Chemical and isotopic composition of sulfide minerals from the Noho hydrothermal field in the Okinawa Trough[J]. Journal of Marine Science and Engineering, 2022, 10(5): 678. doi: 10.3390/jmse10050678
    [8]
    Zeng Z G, Ma Y, Chen S, et al. Sulfur and lead isotopic compositions of massive sulfides from deep-sea hydrothermal systems: implications for ore genesis and fluid circulation[J]. Ore Geology Reviews, 2017, 87: 155-171. doi: 10.1016/j.oregeorev.2016.10.014
    [9]
    Zeng Z G, Chen Z X, Qi H Y. Two processes of anglesite formation and a model of secondary supergene enrichment of Bi and Ag in seafloor hydrothermal sulfide deposits[J]. Journal of Marine Science and Engineering, 2022, 10(1): 35.
    [10]
    Zeng Z G, Wang X Y, Chen C T A, et al. Boron isotope compositions of fluids and plumes from the Kueishantao hydrothermal field off northeastern Taiwan: implications for fluid origin and hydrothermal processes[J]. Marine Chemistry, 2013, 157: 59-66. doi: 10.1016/j.marchem.2013.09.001
    [11]
    Zeng Z G, Wang X Y, Qi H Y, et al. Arsenic and antimony in hydrothermal plumes from the eastern Manus Basin, Papua New Guinea[J]. Geofluids, 2018, 2018: 6079586.
    [12]
    Zeng Z G, Wang X Y, Murton B J, et al. Dispersion and intersection of hydrothermal plumes in the Manus back-arc basin, western Pacific[J]. Geofluids, 2020, 2020: 4260806.
    [13]
    Rong K B, Zeng Z G, Yin X B, et al. Smectite formation in metalliferous sediments near the east Pacific rise at 13°N[J]. Acta Oceanologica Sinica, 2018, 37(9): 67-81. doi: 10.1007/s13131-018-1265-6
    [14]
    Zeng Z G, Wang X Y, Zhang G L, et al. Formation of Fe-oxyhydroxides from the east Pacific rise near latitude 13°N: evidence from mineralogical and geochemical data[J]. Science in China Series D: Earth Sciences, 2008, 51(2): 206-215. doi: 10.1007/s11430-007-0131-8
    [15]
    Zeng Z G, Ouyang H G, Yin X B, et al. Formation of Fe-Si-Mn oxyhydroxides at the PACMANUS hydrothermal field, Eastern Manus Basin: mineralogical and geochemical evidence[J]. Journal of Asian Earth Sciences, 2012, 60: 130-146. doi: 10.1016/j.jseaes.2012.08.009
    [16]
    Zeng Z G, Chen S, Wang X Y, et al. Mineralogical and micromorphological characteristics of Si-Fe-Mn oxyhydroxides from the PACMANUS hydrothermal field, eastern Manus Basin[J]. Science China Earth Sciences, 2012, 55(12): 2039-2048. doi: 10.1007/s11430-012-4536-7
    [17]
    Zeng Z G, Qi H Y, Chen S, et al. Hydrothermal alteration of plagioclase microphenocrysts and glass in basalts from the east Pacific rise near 13°N: an SEM-EDS study[J]. Science China Earth Sciences, 2014, 57(7): 1427-1437. doi: 10.1007/s11430-014-4868-6
    [18]
    Wang X Y, Zeng Z G, Qi H Y, et al. Fe-Si-Mn-oxyhydroxide encrustations on basalts at east Pacific rise near 13˚N: an SEM-EDS study[J]. Journal of Ocean University of China, 2014, 13(6): 917-925. doi: 10.1007/s11802-014-2358-2
    [19]
    Huang X, Zeng Z G, Chen S, et al. Component characteristics of organic matter in hydrothermal barnacle shells from southwest Indian Ridge[J]. Acta Oceanologica Sinica, 2013, 32(12): 60-67. doi: 10.1007/s13131-013-0388-z
    [20]
    Chen J B, Zeng Z G. Metasomatism of the peridotites from southern Mariana fore-arc: trace element characteristics of clinopyroxene and amphibole[J]. Science in China Series D: Earth Sciences, 2007, 50(7): 1005-1012. doi: 10.1007/s11430-007-0023-y
    [21]
    Wang X M, Zeng Z G, Chen J B. Serpentinization of peridotites from the southern Mariana forearc[J]. Progress in Natural Science, 2009, 19(10): 1287-1295. doi: 10.1016/j.pnsc.2009.04.004
    [22]
    Zeng Z G, Wang Q Y, Wang X M, et al. Geochemistry of abyssal peridotites from the super slow-spreading southwest Indian Ridge near 65°E: implications for magma source and seawater alteration[J]. Journal of Earth System Science, 2012, 121(5): 1317-1336. doi: 10.1007/s12040-012-0229-z
    [23]
    Zeng Z G, Li X H, Zhang Y X, et al. Lithium, oxygen and magnesium isotope systematics of volcanic rocks in the Okinawa Trough: implications for plate subduction studies[J]. Journal of Marine Science and Engineering, 2022, 10(1): 40.
    [24]
    Zeng Z G, Li X H, Chen S, et al. Iron-copper-zinc isotopic compositions of Andesites from the Kueishantao hydrothermal field off northeastern Taiwan[J]. Sustainability, 2022, 14(1): 359.
    [25]
    Zeng Z G, Chen Z X, Zhang Y X, et al. Geological, physical, and chemical characteristics of seafloor hydrothermal vent fields[J]. Journal of Oceanology and Limnology, 2020, 38(4): 985-1007. doi: 10.1007/s00343-020-0123-5
    [26]
    Haymon R M. Growth history of hydrothermal black smoker chimneys[J]. Nature, 1983, 301(5902): 695-698. doi: 10.1038/301695a0
    [27]
    Tivey M K. Modeling chimney growth and associated fluid flow at seafloor hydrothermal vent sites[M]//Humphris S E, Zierenberg R A, Mullineaux L S, et al. Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. Washington: American Geophysical Union, 1995: 158-177.
    [28]
    Binns R A. Bikpela: a large siliceous chimney from the PACMANUS hydrothermal field, Manus Basin, Papua New Guinea[J]. Economic Geology, 2014, 109(8): 2243-2259. doi: 10.2113/econgeo.109.8.2243
    [29]
    Chiba H, Uchiyama N, Teagle D A H. 1998. Stable isotope study of anhydrite and sulfide minerals at the TAG hydrothermal mound, Mid-Atlantic Ridge, 26°N[C]//Proceedings of the Ocean Drilling Program, Mid-Atlantic Ridge. St. John: Texas A&M University, 1998: 85-90.
    [30]
    Juniper S K, Martineu P. Alvinellids and sulfides at hydrothermal vents of the Eastern Pacific: a review[J]. American Zoologist, 1995, 35(2): 174-185. doi: 10.1093/icb/35.2.174
    [31]
    Haymon R M, Kastner M. Hot spring deposits on the east Pacific rise at 21°N: preliminary description of mineralogy and genesis[J]. Earth and Planetary Science Letters, 1981, 53(3): 363-381. doi: 10.1016/0012-821X(81)90041-8
    [32]
    Paradis S, Jonasson I R, Le Cheminant G M, et al. Two zinc-rich chimneys from the plume site, southern Juan de Fuca[J]. The Canadian Mineralogist, 1988, 26(3): 637-654.
    [33]
    Huang X, Chen S, Zeng Z G, et al. Characteristics of hydrocarbons in sediment core samples from the northern Okinawa Trough[J]. Marine Pollution Bulletin, 2017, 115(1-2): 507-514. doi: 10.1016/j.marpolbul.2016.12.034
    [34]
    Zeng Z G, Yu S X, Wang X Y, et al. Geochemical and isotopic characteristics of volcanic rocks from the northern east China Sea shelf margin and the Okinawa Trough[J]. Acta Oceanologica Sinica, 2010, 29(4): 48-61. doi: 10.1007/s13131-010-0050-y
    [35]
    Guo K, Zhai S K, Wang X Y, et al. The dynamics of the southern Okinawa Trough magmatic system: new insights from the microanalysis of the an contents, trace element concentrations and Sr isotopic compositions of plagioclase hosted in basalts and silicic rocks[J]. Chemical Geology, 2018, 497: 146-161. doi: 10.1016/j.chemgeo.2018.09.002
    [36]
    Guo K, Zhai S K, Yu Z H, et al. Geochemical characteristics of major and trace elements in the Okinawa Trough basaltic glass[J]. Acta Oceanologica Sinica, 2018, 37(2): 14-24. doi: 10.1007/s13131-017-1075-2
    [37]
    Chen Z X, Zeng Z G, Wang X Y, et al. Mineral chemistry indicates the petrogenesis of rhyolite from the southwestern Okinawa Trough[J]. Journal of Ocean University of China, 2017, 16(6): 1097-1108. doi: 10.1007/s11802-017-3344-2
    [38]
    Chen Z X, Zeng Z G, Wang X Y, et al. U-Th/He dating and chemical compositions of apatite in the Dacite from the southwestern Okinawa Trough: implications for petrogenesis[J]. Journal of Asian Earth Sciences, 2018, 161: 1-13. doi: 10.1016/j.jseaes.2018.04.032
    [39]
    Chen Z X, Zeng Z G, Yin X B, et al. Petrogenesis of highly fractionated rhyolites in the southwestern Okinawa Trough: constraints from whole-rock geochemistry data and Sr-Nd-Pb-O isotopes[J]. Geological Journal, 2019, 54(1): 316-332. doi: 10.1002/gj.3179
    [40]
    Zhang Y X, Zeng Z G, Li X H, et al. High‐potassium volcanic rocks from the Okinawa Trough: implications for a cryptic potassium-rich and DUPAL-like source[J]. Geological Journal, 2018, 53(5): 1755-1766. doi: 10.1002/gj.3000
    [41]
    Zhang Y X, Zeng Z G, Chen S, et al. New insights into the origin of the bimodal volcanism in the middle Okinawa Trough: not a basalt-rhyolite differentiation process[J]. Frontiers of Earth Science, 2018, 12(2): 325-338. doi: 10.1007/s11707-017-0638-z
    [42]
    Li X H, Zeng Z G, Chen S, et al. Geochemical and Sr-Nd-Pb isotopic compositions of volcanic rocks from the Iheya Ridge, the middle Okinawa Trough: implications for petrogenesis and a mantle source[J]. Acta Oceanologica Sinica, 2018, 37(1): 73-88. doi: 10.1007/s13131-017-1118-8
    [43]
    Li X H, Zeng Z G, Wang X Y, et al. Petrogenesis of basalt from the middle Okinawa Trough: new insights from olivine-hosted melt inclusions[J]. Geological Journal, 2018, 53(6): 3129-3146. doi: 10.1002/gj.3150
    [44]
    Guo K, Zeng Z G, Chen S, et al. The influence of a subduction component on magmatism in the Okinawa Trough: evidence from thorium and related trace element ratios[J]. Journal of Asian Earth Sciences, 2017, 145: 205-216. doi: 10.1016/j.jseaes.2017.05.033
    [45]
    Li X H, Zeng Z G, Yang H X, et al. Geochemistry of silicate melt inclusions in middle and southern Okinawa Trough rocks: implications for petrogenesis and variable subducted sediment component injection[J]. Geological Journal, 2019, 54(3): 1160-1189. doi: 10.1002/gj.3217
    [46]
    Li X H, Zeng Z G, Yang H X, et al. Integrated major and trace element study of clinopyroxene in basic, intermediate and acidic volcanic rocks from the middle Okinawa Trough: Insights into petrogenesis and the influence of subduction component[J]. Lithos, 2020, 352-353: 105320. doi: 10.1016/j.lithos.2019.105320
    [47]
    Zeng Z G, Chen Z X, Zhang Y X. Zircon record of an Archaean crustal fragment and supercontinent amalgamation in Quaternary back-arc volcanic rocks[J]. Scientific Reports, 2021, 11(1): 12367. doi: 10.1038/s41598-021-90578-9
    [48]
    Kimura M. Back-arc rifting in the Okinawa Trough[J]. Marine and Petroleum Geology, 1985, 2(3): 222-240. doi: 10.1016/0264-8172(85)90012-1
    [49]
    Ishibashi J I, Ikegami F, Tsuji T, et al. Hydrothermal activity in the Okinawa Trough back-arc basin: geological background and hydrothermal mineralization[M]//Ishibashi J I, Okino K, Sunamura M. Subseafloor Biosphere Linked to Hydrothermal Systems: TAIGA Concept. Tokyo: Springer, 2015: 337-359.
    [50]
    Sibuet J C, Deffontaines B, Hsu S K, et al. Okinawa Trough backarc basin: early tectonic and magmatic evolution[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B12): 30245-30267. doi: 10.1029/98JB01823
    [51]
    Zeng Z G, Chen S, Ma Y, et al. Chemical compositions of mussels and clams from the Tangyin and Yonaguni Knoll IV hydrothermal fields in the southwestern Okinawa Trough[J]. Ore Geology Reviews, 2017, 87: 172-191. doi: 10.1016/j.oregeorev.2016.09.015
    [52]
    Zeng Z G, Ma Y, Wang X Y, et al. Elemental compositions of crab and snail shells from the Kueishantao hydrothermal field in the southwestern Okinawa Trough[J]. Journal of Marine Systems, 2018, 180: 90-101. doi: 10.1016/j.jmarsys.2016.08.012
    [53]
    Kawagucci S, Ueno Y, Takai K, et al. Geochemical origin of hydrothermal fluid methane in sediment-associated fields and its relevance to the geographical distribution of whole hydrothermal circulation[J]. Chemical Geology, 2013, 339: 213-225. doi: 10.1016/j.chemgeo.2012.05.003
    [54]
    Nakagawa S, Takai K, Inagaki F, et al. Variability in microbial community and venting chemistry in a sediment-hosted backarc hydrothermal system: impacts of subseafloor phase-separation[J]. FEMS Microbiology Ecology, 2005, 54(1): 141-155. doi: 10.1016/j.femsec.2005.03.007
    [55]
    Kawagucci S, Chiba H, Ishibashi J I, et al. Hydrothermal fluid geochemistry at the Iheya north field in the mid-Okinawa Trough: implication for origin of methane in subseafloor fluid circulation systems[J]. Geochemical Journal, 2011, 45(2): 109-124. doi: 10.2343/geochemj.1.0105
    [56]
    Kawagucci S, Miyazaki J, Nakajima R, et al. Post-drilling changes in fluid discharge pattern, mineral deposition, and fluid chemistry in the Iheya north hydrothermal field, Okinawa Trough[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(11): 4774-4790. doi: 10.1002/2013GC004895
    [57]
    Kawagucci S. Fluid geochemistry of high-temperature hydrothermal fields in the Okinawa Trough[M]//Ishibashi J I, Okino K, Sunamura M. Subseafloor Biosphere Linked to Hydrothermal Systems: TAIGA Concept. Tokyo: Springer, 2015: 387-403.
    [58]
    Sakai H, Gamo T, Kim E S, et al. Unique chemistry of the hydrothermal solution in the mid-Okinawa Trough backarc basin[J]. Geophysical Research Letters, 1990, 17(12): 2133-2136. doi: 10.1029/GL017i012p02133
    [59]
    Ishibashi J, Sano Y, Wakita H, et al. Helium and carbon geochemistry of hydrothermal fluids from the Mid-Okinawa Trough back arc basin, southwest of Japan[J]. Chemical Geology, 1995, 123(1-4): 1-15. doi: 10.1016/0009-2541(95)00051-M
    [60]
    Zeng Z G, Qin Y S, Zhai S K. Helium, neon and argon isotope compositions of fluid inclusions in massive sulfides from the Jade hydrothermal field, the Okinawa Trough[J]. Acta Oceanologica Sinica, 2004, 23(4): 655-661.
    [61]
    Zeng Z G, Yu S X, Yin X B, et al. Element enrichment and U-series isotopic characteristics of the hydrothermal sulfides at Jade site in the Okinawa Trough[J]. Science in China Series D: Earth Sciences, 2009, 52(7): 913-924. doi: 10.1007/s11430-009-0107-y
    [62]
    Ishibashi J I, Noguchi T, Toki T, et al. Diversity of fluid geochemistry affected by processes during fluid upwelling in active hydrothermal fields in the Izena Hole, the middle Okinawa Trough back-arc basin[J]. Geochemical Journal, 2014, 48(4): 357-369. doi: 10.2343/geochemj.2.0311
    [63]
    Watanabe M, Hoshino K, Shiokawa R, et al. Metallic mineralization associated with pillow basalts in the Yaeyama Central Graben, southern Okinawa Trough, Japan[J]. JAMSTEC Report of Research and Development, 2006, 3: 1-8. doi: 10.5918/jamstecr.3.1
    [64]
    Fukuba T, Noguchi T, Fujii T. The Irabu Knoll: hydrothermal site at the eastern edge of the Yaeyama graben[M]//Ishibashi J I, Okino K, Sunamura M. Subseafloor Biosphere Linked to Hydrothermal Systems: TAIGA Concept. Tokyo: Springer, 2015: 493-496.
    [65]
    Kawagucci S, Toki T, Ishibashi J, et al. Isotopic variation of molecular hydrogen in 20°-375℃ hydrothermal fluids as detected by a new analytical method[J]. Journal of Geophysical Research: Biogeosciences, 2010, 115(G3): G03021.
    [66]
    Kishida K, Sohrin Y, Okamura K, et al. Tungsten enriched in submarine hydrothermal fluids[J]. Earth and Planetary Science Letters, 2004, 222(3-4): 819-827. doi: 10.1016/j.jpgl.2004.03.034
    [67]
    Konno U, Tsunogai U, Nakagawa F, et al. Liquid CO2 venting on the seafloor: Yonaguni knoll IV hydrothermal system, Okinawa Trough[J]. Geophysical Research Letters, 2006, 33(16): L16607. doi: 10.1029/2006GL026115
    [68]
    Suzuki R, Ishibashi J I, Nakaseama M, et al. Diverse range of mineralization induced by phase separation of hydrothermal fluid: case study of the Yonaguni Knoll IV hydrothermal field in the Okinawa Trough back-arc basin[J]. Resource Geology, 2008, 58(3): 267-288. doi: 10.1111/j.1751-3928.2008.00061.x
    [69]
    Wang X Y, Zeng Z G, Chen S, et al. Rare earth elements in hydrothermal fluids from Kueishantao, off northeastern Taiwan: Indicators of shallow-water, sub-seafloor hydrothermal processes[J]. Chinese Science Bulletin, 2013, 58(32): 4012-4020. doi: 10.1007/s11434-013-5849-4
    [70]
    Zeng Z G, Liu C H, Chen C A, et al. Origin of a native sulfur chimney in the Kueishantao hydrothermal field, offshore northeast Taiwan[J]. Science in China Series D: Earth Sciences, 2007, 50(11): 1746-1753. doi: 10.1007/s11430-007-0092-y
    [71]
    Zeng Z G, Chen C T A, Yin X B, et al. Origin of native sulfur ball from the Kueishantao hydrothermal field offshore northeast Taiwan: evidence from trace and rare earth element composition[J]. Journal of Asian Earth Sciences, 2011, 40(2): 661-671. doi: 10.1016/j.jseaes.2010.10.019
    [72]
    Zhang Y X, Zeng Z G, Yin X B, et al. Petrology and mineralogy of pumice from the Iheya North Knoll, Okinawa Trough: implications for the differentiation of crystal‐poor and volatile-rich melts in the magma chamber[J]. Geological Journal, 2018, 53(6): 2732-2745. doi: 10.1002/gj.3106
    [73]
    Zeng Z G, Wang X Y, Chen C T A, et al. Understanding the compositional variability of the major components of hydrothermal plumes in the Okinawa Trough[J]. Geofluids, 2018, 2018: 1536352.
    [74]
    Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004
    [75]
    Liu Y S, Zong K Q, Kelemen P B, et al. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: subduction and ultrahigh-pressure metamorphism of lower crustal cumulates[J]. Chemical Geology, 2008, 247(1-2): 133-153. doi: 10.1016/j.chemgeo.2007.10.016
    [76]
    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
    [77]
    Bao Z A, Chen L, Zong C L, et al. Development of pressed sulfide powder tablets for in situ sulfur and lead isotope measurement using LA-MC-ICP-MS[J]. International Journal of Mass Spectrometry, 2017, 421: 255-262. doi: 10.1016/j.ijms.2017.07.015
    [78]
    Chen L, Chen K Y, Bao Z A, et al. Preparation of standards for in situ sulfur isotope measurement in sulfides using femtosecond laser ablation MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(1): 107-116. doi: 10.1039/C6JA00270F
    [79]
    Chen K Y, Bao Z A, Liang P, et al. Preparation of sulfur-bearing reference materials for in situ sulfur isotope measurements using laser ablation multicollector inductively coupled plasma-mass spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2022, 188: 106344. doi: 10.1016/j.sab.2021.106344
    [80]
    Yuan H L, Liu X, Chen L, et al. Simultaneous measurement of sulfur and lead isotopes in sulfides using nanosecond laser ablation coupled with two multi-collector inductively coupled plasma mass spectrometers[J]. Journal of Asian Earth Sciences, 2018, 154: 386-396. doi: 10.1016/j.jseaes.2017.12.040
    [81]
    Turekian K K. Oceans[M]. Englewood Cliffs: Prentice-Hall, 1968.
    [82]
    Ishibashi J I, Urabe T. Hydrothermal activity related to arc-back magmatism in the western Pacific[M]//Taylor B. Backarc Basins: Tectonics and Magmatism. New York: Springer, 1995: 451-495.
    [83]
    Baker E T, Massoth G J, Collier R W, et al. Evidence for high-temperature hydrothermal venting on the Gorda Ridge, northeast Pacific Ocean[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1987, 34(8): 1461-1476. doi: 10.1016/0198-0149(87)90137-3
    [84]
    Hongo Y, Obata H, Gamo T, et al. Rare earth elements in the hydrothermal system at Okinawa Trough back-arc basin[J]. Geochemical Journal, 2007, 41(1): 1-15. doi: 10.2343/geochemj.41.1
    [85]
    Shu Y C, Nielsen S G, Zeng Z G, et al. Tracing subducted sediment inputs to the Ryukyu arc-Okinawa Trough system: evidence from thallium isotopes[J]. Geochimica et Cosmochimica Acta, 2017, 217: 462-491. doi: 10.1016/j.gca.2017.08.035
    [86]
    Yeats C J, Hollis S P, Halfpenny A, et al. Actively forming Kuroko-type volcanic-hosted massive sulfide (VHMS) mineralization at Iheya North, Okinawa Trough, Japan[J]. Ore Geology Reviews, 2017, 84: 20-41. doi: 10.1016/j.oregeorev.2016.12.014
    [87]
    Tivey M K, Stakes D S, Cook T L, et al. A model for growth of steep-sided vent structures on the endeavour segment of the Juan de Fuca Ridge: results of a petrologic and geochemical study[J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B10): 22859-22883. doi: 10.1029/1999JB900107
    [88]
    Marques A F A, Barriga F, Chavagnac V, et al. Mineralogy, geochemistry, and Nd isotope composition of the rainbow hydrothermal field, Mid-Atlantic Ridge[J]. Mineralium Deposita, 2006, 41: 52-67. doi: 10.1007/s00126-005-0040-8
    [89]
    张春晖, 李景春, 刘斌. 中国银矿床分类[J]. 地质与资源, 2006, 15(3): 238-240 doi: 10.13686/j.cnki.dzyzy.2006.03.014

    ZHANG Chunhui, LI Jingchun, LIU Bin. A review on the classification of silver deposits in China[J]. Geology and Resources, 2006, 15(3): 238-240. doi: 10.13686/j.cnki.dzyzy.2006.03.014
    [90]
    Gamo T. Wide variation of chemical characteristics of submarine hydrothermal fluids due to secondary modification processes after high temperature water-rock interaction: a review[M]//Sakai H, Nozaki Y. Biogeochemical Processes and Ocean Flux in the Western Pacific. Tokyo: Terra Scientific Publishing Co (TERRAPUB), 1995: 425-451.
    [91]
    Alt J C. The chemistry and sulfur isotope composition of massive sulfide and associated deposits on Green seamount, eastern Pacific[J]. Economic Geology, 1988, 83(5): 1026-1033. doi: 10.2113/gsecongeo.83.5.1026
    [92]
    Mills R A, Elderfield H. Rare earth element geochemistry of hydrothermal deposits from the active TAG mound, 26°N Mid-Atlantic Ridge[J]. Geochimica et Cosmochimica Acta, 1995, 59(17): 3511-3524. doi: 10.1016/0016-7037(95)00224-N
    [93]
    Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallographica, 1976, A32(5): 751-767.
    [94]
    Rimskaya-Korsakova M N, Dubinin A V. Rare earth elements in sulfides of submarine hydrothermal vents of the Atlantic Ocean[J]. Doklady Earth Sciences, 2003, 389(3): 432-436.
    [95]
    Michard A, Albarède F. The REE content of some hydrothermal fluids[J]. Chemical Geology, 1986, 55(1-2): 51-60. doi: 10.1016/0009-2541(86)90127-0
    [96]
    Klinkhammer G P, Elderfield H, Edmond J M, et al. Geochemical implications of rare earth element patterns in hydrothermal fluids from mid-ocean ridges[J]. Geochimica et Cosmochimica Acta, 1994, 58(23): 5105-5113. doi: 10.1016/0016-7037(94)90297-6
    [97]
    Douville E, Bienvenu P, Charlou J L, et al. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems[J]. Geochimica et Cosmochimica Acta, 1999, 63(5): 627-643. doi: 10.1016/S0016-7037(99)00024-1
    [98]
    Schmidt K, Koschinsky A, Garbe-Schönberg D, et al. Geochemistry of hydrothermal fluids from the ultramafic-hosted Logatchev hydrothermal field, 15°N on the Mid-Atlantic Ridge: temporal and spatial investigation[J]. Chemical Geology, 2007, 242(1-2): 1-21. doi: 10.1016/j.chemgeo.2007.01.023
    [99]
    Barrett T J, Jarvis I, Jarvis K E. Rare earth element geochemistry of massive sulfides-sulfates and gossans on the southern Explorer Ridge[J]. Geology, 1990, 18(7): 583-586. doi: 10.1130/0091-7613(1990)018<0583:REEGOM>2.3.CO;2
    [100]
    Gillis K M, Smith A D, Ludden J N. Trace element and Sr-isotopic contents of hydrothermal clays and sulfides from the Snake pit hydrothermal field: ODP site 649[C]//Proceedings of the Ocean Drilling Program, Mid-Atlantic Ridge. St. John: Texas A&M University, 1990: 315-319.
    [101]
    Sverjensky D A. Europium redox equilibria in aqueous solution[J]. Earth and Planetary Science Letters, 1984, 67(1): 70-78. doi: 10.1016/0012-821X(84)90039-6
    [102]
    Schade J, Cornell D H, Theart H F J. Rare earth element and isotopic evidence for the genesis of the Prieska massive sulfide deposit, South Africa[J]. Economic Geology, 1989, 84(1): 49-63. doi: 10.2113/gsecongeo.84.1.49
    [103]
    Wood S A, Williams-Jones A E. The aqueous geochemistry of the rare-earth elements and yttrium 4. Monazite solubility and REE mobility in exhalative massive sulfide-depositing environments[J]. Chemical Geology, 1994, 115(1-2): 47-60. doi: 10.1016/0009-2541(94)90144-9
    [104]
    Haas J R, Shock E L, Sassani D C. Rare earth elements in hydrothermal systems: estimates of standard partial Molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures[J]. Geochimica et Cosmochimica Acta, 1995, 59(21): 4329-4350. doi: 10.1016/0016-7037(95)00314-P
    [105]
    Allen D E, Seyfried W E Jr. REE controls in ultramafic hosted MOR hydrothermal systems: an experimental study at elevated temperature and pressure[J]. Geochimica et Cosmochimica Acta, 2005, 69(3): 675-683. doi: 10.1016/j.gca.2004.07.016
    [106]
    de Baar H J W, Brewer P G, Bacon M P. Anomalies in rare earth distributions in seawater: Gd and Tb[J]. Geochimica et Cosmochimica Acta, 1985, 49(9): 1961-1969. doi: 10.1016/0016-7037(85)90090-0
    [107]
    Piepgras D J, Wasserburg G J. Strontium and neodymium isotopes in hot springs on the east Pacific Rise and Guaymas Basin[J]. Earth and Planetary Science Letters, 1985, 72(4): 341-356. doi: 10.1016/0012-821X(85)90057-3
    [108]
    Langmuir C, Humphris S, Fornari D, et al. Hydrothermal vents near a mantle hot spot: the lucky strike vent field at 37°N on the Mid-Atlantic Ridge[J]. Earth and Planetary Science Letters, 1997, 148(1-2): 69-91. doi: 10.1016/S0012-821X(97)00027-7
    [109]
    Sakai H, Des Marais D J, Ueda A, et al. Concentrations and isotope ratios of carbon, nitrogen and sulfur in ocean-floor basalts[J]. Geochimica et Cosmochimica Acta, 1984, 48(12): 2433-2441. doi: 10.1016/0016-7037(84)90295-3
    [110]
    Alt J C, Anderson T F, Bonnell L. The geochemistry of sulfur in a 1.3 km section of hydrothermally altered oceanic crust, DSDP Hole 504B[J]. Geochimica et Cosmochimica Acta, 1989, 53(5): 1011-1023. doi: 10.1016/0016-7037(89)90206-8
    [111]
    Shanks W C III, Böhlke J K, Seal R R II. Stable isotopes in mid-ocean ridge hydrothermal systems: interactions between fluids, minerals, and organisms[M]//Humphris S E, Zierenberg R A, Mullineaux L S, et al. Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological interactions. Washington: American Geophysical Union, 1995: 194-221.
    [112]
    Alt J C, Shanks W C III. Serpentinization of abyssal peridotites from the MARK area, Mid-Atlantic Ridge: sulfur geochemistry and reaction modeling[J]. Geochimica et Cosmochimica Acta, 2003, 67(4): 641-653. doi: 10.1016/S0016-7037(02)01142-0
    [113]
    Rees C E, Jenkins W J, Monster J. The sulphur isotopic composition of ocean water sulphate[J]. Geochimica et Cosmochimica Acta, 1978, 42(4): 377-381. doi: 10.1016/0016-7037(78)90268-5
    [114]
    Fouquet Y, Knott R, Cambon P, et al. Formation of large sulfide mineral deposits along fast spreading ridges. Example from off-axial deposits at 12°43′N on the east Pacific Rise[J]. Earth and Planetary Science Letters, 1996, 144(1-2): 147-162. doi: 10.1016/0012-821X(96)00142-2
    [115]
    Gamo T, Sakai H, Kim E S, et al. High alkalinity due to sulfate reduction in the CLAM hydrothermal field, Okinawa Trough[J]. Earth and Planetary Science Letters, 1991, 107(2): 328-338. doi: 10.1016/0012-821X(91)90080-2
    [116]
    Takai K, Nakagawa S, Nunoura T. Comparative investigation of microbial communities associated with hydrothermal activities in the Okinawa Trough[M]//Ishibashi J I, Okino K, Sunamura M. Subseafloor Biosphere Linked to Hydrothermal Systems: TAIGA Concept. Tokyo: Springer, 2015: 421-435.
    [117]
    Ueda A, Sakai H. Sulfur isotope study of Quaternary volcanic rocks from the Japanese islands arc[J]. Geochimica et Cosmochimica Acta, 1984, 48(9): 1837-1848. doi: 10.1016/0016-7037(84)90037-1
  • Related Articles

    [1]LAI Yijun, YANG Tao, LIANG Jinqiang, ZHANG Guangxue, SU Pibo, FANG Yunxin. Geochemistry of sediment pore water from Well GMGS2-09 in the southeastern Pearl River Mouth Basin, South China Sea: An indication of gas hydrate occurrence[J]. Marine Geology & Quaternary Geology, 2019, 39(3): 135-142. DOI: 10.16562/j.cnki.0256-1492.2018010201
    [2]WEI Jiangong, YANG Shengxiong, LIANG Jinqiang, LU Jingan, LIU Shengxuan, ZHANG Wei. Impact of seafloor drilling on methane seepage—enlightenments from natural gas hydrate drilling site GMGS2-16, northern South China Sea[J]. Marine Geology & Quaternary Geology, 2018, 38(5): 63-70. DOI: 10.16562/j.cnki.0256-1492.2018.05.006
    [3]WU Daidai, XIE Rui, YANG Rui, SUN Tiantian, YANG Fei, LIU Lihua, WU Nengyou. GEOCHEMISTRY OF THE SEDIMENTS IN SHENHU HYDRATE DRILLING AREA, NORTHERN SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2017, 37(6): 100-109. DOI: 10.16562/j.cnki.0256-1492.2017.06.011
    [4]DENG Yinan, FANG Yunxin, ZHANG Xin, CHEN Fang, WANG Haifeng, REN Jiangbo, LIU Chenhui, GUAN Yao. TRACE ELEMENT GEOCHEMISTRY OF SEDIMENTS IN QIONGDONGNAN AREA, THE SOUTH CHINA SEA, AND ITS IMPLICATIONS FOR GAS HYDRATES[J]. Marine Geology & Quaternary Geology, 2017, 37(5): 70-81. DOI: 10.16562/j.cnki.0256-1492.2017.05.007
    [5]FU Piaoer, ZHUANG Chang, LIU Jian, CHEN Daohua, ZHANG Xin, CHEN Sihai. RARE EARTH ELEMENTS GEOCHEMISTRY AND PROVENANCE OF THE SEDIMENTS FROM CORE XH-CL16 IN THE XISHA TROUGH, SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2015, 35(4): 63-71. DOI: 10.16562/j.cnki.0256-1492.2015.04.007
    [6]GAO Hongyan, ZHONG Guangfa, LIANG Jinqiang, GUO Yiqun. ESTIMATION OF GAS HYDRATE SATURATION WITH MODIFIED BIOT-GASSMANN THEORY: A CASE FROM NORTHERN SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2012, 32(4): 83-89. DOI: 10.3724/SP.J.1140.2012.04083
    [7]CHEN Fang, ZHOU Yang, SU Xin, LIU Guanghu, LU Hongfeng, WANG Jinlian. GAS HYDRATE SATURATION AND ITS RELATION WITH GRAIN SIZE OF THE HYDRATE-BEARING SEDIMENTS IN THE SHENHU AREA OF NORTHERN SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2011, 31(5): 95-100. DOI: 10.3724/SP.J.1140.2011.05095
    [8]CAI Guanqiang, QIU Yan, PENG Xuechao, ZHONG Hexian. THE GEOCHEMICAL CHARACTERISTICS OF TRACE ELEMENTS AND REES IN SURFICIAL SEDIMENTS OF THE SOUTHWESTERN SOUTH CHINA SEA AND THEIR IMPLICATIONS[J]. Marine Geology & Quaternary Geology, 2010, 30(5): 53-62. DOI: 10.3724/SP.J.1140.2010.05053
    [9]WU Daidai, WU Nengyou, FU Shaoying, LIANG Jinqiang, GUAN Hongxiang. GEOCHEMICAL CHARACTERISTICS OF SHALLOW SEDIMENTS IN THE GAS HYDRATE DISTRIBUTION AREA OF DONGSHA, THE NORTHERN SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2010, 30(5): 41-51. DOI: 10.3724/SP.J.1140.2010.05041
    [10]SHA Zhibin, GUO Yiqun, YANG Muzhuang, LIANG Jinqiang, WANG Lifeng. RELATION BETWEEN SEDIMENTATION AND GAS HYDRATE RESERVOIRS IN THE NORTHERN SLOPE OF SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2009, 29(5): 89-98. DOI: 10.3724/SP.J.1140.2009.05089
  • Cited by

    Periodical cited type(1)

    1. 张雅茹,张广璐,杨俊,赵彦彦,管红香,刘盛. 南海不同沉积环境黄铁矿的矿物学及原位微区地球化学研究. 古地理学报. 2024(06): 1498-1515+1543-1545 .

    Other cited types(0)

Catalog

    Article views (356) PDF downloads (57) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return