YAO Fulong,SU Zhanyi,XIA Qianqian,et al. Coevolution of late Holocene environment and ancient civilization in the middle of the Tianshan Corridor of the Silk Road[J]. Marine Geology & Quaternary Geology,2024,44(4):180-189. DOI: 10.16562/j.cnki.0256-1492.2023051901
Citation: YAO Fulong,SU Zhanyi,XIA Qianqian,et al. Coevolution of late Holocene environment and ancient civilization in the middle of the Tianshan Corridor of the Silk Road[J]. Marine Geology & Quaternary Geology,2024,44(4):180-189. DOI: 10.16562/j.cnki.0256-1492.2023051901

Coevolution of late Holocene environment and ancient civilization in the middle of the Tianshan Corridor of the Silk Road

More Information
  • Received Date: May 18, 2023
  • Revised Date: August 08, 2023
  • Accepted Date: August 08, 2023
  • Available Online: September 20, 2023
  • The relationship between paleoenvironment and ancient civilization evolution of the Tianshan Corridor is one of the important issues in the study of the community of life for human being and the nature of the Silk Road. Taking the peat sedimentary profile of the Bayanbulak basin as research material, using pollen as proxy index of paleoclimate, and combining the results of principal component analysis (PCA) and archaeological data, we revealed the vegetation succession history, environmental change, and human activity evolution in the middle of Tianshan Corridor during the late Holocene. Results show that: (1) during the Bronze Age (3877~2697 cal. aBP), the pollen was mainly composed of desert vegetation, with a positive score for PCA axis 1 and a negative score for PCA axis 2. The climate was characterized by cold and dry conditions. Human activities were concentrated in Kaidu and Kongque River basin. (2) From the early Iron Age to the Qin-Han Dynasties (2697~1756 cal. aBP), the pollen of desert vegetation decreased, Betula had a significant advantage, and the members of Family Poaceae increased. The PCA score was opposite to that of the Bronze Age, and the climate changed to warm and humid. Pollens of human-domesticated Poaceae species had occurred frequently, early cultivation emerged in desert edge oasis, and human activity centers moved westward to the area of Luntai County. (3) From the Three Kingdoms to Tang Dynasty (1756~850 cal. aBP), the percentage of the Cyperaceae, Poaceae, and Picea increased and reached the peak on the profile. The humidity increased and entered a cold-humid period. Good natural conditions favored the development of large oases at the edge of desert. The percentage of human planted crops had increased, and agricultural civilization further developed, providing stable material resources for human production and life. The focus of human activities had shifted to the Kuche River and Weigan River basins.

  • [1]
    Tan L C, Dong G H, An Z S, et al. Megadrought and cultural exchange along the proto-silk road[J]. Science Bulletin, 2021, 66(6): 603-611. doi: 10.1016/j.scib.2020.10.011
    [2]
    郭物. 新疆史前晚期社会的考古学研究[M]. 上海: 上海古籍出版社, 2012: 419-431

    GUO Wu. Archaeological Research on the Societies of the Late Prehistoric Xinjiang[M]. Shanghai: Shanghai Classics Publishing House, 2012: 419-431.]
    [3]
    Yao F L, Ma C M, Zhu C, et al. Holocene climate change in the western part of Taihu Lake region, East China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 485: 963-973. doi: 10.1016/j.palaeo.2017.08.022
    [4]
    Lan J H, Zhang J, Cheng P, et al. Late Holocene hydroclimatic variation in central Asia and its response to mid-latitude Westerlies and solar irradiance[J]. Quaternary Science Reviews, 2020, 238: 106330. doi: 10.1016/j.quascirev.2020.106330
    [5]
    姚付龙, 朱诚, 夏倩倩, 等. 高分辨率泥炭孢粉记录的天山北坡2400 cal. a BP以来植被演替及其对气候变化的响应[J]. 地层学杂志, 2020, 44(1): 104-112

    YAO Fulong, ZHU Cheng, XIA Qianqian, et al. Vegetation succession and its response to climate changes since 2400 cal yr B. P. by pollen record from a high resolution peat profile in the northern slope of Tianshan, China[J]. Journal of Stratigraphy, 2020, 44(1): 104-112.]
    [6]
    安成邦, 王伟, 刘依, 等. 新疆全新世环境变迁与史前文化交流[J]. 中国科学: 地球科学, 2020, 50(5): 677-687 doi: 10.1360/SSTe-2019-0049

    AN Chengbang, WANG Wei, LIU Yi, et al. The Holocene environmental change in Xinjiang and its impact on prehistoric cultural exchange[J]. Scientia Sinica Terrae, 2020, 50(5): 677-687.] doi: 10.1360/SSTe-2019-0049
    [7]
    熊嘉武. 新疆天山东部山地综合科学考察[M]. 北京: 中国林业出版社, 2015: 86-94

    XIONG Jiawu. Comprehensive Scientific Investigation of the Eastern Tianshan Mountains in Xinjiang[M]. Beijing: China Forestry Publishing House, 2015: 86-94.]
    [8]
    陈曦. 中国干旱区自然地理[M]. 北京: 科学出版社, 2010: 163-170

    CHEN Xi. Physical Geography of Arid Land in China[M]. Beijing: Science Press, 2010: 163-170.]
    [9]
    Huang X Z, Chen C Z, Jia W N, et al. Vegetation and climate history reconstructed from an alpine lake in central Tienshan Mountains since 8.5 kaBP[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 432: 36-48. doi: 10.1016/j.palaeo.2015.04.027
    [10]
    国家文物局. 中国文物地图集·新疆维吾尔自治区分册[M]. 北京: 文物出版社, 2012: 142-172

    State Administration Cultural Heritage. An Atlas of Chinese culture relics in Xinjiang Province[M]. Beijing: Cultural Relics Press, 2012:142-172.]
    [11]
    陶士臣, 安成邦, 陈发虎, 等. 新疆托勒库勒湖孢粉记录的4.2 kaBP气候事件[J]. 古生物学报, 2013, 52(2): 234-242

    TAO Shichen, AN Chengbang, CHEN Fahu, et al. An abrupt climatic event around 4.2 cal. kaBP documented by fossil pollen of Tuolekule lake in the eastern Xinjiang Uyghur autonomous region[J]. Acta Palaeontologica Sinica, 2013, 52(2): 234-242.]
    [12]
    Zhang Y, Kong Z C, Ni J, et al. Late Holocene palaeoenvironment change in central Tianshan of Xinjiang, northwest China[J]. Grana, 2007, 46(3): 197-213. doi: 10.1080/00173130701564748
    [13]
    延琪瑶, 王力, 张芸, 等. 新疆艾比湖小叶桦湿地3900年以来的植被及环境演变[J]. 应用生态学报, 2021, 32(2): 486-494 doi: 10.13287/j.1001-9332.202102.007

    YAN Qiyao, WANG Li, ZHANG Yun, et al. Changes in vegetation and environment in the Betula microphylla wetland of Ebinur Lake in Xinjiang, China since 3900 cal. aBP[J]. Chinese Journal of Applied Ecology, 2021, 32(2): 486-494.] doi: 10.13287/j.1001-9332.202102.007
    [14]
    Aichner B, Feakins S J, Lee J E, et al. High-resolution leaf wax carbon and hydrogen isotopic record of the Late Holocene paleoclimate in arid Central Asia[J]. Climate of the Past, 2015, 11(4): 619-633. doi: 10.5194/cp-11-619-2015
    [15]
    王馨, 冉敏, 杨运鹏, 等. 泥炭记录的帕米尔高原晚全新世温度变化研究[J]. 地理科学进展, 2022, 41(8): 1467-1477 doi: 10.18306/dlkxjz.2022.08.010

    WANG Xin, RAN Min, YANG Yunpeng, et al. Peat δ13Cα-cellulose-based Late Holocene temperature reconstruction in Pamir, China[J]. Progress in Geography, 2022, 41(8): 1467-1477.] doi: 10.18306/dlkxjz.2022.08.010
    [16]
    Liu X Q, Herzschuh U, Shen J, et al. Holocene environmental and climatic changes inferred from Wulungu Lake in northern Xinjiang, China[J]. Quaternary Research, 2008, 70(3): 412-415. doi: 10.1016/j.yqres.2008.06.005
    [17]
    Zhao K L, Li X Q, Dodson J, et al. Climatic variations over the last 4000 cal yr BP in the western margin of the Tarim Basin, Xinjiang, reconstructed from pollen data[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 321-322: 16-23. doi: 10.1016/j.palaeo.2012.01.012
    [18]
    陶士臣, 安成邦, 陈发虎, 等. 孢粉记录的新疆巴里坤湖16.7 cal. kaBP以来的植被与环境[J]. 科学通报, 2010, 55(11): 1026-1035

    TAO Shichen, AN Chengbang, CHEN Fahu, et al. Pollen-inferred vegetation and environmental changes since 16.7 kaBP at Balikun Lake, Xinjiang[J]. Chinese Science Bulletin, 2010, 55(22): 2449-2457.]
    [19]
    Wünnemann B, Mischke S, Chen F H. A Holocene sedimentary record from Bosten Lake, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 234(2-4): 223-238. doi: 10.1016/j.palaeo.2005.10.016
    [20]
    Zhang Y F, Mo D W, Hu K, et al. Holocene environmental changes around Xiaohe Cemetery and its effects on human occupation, Xinjiang, China[J]. Journal of Geographical Sciences, 2017, 27(6): 752-768. doi: 10.1007/s11442-017-1404-6
    [21]
    Faegri K, Kaland P E, Krzywinski K. Textbook of Pollen Analysis[M]. 4th ed. London: John Wiley & Sons Inc. , 1989.
    [22]
    席以珍, 宁建长. 中国干旱半干旱地区花粉形态研究[J]. 玉山生物学报, 1994, 11: 119-191

    XI Yizhen, NING Jianchang. Study on pollen morphology of plants from dry and semidry area in China[J]. Yushania, 1994, 11: 119-191.]
    [23]
    王伏雄, 钱南芬, 张玉龙, 等. 中国植物花粉形态[M]. 2版. 北京: 科学出版社, 1995: 1-461

    WANG Fuxiong, QIAN Nanfen, ZHANG Yulong, et al. Pollen Flora of China[M]. 2nd ed. Beijing: Science Press, 1995: 1-461.]
    [24]
    唐领余, 毛礼米, 舒军武, 等. 中国第四纪孢粉图鉴[M]. 北京: 科学出版社, 2016: 1-556

    TANG Lingyu, MAO Limi, SHU Junwu, et al. An Illustrated Handbook of Quaternary Pollen and Spores in China[M]. Beijing: Science Press, 2016: 1-556.]
    [25]
    张全超, 朱泓. 新疆古墓沟墓地人骨的稳定同位素分析: 早期罗布泊先民饮食结构初探[J]. 西域研究, 2011(3): 91-96, 142

    ZHANG Quanchao, ZHU Hong. Carbon and nitrogen stable isotope analysis of the human bones from the Gumugou Cemetery in Xinjiang: A preliminary exploration of the early population dietary in Lop Nur[J]. The Western Regions Studies, 2011(3): 91-96, 142.]
    [26]
    Wang W, Feng Z D, Ran M, et al. Holocene climate and vegetation changes inferred from pollen records of Lake Aibi, northern Xinjiang, China: A potential contribution to understanding of Holocene climate pattern in East-central Asia[J]. Quaternary International, 2013, 311: 54-62. doi: 10.1016/j.quaint.2013.07.034
    [27]
    Jiang Q F, Ji J F, Shen J, et al. Holocene vegetational and climatic variation in westerly-dominated areas of Central Asia inferred from the Sayram Lake in northern Xinjiang, China[J]. Science China Earth Sciences, 2013, 56(3): 339-353. doi: 10.1007/s11430-012-4550-9
    [28]
    Zhang X J, Jin L Y, Chen J, et al. Detecting the relationship between moisture changes in arid central Asia and East Asia during the Holocene by model-proxy comparison[J]. Quaternary Science Reviews, 2017, 176: 36-50. doi: 10.1016/j.quascirev.2017.09.012
    [29]
    郭超, 马玉贞, 李金凤. 中国及周边地区中晚全新世湿度演化及其可能机制[J]. 第四纪研究, 2022, 42(4): 1058-1077 doi: 10.11928/j.issn.1001-7410.2022.04.11

    GUO Chao, MA Yuzhen, LI Jinfeng. Mid-to Late Holocene moisture evolution in China and surroundings: Spatial patterns and possible mechanisms[J]. Quaternary Sciences, 2022, 42(4): 1058-1077.] doi: 10.11928/j.issn.1001-7410.2022.04.11
    [30]
    Yang Y P, Feng Z D, Ran M, et al. Holocene vegetation and hydrology variations and their associations with climate changes: a multi-proxy analysis of a sediment core from an alpine basin in the middle Tianshan Mountains[J]. Climate Dynamics, 2021, 56(11): 3835-3852.
    [31]
    陈发虎, 黄小忠, 杨美临, 等. 亚洲中部干旱区全新世气候变化的西风模式: 以新疆博斯腾湖记录为例[J]. 第四纪研究, 2006, 26(6): 881-887 doi: 10.3321/j.issn:1001-7410.2006.06.001

    CHEN Fahu, HUANG Xiaozhong, YANG Meilin, et al. Westerly dominated Holocene climate model in arid central Asia: case study on Bosten lake, Xinjiang, China[J]. Quaternary Sciences, 2006, 26(6): 881-887.] doi: 10.3321/j.issn:1001-7410.2006.06.001
    [32]
    Hong Y T, Hong B, Lin Q H, et al. Inverse phase oscillations between the East Asian and Indian Ocean Summer monsoons during the last 12000 years and paleo-El Niño[J]. Earth and Planetary Science Letters, 2005, 231(3-4): 337-346. doi: 10.1016/j.jpgl.2004.12.025
    [33]
    吴鹏飞, 刘征宇, 程军, 等. 中全新世以来东亚夏季降水时空演变不一致性的模拟研究[J]. 第四纪研究, 2013, 33(6): 1138-1147 doi: 10.3969/j.issn.1001-7410.2013.06.10

    WU Pengfei, LIU Zhengyu, CHENG Jun, et al. A simulation study on spatio-temporal asynchronism of East Asian summer’s precipitation variation since the mid-Holocene[J]. Quaternary Sciences, 2013, 33(6): 1138-1147.] doi: 10.3969/j.issn.1001-7410.2013.06.10
    [34]
    姚付龙, 马春梅, 朱诚, 等. 中国西天山北坡表土花粉与区域植被关系[J]. 古生物学报, 2021, 60(3): 471-482 doi: 10.19800/j.cnki.aps.2020064

    YAO Fulong, MA Chunmei, ZHU Cheng, et al. Relationship between surface pollen and vegetation on the northern slope of West Tianshan Mountains, China[J]. Acta Palaeontologica Sinica, 2021, 60(3): 471-482.] doi: 10.19800/j.cnki.aps.2020064
    [35]
    Feng S N, Liu X Q, Mao X. Vegetation dynamics in arid central Asia over the past two millennia linked to NAO variability and solar forcing[J]. Quaternary Science Reviews, 2023, 310: 108134. doi: 10.1016/j.quascirev.2023.108134
    [36]
    郑景云, 郝志新, 张学珍, 等. 中国东部过去2000年百年冷暖的旱涝格局[J]. 科学通报, 2014, 59(30): 2964-2971 doi: 10.1360/N972014-00393

    ZHENG Jingyun, HAO Zhixin, ZHANG Xuezhen, et al. Drought/flood spatial patterns in centennial cold and warm periods of the past 2000 years over eastern China[J]. Chinese Science Bulletin, 2014, 59(30): 2964-2971.] doi: 10.1360/N972014-00393
    [37]
    方修琦, 苏筠, 郑景云, 等. 历史气候变化对中国社会经济的影响[M]. 北京: 科学出版社, 2019: 34-38

    FANG Xiuqi, SU Jun, ZHENG Jingyun, et al. The Impacts of Climate on the Society and Economic of China During Historical Times[M]. Beijing: Science Press, 2019: 34-38.]
    [38]
    邵会秋. 新疆史前时期文化格局的演进及其与周邻文化的关系[M]. 北京: 科学出版社, 2018

    SHAO Huiqiu. The Development of the Pre-historic Cultures in Xinjiang and the Interaction with Neighbor Cultures[M]. Beijing: Science Press, 2018.]
    [39]
    Zhao K L, Li X Q, Zhou X Y, et al. Impact of agriculture on an oasis landscape during the Late Holocene: Palynological evidence from the Xintala site in Xinjiang, NW China[J]. Quaternary International, 2013, 311: 81-86. doi: 10.1016/j.quaint.2013.06.035
    [40]
    Tarasov P E, Demske D, Leipe C, et al. An 8500-year palynological record of vegetation, climate change and human activity in the Bosten Lake region of Northwest China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 516: 166-178. doi: 10.1016/j.palaeo.2018.11.038
    [41]
    张成君, 郑绵平, Prokopenko A, 等. 博斯腾湖碳酸盐和同位素组成的全新世古环境演变高分辨记录及与冰川活动的响应[J]. 地质学报, 2007, 81(12): 1658-1671 doi: 10.3321/j.issn:0001-5717.2007.12.007

    ZHANG Chengjun, ZHENG Mianping, Prokopenko A, et al. The palaeoenvironmental variation from the high-resolution record of the Holocene sediment carbonate and isotopic composition in Bosten Lake and responding to glacial activity[J]. Acta Geologica Sinica, 2007, 81(12): 1658-1671.] doi: 10.3321/j.issn:0001-5717.2007.12.007
    [42]
    李帅丽, 王继龙, 彭博, 等. 全新世以来福建宁德地区环境演变及人类活动的孢粉记录[J]. 海洋地质与第四纪地质, 2021, 41(3): 170-181 doi: 10.16562/j.cnki.0256-1492.2020102201

    LI Shuaili, WANG Jilong, PENG Bo, et al. Palynological evidence for palaeoenviromental change and human activity in Ningde of Fujian province during Holocene[J]. Marine Geology & Quaternary Geology, 2021, 41(3): 170-181.] doi: 10.16562/j.cnki.0256-1492.2020102201
    [43]
    段晓红, 张芸, 杨振京, 等. 新疆石河子蘑菇湖湿地4800年以来的环境演变[J]. 海洋地质与第四纪地质, 2018, 38(4): 203-211 doi: 10.16562/j.cnki.0256-1492.2018.04.018

    DUAN Xiaohong, ZHANG Yun, YANG Zhenjing, et al. Environmental evolution of the Moguhu Wetland of Shihezi City in Xinjiang since 4800 cal. aBP[J]. Marine Geology & Quaternary Geology, 2018, 38(4): 203-211.] doi: 10.16562/j.cnki.0256-1492.2018.04.018
  • Related Articles

    [1]WANG Qingtong, WANG Haigen, YAN Tongxiang, MAO Fangsong, CHEN Liang, WANG Mengyao. Characteristics of heavy minerals in rivers entering the sea from the south bank of Laizhou Bay and their provenance significance[J]. Marine Geology & Quaternary Geology, 2024, 44(6): 130-139. DOI: 10.16562/j.cnki.0256-1492.2024051001
    [2]DUAN Yunying, PEI Shaofeng, LIAO Mingwen, ZHAI Shikui, ZHANG Haibo, XU Gang, YUAN Hongming. Spatial distribution of heavy metals in the surface sediments of Laizhou Bay and their sources and pollution assessment[J]. Marine Geology & Quaternary Geology, 2021, 41(6): 67-81. DOI: 10.16562/j.cnki.0256-1492.2020112601
    [3]CHEN Xiaohui, MENG Xiangjun, LI Rihui. Sequence stratigraphy of the Late Quaternary in Liaodong Bay[J]. Marine Geology & Quaternary Geology, 2020, 40(2): 37-47. DOI: 10.16562/j.cnki.0256-1492.2019042301
    [4]SONG Xiaoshuai, YU Kaining, WU Zhen, WANG Songtao, KONG Xianghuai, JIA Yonggang. Engineering geological environment quality division of Laizhou Bay coastal zone[J]. Marine Geology & Quaternary Geology, 2019, 39(2): 79-89. DOI: 10.16562/j.cnki.0256-1492.2017082302
    [5]LIU Helin, CHEN Zhihua, GE Shulan, XIAO Wenshen, WANG Haozhuang, TANG Zheng, HUANG Yuanhui, ZHAO Renjie, WU Li. LATE QUATERNARY SEDIMENTARY RECORDS AND PALEOCEANOGRAPHIC IMPLICATIONS FROM THE CORE ON CONTINENTAL SLOPE OFF THE PRYDZ BAY, EAST ANTARCTIC[J]. Marine Geology & Quaternary Geology, 2015, 35(3): 209-217. DOI: 10.3724/SP.J.1140.2015.03209
    [6]WU Li, WANG Rujian, XIAO Wenshen, GE Shulan, CHEN Zhihua. HIGH RESOLUTION AGE MODEL OF LATE QUATERNARY MOUTH FAN AT PRYDZ TROUGH, EASTERN ANTARCTICA[J]. Marine Geology & Quaternary Geology, 2015, 35(3): 197-208. DOI: 10.3724/SP.J.1140.2015.03197
    [7]YAN Liwen, HUANG Haijun, LIU Yong, YANG Xiguang, LIU Xiao. SEDIMENT DISTRIBUTIONAL PATTERN AND GRAIN SIZE TRENDS IN THE COASTAL AREA OF QIMU ISLAND-DIAOLONG CAPE, LAIZHOU[J]. Marine Geology & Quaternary Geology, 2014, 34(1): 29-36. DOI: 10.3724/SP.J.1140.2014.01029
    [8]SUN Yunhua, ZHANG Anding, WANG Qing, YI Huapeng, LIU Yalong, TIAN Qing. INFLUENCES OF HUMAN ACTIVITIES ON THE COASTAL LANDFORM AND SEA WATER INVASION ALONG THE SOUTHERN LAIZHOU BAY DURING THE PAST 30 YEARS[J]. Marine Geology & Quaternary Geology, 2011, 31(5): 43-50. DOI: 10.3724/SP.J.1140.2011.05043
    [9]WANG Kunshan, SHI Xuefa, CAI Shanwu, QIAO Shuqing, JIANG Xiaoli. DISTRIBUTION AND PROVENANCE OF THE SURFACE SEDIMENTS OF THE YELLOW RIVER MOUTH AND LAIZHOU BAY DEDUCED FROM HEAVY MINERALS[J]. Marine Geology & Quaternary Geology, 2010, 30(6): 1-8. DOI: 10.3724/SP.J.1140.2010.06001
    [10]WU Shi-guo, YU Zhao-hua, ZOU Dong-bo, ZHANG Hai-ying. STRUCTURAL FEATURES AND CENOZOIC EVOLUTION OF THE TAN-LU FAULT ZONE IN THE LAIZHOU BAY,BOHAI SEA[J]. Marine Geology & Quaternary Geology, 2006, 26(6): 101-110.

Catalog

    Article views (241) PDF downloads (43) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return