Citation: | LUO Shuaijie,REN Jiangbo,HE Gaowen,et al. Geochemical characteristics of polymetallic nodules and adjacent sediments in the western Pacific Ocean: effects of sedimentary environments on nodules[J]. Marine Geology & Quaternary Geology,2023,43(3):119-131. DOI: 10.16562/j.cnki.0256-1492.2022122401 |
[1] |
Hein J R, Koschinsky A, Kuhn T. Deep-ocean polymetallic nodules as a resource for critical materials [J]. Nature Reviews Earth & Environment, 2020, 1(3): 158-169.
|
[2] |
Toro N, Robles P, Jeldres R I. Seabed mineral resources, an alternative for the future of renewable energy: A critical review [J]. Ore Geology Reviews, 2020, 126: 103699. doi: 10.1016/j.oregeorev.2020.103699
|
[3] |
Machida S, Fujinaga K, Ishii T, et al. Geology and geochemistry of ferromanganese nodules in the Japanese Exclusive Economic Zone around Minamitorishima Island [J]. Geochemical Journal, 2016, 50(6): 539-555. doi: 10.2343/geochemj.2.0419
|
[4] |
Ohta J, Yasukawa K, Nakamura K, et al. Geological features and resource potential of deep-sea mud highly enriched in rare-earth elements in the Central Pacific Basin and the Penrhyn Basin [J]. Ore Geology Reviews, 2021, 139: 104440. doi: 10.1016/j.oregeorev.2021.104440
|
[5] |
任江波, 邓义楠, 赖佩欣, 等. 太平洋调查区多金属结核的地球化学特征和成因[J]. 地学前缘, 2021, 28(2):412-425
REN Jiangbo, DENG Yi’nan, LAI Peixin, et al. Geochemical characteristics and genesis of the polymetallic nodules in the Pacific survey area [J]. Earth Science Frontiers, 2021, 28(2): 412-425.
|
[6] |
Hein J R, Koschinsky A. Deep-ocean ferromanganese crusts and nodules[M]//Holland H D, Turekian K K. Treatise on Geochemistry. 2nd ed. Oxford: Elsevier, 2014, 13: 273-291.
|
[7] |
Wang F L, He G W, Deng X G, et al. Fish teeth Sr isotope stratigraphy and Nd isotope variations: New insights on REY enrichments in deep-sea sediments in the Pacific [J]. Journal of Marine Science and Engineering, 2021, 9(12): 1379. doi: 10.3390/jmse9121379
|
[8] |
Dutkiewicz A, Judge A, Müller R D. Environmental predictors of deep-sea polymetallic nodule occurrence in the global ocean [J]. Geology, 2020, 48(3): 293-297. doi: 10.1130/G46836.1
|
[9] |
刘永刚, 杜德文, 李钟山, 等. 太平洋CC区及周边多金属结核分布及资源量预测[J]. 海洋科学进展, 2009, 27(3):342-350 doi: 10.3969/j.issn.1671-6647.2009.03.007
LIU Yonggang, DU Dewen, LI Zhongshan, et al. Estimation of polymetallic nodule distribution and resource quantity in the CC zone and its adjacent areas of the Pacific Ocean [J]. Advances in Marine Science, 2009, 27(3): 342-350. doi: 10.3969/j.issn.1671-6647.2009.03.007
|
[10] |
Alevizos E, Huvenne V A I, Schoening T, et al. Linkages between sediment thickness, geomorphology and Mn nodule occurrence: New evidence from AUV geophysical mapping in the Clarion-Clipperton Zone [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2022, 179: 103645. doi: 10.1016/j.dsr.2021.103645
|
[11] |
Kim J, Hyeong K, Lee H B, et al. Relationship between polymetallic nodule genesis and sediment distribution in the KODOS (Korea Deep Ocean Study) Area, Northeastern Pacific [J]. Ocean Science Journal, 2012, 47(3): 197-207. doi: 10.1007/s12601-012-0020-8
|
[12] |
Amparo C R M, Arturo C E, Marlene O C. Morphology and texture of polymetallic nodules and their association with sediments of the Mexican Pacific [J]. Marine Georesources & Geotechnology, 2013, 31(2): 154-175.
|
[13] |
Calvert S E, Price N B. Geochemical variation in ferromanganese nodules and associated sediments from the Pacific Ocean [J]. Marine Chemistry, 1977, 5(1): 43-74. doi: 10.1016/0304-4203(77)90014-7
|
[14] |
Pattan J N, Parthiban G. Geochemistry of ferromanganese nodule-sediment pairs from Central Indian Ocean Basin [J]. Journal of Asian Earth Sciences, 2011, 40(2): 569-580. doi: 10.1016/j.jseaes.2010.10.010
|
[15] |
Pattan J N, Rao C M, Migdisov A A, et al. Ferromanganese nodules and their associated sediments from the Central Indian Ocean Basin: Rare earth element geochemistry [J]. Marine Georesources & Geotechnology, 2001, 19(3): 155-165.
|
[16] |
Elderfield H, Hawkesworth C J, Greaves M J, et al. Rare earth element geochemistry of oceanic ferromanganese nodules and associated sediments [J]. Geochimica et Cosmochimica Acta, 1981, 45(4): 513-528. doi: 10.1016/0016-7037(81)90184-8
|
[17] |
Ren J B, He G W, Deng X G, et al. Metallogenesis of Co-rich ferromanganese nodules in the northwestern Pacific: Selective enrichment of metallic elements from seawater [J]. Ore Geology Reviews, 2022, 143: 104778. doi: 10.1016/j.oregeorev.2022.104778
|
[18] |
Deng X Z, He G W, Xu Y, et al. Oxic bottom water dominates polymetallic nodule formation around the Caiwei Guyot, northwestern Pacific Ocean [J]. Ore Geology Reviews, 2022, 143: 104776. doi: 10.1016/j.oregeorev.2022.104776
|
[19] |
Li D F, Fu Y, Sun X M, et al. Critical metal enrichment mechanism of deep-sea hydrogenetic nodules: Insights from mineralogy and element mobility [J]. Ore Geology Reviews, 2020, 118: 103371. doi: 10.1016/j.oregeorev.2020.103371
|
[20] |
Reykhard L Y, Shulga N A. Fe-Mn nodule morphotypes from the NE Clarion-Clipperton Fracture Zone, Pacific Ocean: Comparison of mineralogy, geochemistry and genesis [J]. Ore Geology Reviews, 2019, 110: 102933. doi: 10.1016/j.oregeorev.2019.102933
|
[21] |
Ren J B, Liu Y, Wang F L, et al. Mechanism and influencing factors of REY enrichment in deep-sea sediments [J]. Minerals, 2021, 11(2): 196. doi: 10.3390/min11020196
|
[22] |
Yu M, Shi X F, Huang M, et al. The transfer of rare earth elements during early diagenesis in REY-rich sediments: An example from the Central Indian Ocean Basin [J]. Ore Geology Reviews, 2021, 136: 104269. doi: 10.1016/j.oregeorev.2021.104269
|
[23] |
Zhou T C, Shi X F, Huang M, et al. Genesis of REY-rich deep-sea sediments in the Tiki Basin, eastern South Pacific Ocean: Evidence from geochemistry, mineralogy and isotope systematics [J]. Ore Geology Reviews, 2021, 138: 104330. doi: 10.1016/j.oregeorev.2021.104330
|
[24] |
Konter J G, Hanan B B, Blichert-Toft J, et al. One hundred million years of mantle geochemical history suggest the retiring of mantle plumes is premature [J]. Earth and Planetary Science Letters, 2008, 275(3-4): 285-295. doi: 10.1016/j.jpgl.2008.08.023
|
[25] |
Karl S M, Wandless G A, Karpoff A M. Sedimentological and geochemical characteristics of Leg 129 siliceous deposits[C]//Proceedings of the Ocean Drilling Program, Scientific Results. College Station, Texas: Ocean Drilling Program, 1992, 129: 31-79.
|
[26] |
Müller R D, Sdrolias M, Gaina C, et al. Age, spreading rates, and spreading asymmetry of the world's ocean crust [J]. Geochemistry, Geophysics, Geosystems, 2008, 9(4): Q04006.
|
[27] |
Deng X G, Yi L, Paterson G A, et al. Magnetostratigraphic evidence for deep-sea erosion on the Pacific Plate, south of Mariana Trench, since the Middle Pleistocene: potential constraints for Antarctic bottom water circulation [J]. International Geology Review, 2016, 58(1): 49-57. doi: 10.1080/00206814.2015.1055597
|
[28] |
Jiang X D, Gong J L, Ren J B, et al. An interdependent relationship between microbial ecosystems and ferromanganese nodules from the Western Pacific Ocean [J]. Sedimentary Geology, 2020, 398: 105588. doi: 10.1016/j.sedgeo.2019.105588
|
[29] |
何高文, 杨永, 韦振权, 等. 西太平洋中国富钴结壳勘探合同区矿床地质[J]. 中国有色金属学报, 2021, 31(10):2649-2664
HE Gaowen, YANG Yong, WEI Zhenquan, et al. Mineral deposit characteristics of cobalt-rich Fe-Mn crusts in COMRA contract area, Western Pacific Ocean [J]. The Chinese Journal of Nonferrous Metals, 2021, 31(10): 2649-2664.
|
[30] |
Yi L, Wang H F, Deng X G, et al. Geochronology and geochemical properties of Mid-Pleistocene sediments on the Caiwei Guyot in the Northwest Pacific imply a surface-to-deep linkage [J]. Journal of Marine Science and Engineering, 2021, 9(3): 253. doi: 10.3390/jmse9030253
|
[31] |
Anderson D L. Chemical composition of the mantle [J]. Journal of Geophysical Research:Solid Earth, 1983, 88(S01): B41-B52. doi: 10.1029/JB088iS01p00B41
|
[32] |
Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution[M]. Oxford: Blackwell Scientific Publications, 1985.
|
[33] |
Josso P, Pelleter E, Pourret O, et al. A new discrimination scheme for oceanic ferromanganese deposits using high field strength and rare earth elements [J]. Ore Geology Reviews, 2017, 87: 3-15. doi: 10.1016/j.oregeorev.2016.09.003
|
[34] |
Schmidt K, Bau M, Hein J R, et al. Fractionation of the geochemical twins Zr-Hf and Nb-Ta during scavenging from seawater by hydrogenetic ferromanganese crusts [J]. Geochimica et Cosmochimica Acta, 2014, 140: 468-487. doi: 10.1016/j.gca.2014.05.036
|
[35] |
Bau M, Schmidt K, Koschinsky A, et al. Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium [J]. Chemical Geology, 2014, 381: 1-9. doi: 10.1016/j.chemgeo.2014.05.004
|
[36] |
Menendez A, James R H, Lichtschlag A, et al. Controls on the chemical composition of ferromanganese nodules in the Clarion-Clipperton Fracture Zone, eastern equatorial Pacific [J]. Marine Geology, 2019, 409: 1-14. doi: 10.1016/j.margeo.2018.12.004
|
[37] |
邓贤泽, 任江波, 邓希光, 等. 富钴结壳关键元素赋存状态与富集机理[J]. 地质通报, 2021, 40(2-3):376-384
DENG Xianze, REN Jiangbo, DENG Xiguang, et al. Cobalt-rich crust obtains high contents of key elements from seawater: element absorption and distribution [J]. Geological Bulletin of China, 2021, 40(2-3): 376-384.
|
[38] |
Hein J R, Mizell K, Koschinsky A, et al. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based resources [J]. Ore Geology Reviews, 2013, 51: 1-14. doi: 10.1016/j.oregeorev.2012.12.001
|
[39] |
任江波, 何高文, 朱克超, 等. 富稀土磷酸盐及其在深海成矿作用中的贡献[J]. 地质学报, 2017, 91(6):1312-1325
REN Jiangbo, HE Gaowen, ZHU Kechao, et al. REY-rich Phosphate and Its Effects on the Deep-Sea Mud Mineralization [J]. Acta Geologica Sinica, 2017, 91(6): 1312-1325.
|
[40] |
Halbach P, Scherhag C, Hebisch U, et al. Geochemical and mineralogical control of different genetic types of deep-sea nodules from the Pacific Ocean [J]. Mineralium Deposita, 1981, 16(1): 59-84.
|
[41] |
Kuhn T, Wegorzewski A, Rühlemann C, et al. Composition, formation, and occurrence of polymetallic nodules[M]//Kuhn T, Wegorzewski A, Rühlemann C, et al. Deep-Sea Mining: Resource Potential, Technical and Environmental Considerations. Cham: Springer International Publishing, 2017: 23-63.
|
[42] |
何高文, 孙晓明, 薛婷. 太平洋多金属结核和富钴结壳地质地球化学特征与成矿机制对比[M]. 北京: 地质出版社, 2011
HE Gaowen, SUN Xiaoming, XUE Ting. Geological and Geochemical Characteristics and Metallogenic Mechanism of Polymetallic Nodules and Cobalt Rich Crusts in the Pacific Ocean[M]. Beijing: Geology Press, 2011.
|
[43] |
石学法, 符亚洲, 李兵, 等. 我国深海矿产研究: 进展与发现(2011-2020)[J]. 矿物岩石地球化学通报, 2021, 40(2):305-318
SHI Xuefa, FU Yazhou, LI Bing, et al. Research on deep-sea minerals in China: Progress and discovery (2011-2020) [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(2): 305-318.
|
[44] |
任江波, 姚会强, 朱克超, 等. 稀土元素及钇在东太平洋CC区深海泥中的富集特征与机制[J]. 地学前缘, 2015, 22(4):200-211
REN Jiangbo, YAO Huiqiang, ZHU Kechao, et al. Enrichment mechanism of rare earth elements and yttrium in deep-sea mud of Clarion-Clipperton Region [J]. Earth Science Frontiers, 2015, 22(4): 200-211.
|
[45] |
王汾连, 何高文, 王海峰, 等. 中太平洋深海沉积物中元素组合特征及地质意义[J]. 海洋地质前沿, 2016, 32(7):11-18
WANG Fenlian, HE Gaowen, WANG Haifeng, et al. The element association characteristics and geological significance of deep-sea sediments in the Central Pacific Ocean [J]. Marine Geology Frontiers, 2016, 32(7): 11-18.
|
[46] |
Vallee B L, Auld D S. Zinc: biological functions and coordination motifs [J]. Accounts of Chemical Research, 1993, 26(10): 543-551. doi: 10.1021/ar00034a005
|
[47] |
Smrzka D, Zwicker J, Bach W, et al. The behavior of trace elements in seawater, sedimentary pore water, and their incorporation into carbonate minerals: a review [J]. Facies, 2019, 65(4): 41. doi: 10.1007/s10347-019-0581-4
|
[48] |
Heller C, Kuhn T, Versteegh G J M, et al. The geochemical behavior of metals during early diagenetic alteration of buried manganese nodules [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2018, 142: 16-33. doi: 10.1016/j.dsr.2018.09.008
|
[49] |
Jiang X J, Lin X H, Yao D, et al. Enrichment mechanisms of rare earth elements in marine hydrogenic ferromanganese crusts [J]. Science China Earth Sciences, 2011, 54(2): 197-203. doi: 10.1007/s11430-010-4070-4
|
[50] |
Bau M, Koschinsky A. Oxidative scavenging of cerium on hydrous Fe oxide: Evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts [J]. Geochemical Journal, 2009, 43(1): 37-47. doi: 10.2343/geochemj.1.0005
|
[51] |
Takebe M. Carriers of rare earth elements in pacific deep-sea sediments [J]. The Journal of Geology, 2005, 113(2): 201-215. doi: 10.1086/427669
|
[52] |
Loges A, Wagner T, Barth M, et al. Negative Ce anomalies in Mn oxides: The role of Ce4+ mobility during water–mineral interaction [J]. Geochimica et Cosmochimica Acta, 2012, 86: 296-317. doi: 10.1016/j.gca.2012.03.017
|
[53] |
German C R, Elderfield H. Application of the Ce anomaly as a paleoredox indicator: The ground rules [J]. Paleoceanography, 1990, 5(5): 823-833. doi: 10.1029/PA005i005p00823
|
[54] |
Schijf J, Christenson E A, Byrne R H. YREE scavenging in seawater: A new look at an old model [J]. Marine Chemistry, 2015, 177: 460-471. doi: 10.1016/j.marchem.2015.06.010
|
[55] |
任江波, 邓希光, 邓义楠, 等. 中国富钴结壳合同区海水的稀土元素特征及其意义[J]. 地球科学, 2019, 44(10):3529-3540
REN Jiangbo, DENG Xiguang, DENG Yi’nan, et al. Rare earth element characteristics and its geological implications for seawater from cobalt-rich ferromanganese crust exploration contract area of China [J]. Earth Science, 2019, 44(10): 3529-3540.
|
[56] |
任江波, 何高文, 姚会强, 等. 西太平洋海山富钴结壳的稀土和铂族元素特征及其意义[J]. 地球科学, 2016, 41(10):1745-1757
REN Jiangbo, HE Gaowen, YAO Huiqiang, et al. Geochemistry and significance of REE and PGE of the cobalt-rich crusts from West Pacific ocean seamounts [J]. Earth Science, 2016, 41(10): 1745-1757.
|
[57] |
Hein J R, Koschinsky A, Mikesell M, et al. Marine phosphorites as potential resources for heavy rare earth elements and yttrium [J]. Minerals, 2016, 6(3): 88. doi: 10.3390/min6030088
|
[58] |
Li D F, Fu Y, Liu Q F, et al. High-resolution LA-ICP-MS mapping of deep-sea polymetallic micronodules and its implications on element mobility [J]. Gondwana Research, 2020, 81: 461-474. doi: 10.1016/j.gr.2019.12.009
|
[59] |
Zhou T C, Shi X F, Huang M, et al. The influence of hydrothermal fluids on the REY-rich deep-sea sediments in the Yupanqui Basin, Eastern South Pacific Ocean: Constraints from bulk sediment geochemistry and mineralogical characteristics [J]. Minerals, 2020, 10(12): 1141. doi: 10.3390/min10121141
|
[60] |
Liao J L, Sun X M, Wu Z W, et al. Fe-Mn (oxyhydr)oxides as an indicator of REY enrichment in deep-sea sediments from the central North Pacific [J]. Ore Geology Reviews, 2019, 112: 103044. doi: 10.1016/j.oregeorev.2019.103044
|
[61] |
Bi D J, Shi X F, Huang M, et al. Geochemical and mineralogical characteristics of deep-sea sediments from the western North Pacific Ocean: Constraints on the enrichment processes of rare earth elements [J]. Ore Geology Reviews, 2021, 138: 104318. doi: 10.1016/j.oregeorev.2021.104318
|
[62] |
石学法, 毕东杰, 黄牧, 等. 深海稀土分布规律与成矿作用[J]. 地质通报, 2021, 40(2-3):195-208
SHI Xuefa, BI Dongjie, HUANG Mu, et al. Distribution and metallogenesis of deep-sea rare earth elements [J]. Geological Bulletin of China, 2021, 40(2-3): 195-208.
|
[63] |
Deng Y N, Ren J B, Guo Q J, et al. Rare earth element geochemistry characteristics of seawater and porewater from deep sea in western Pacific [J]. Scientific Reports, 2017, 7(1): 16539. doi: 10.1038/s41598-017-16379-1
|
[64] |
Verlaan P A, Cronan D S. Origin and variability of resource-grade marine ferromanganese nodules and crusts in the Pacific Ocean: A review of biogeochemical and physical controls [J]. Geochemistry, 2022, 82(1): 125741. doi: 10.1016/j.chemer.2021.125741
|
[65] |
Haley B A, Klinkhammer G P, Mcmanus J. Rare earth elements in pore waters of marine sediments [J]. Geochimica et Cosmochimica Acta, 2004, 68(6): 1265-1279. doi: 10.1016/j.gca.2003.09.012
|
[66] |
王海峰, 王汾连, 朱克超, 等. 东太平洋CC区WPC1101柱样沉积环境及埋藏多金属结核成因[J]. 海洋地质前沿, 2016, 32(11):1-11
WANG Haifeng, WANG Fenlian, ZHU Kechao, et al. Depositional environment and origin of buried pollymetallic nodules: an interpretation of piston core WPC1101 from CC zone of Eastern Pacific [J]. Marine Geology Frontiers, 2016, 32(11): 1-11.
|
[67] |
陈宗团, 许东禹, 刘季花, 等. 东北太平洋中新世古海洋环境与事件[J]. 海洋学报, 1994, 16(6):80-91
CHEN Zongtuan, XU Dongyu, LIU Jihua, et al. Miocene paleomarine environment and events in the Northeast Pacific [J]. Acta Oceanologica Sinica, 1994, 16(6): 80-91.
|
[1] | WANG Youkun, ZHOU Zhiyuan, LIN Jian, ZHANG Fan. Subduction plate boundary thrust system and dynamic characteristics in the Western Pacific[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 173-180. DOI: 10.16562/j.cnki.0256-1492.2023082502 |
[2] | YAN Yu, JIANG Fuqing, ZENG Zhigang. Research progress of tracing sediment sources in the Western Pacific Warm Pool[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 148-159. DOI: 10.16562/j.cnki.0256-1492.2023071402 |
[3] | ZENG Zhigang, ZHANG Yuxiang, CHEN Zuxing, LI Xiaohui, QI Haiyan, WANG Xiaoyuan, CHEN Shuai, YIN Xuebo. Seafloor hydrothermal system and its magmatic setting in the western Pacific back-arc basins[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 12-24. DOI: 10.16562/j.cnki.0256-1492.2021070101 |
[4] | Zhang Guowei, Li Sanzhong. West Pacific and North Indian Oceans and Their Ocean-continent Connection Zones: Evolution and Debates[J]. Marine Geology & Quaternary Geology, 2017, 37(4): 1-17. DOI: 10.16562/j.cnki.2056-1492.2017.04.001 |
[5] | SHI Jinhua, ZHONG Yuan, CHEN Lihui, ZHANG Guoliang. ISOTOPIC CHARACTERISTICS OF INTRAPLATE BASALTS IN WEST PACIFIC[J]. Marine Geology & Quaternary Geology, 2017, 37(1): 15-22. DOI: 10.16562/j.cnki.0256-1492.2017.01.002 |
[6] | SONG Yongdong, MA Xiaochuan, ZHANG Guangxu, LIU Xiansan, LUAN Zhendong, DONG Dongdong, YAN Jun. HEAT FLOW IN-SITU MEASUREMENT AT YAP TRENCH OF THE WESTERN PACIFIC[J]. Marine Geology & Quaternary Geology, 2016, 36(4): 51-56. DOI: 10.16562/j.cnki.0256-1492.2016.04.006 |
[7] | LONG Xiaojun, ZHAO Guangtao, YANG Shengxiong, LENG Chuanxu, QI Qi, CUI Shanggong, HAO Yanan. CHEMICAL COMPOSITION AND PALEOENVIRONMENTAL RECORD OF THE CO-RICH CRUST FROM MAGELLAN SEAMOUNT IN WESTERN PACIFIC[J]. Marine Geology & Quaternary Geology, 2015, 35(5): 47-55. DOI: 10.16562/j.cnki.0256-1492.2015.05.006 |
[8] | YUAN Xuecheng. OCEAN-CONTINENT COLLISION IN THE WEST PACIFIC[J]. Marine Geology & Quaternary Geology, 2014, 34(6): 41-48. DOI: 10.3724/SP.J.1140.2014.06041 |
[9] | CHEN Shuangxi, LI Tiegang, NAN Qingyun, TANG zheng, QIU Xiaohua. RECONSTRUCTION OF SEA SURFACE TEMPERATURE USING PLANKTONIC FORAMINIFERA FROM CORE MD06-3054 IN THE NORTHWESTERN PACIFIC[J]. Marine Geology & Quaternary Geology, 2011, 31(3): 61-68. DOI: 10.3724/SP.J.1140.2011.03061 |
[10] | ZHAI Bin, LI Tiegang. DISTRIBUTION AND ECOLOGY OF DIATOM MAT DEPOSITS IN THE WEST LOW-LATITUDE PACIFIC OCEAN DURING THE LAST GLACIAL PERIOD[J]. Marine Geology & Quaternary Geology, 2009, 29(4): 65-70. DOI: 10.3724/SP.J.1140.2009.04065 |