Citation: | LIU Hongling,TIAN Liyan,WU Tao,et al. Behavior of Li isotopes during the alteration of oceanic crust: A review[J]. Marine Geology & Quaternary Geology,2023,43(3):93-106. DOI: 10.16562/j.cnki.0256-1492.2022112001 |
[1] |
Chan L H, Leeman W P, You C F. Lithium isotopic composition of Central American volcanic arc lavas: implications for modification of subarc mantle by slab-derived fluids: correction [J]. Chemical Geology, 2002, 182(2-4): 293-300. doi: 10.1016/S0009-2541(01)00298-4
|
[2] |
Alt J C, Laverne C, Coggon R M, et al. Subsurface structure of a submarine hydrothermal system in ocean crust formed at the East Pacific Rise, ODP/IODP Site 1256 [J]. Geochemistry, Geophysics, Geosystems, 2010, 11(10): Q10010.
|
[3] |
Zhang G L, Smith-Duque C. Seafloor basalt alteration and chemical change in the ultra thinly sedimented South Pacific [J]. Geochemistry, Geophysics, Geosystems, 2014, 15(7): 3066-3080. doi: 10.1002/2013GC005141
|
[4] |
Thompson G. Metamorphic and hydrothermal processes: basalt-seawater interactions[M]//Floyd P A. Oceanic Basalts. Dordrecht: Springer, 1991: 148-173.
|
[5] |
Bach W, Alt J C, Niu Y L, et al. The geochemical consequences of late-stage low-grade alteration of lower ocean crust at the SW Indian Ridge: results from ODP Hole 735B (Leg176) [J]. Geochimica et Cosmochimica Acta, 2001, 65(19): 3267-3287. doi: 10.1016/S0016-7037(01)00677-9
|
[6] |
Rudnick R L, Nakamura E. Preface to “Lithium isotope geochemistry” [J]. Chemical Geology, 2004, 212(1-2): 1-4. doi: 10.1016/j.chemgeo.2004.08.001
|
[7] |
Hathorne E C, James R H. Temporal record of lithium in seawater: a tracer for silicate weathering? [J]. Earth and Planetary Science Letters, 2006, 246(3-4): 393-406. doi: 10.1016/j.jpgl.2006.04.020
|
[8] |
Misra S, Froelich P N. Lithium isotope history of Cenozoic seawater: changes in silicate weathering and reverse weathering [J]. Science, 2012, 335(6070): 818-823. doi: 10.1126/science.1214697
|
[9] |
Tomascak P B, Magna T, Dohmen R. Advances in Lithium Isotope Geochemistry[M]. Cham: Springer, 2016.
|
[10] |
Elliott T, Jeffcoate A, Bouman C. The terrestrial Li isotope cycle: light-weight constraints on mantle convection [J]. Earth and Planetary Science Letters, 2004, 220(3-4): 231-245. doi: 10.1016/S0012-821X(04)00096-2
|
[11] |
Seitz H M, Brey G P, Lahaye Y, et al. Lithium isotopic signatures of peridotite xenoliths and isotopic fractionation at high temperature between olivine and pyroxenes [J]. Chemical Geology, 2004, 212(1-2): 163-177. doi: 10.1016/j.chemgeo.2004.08.009
|
[12] |
Pistiner J S, Henderson G M. Lithium-isotope fractionation during continental weathering processes [J]. Earth and Planetary Science Letters, 2003, 214(1-2): 327-339. doi: 10.1016/S0012-821X(03)00348-0
|
[13] |
Millot R, Scaillet B, Sanjuan B. Lithium isotopes in island arc geothermal systems: Guadeloupe, Martinique (French West Indies) and experimental approach [J]. Geochimica et Cosmochimica Acta, 2010, 74(6): 1852-1871. doi: 10.1016/j.gca.2009.12.007
|
[14] |
Liu J Y, Liu Q Y, Meng Q Q, et al. The distribution of lithium in nature and the application of lithium isotope tracing [J]. IOP Conference Series:Earth and Environmental Science, 2020, 600: 012018. doi: 10.1088/1755-1315/600/1/012018
|
[15] |
汤艳杰, 张宏福, 英基丰. 锂同位素分馏机制讨论[J]. 地球科学-中国地质大学学报, 2009, 34(1):43-55 doi: 10.3799/dqkx.2009.006
TANG Yanjie, ZHANG Hongfu, YING Jifeng. Discussion on fractionation mechanism of lithium isotopes [J]. Earth Science-Journal of China University of Geosciences, 2009, 34(1): 43-55. doi: 10.3799/dqkx.2009.006
|
[16] |
Brant C, Coogan L A, Gillis K M, et al. Lithium and Li-isotopes in young altered upper oceanic crust from the East Pacific Rise [J]. Geochimica et Cosmochimica Acta, 2012, 96: 272-293. doi: 10.1016/j.gca.2012.08.025
|
[17] |
Seyedali M, Coogan L A, Gillis K M. Li-isotope exchange during low-temperature alteration of the upper oceanic crust at DSDP Sites 417 and 418 [J]. Geochimica et Cosmochimica Acta, 2021, 294: 160-173. doi: 10.1016/j.gca.2020.11.023
|
[18] |
Gao Y, Vils F, Cooper K M, et al. Downhole variation of lithium and oxygen isotopic compositions of oceanic crust at East Pacific Rise, ODP Site 1256 [J]. Geochemistry, Geophysics, Geosystems, 2012, 13(10): Q10001.
|
[19] |
Decitre S, Deloule E, Reisberg L, et al. Behavior of Li and its isotopes during serpentinization of oceanic peridotites [J]. Geochemistry, Geophysics, Geosystems, 2002, 3(1): 1-20.
|
[20] |
Lee C T A, Oka M, Luffi P, et al. Internal distribution of Li and B in serpentinites from the Feather River Ophiolite, California, based on laser ablation inductively coupled plasma mass spectrometry [J]. Geochemistry, Geophysics, Geosystems, 2008, 9(12): Q12011.
|
[21] |
Vils F, Pelletier L, Kalt A, et al. The Lithium, Boron and Beryllium content of serpentinized peridotites from ODP Leg 209 (Sites 1272A and 1274A): Implications for lithium and boron budgets of oceanic lithosphere [J]. Geochimica et Cosmochimica Acta, 2008, 72(22): 5475-5504. doi: 10.1016/j.gca.2008.08.005
|
[22] |
Vils F, Tonarini S, Kalt A, et al. Boron, lithium and strontium isotopes as tracers of seawater–serpentinite interaction at Mid-Atlantic ridge, ODP Leg 209 [J]. Earth and Planetary Science Letters, 2009, 286(3-4): 414-425. doi: 10.1016/j.jpgl.2009.07.005
|
[23] |
Sahoo S K, Masuda A. Precise determination of lithium isotopic composition by thermal ionization mass spectrometry in natural samples such as seawater [J]. Analytica Chimica Acta, 1998, 370(2-3): 215-220. doi: 10.1016/S0003-2670(98)00307-9
|
[24] |
Moriguti T, Nakamura E. High-yield lithium separation and the precise isotopic analysis for natural rock and aqueous samples [J]. Chemical Geology, 1998, 145(1-2): 91-104. doi: 10.1016/S0009-2541(97)00163-0
|
[25] |
李献华, 刘宇, 汤艳杰, 等. 离子探针Li同位素微区原位分析技术与应用[J]. 地学前缘, 2015, 22(5):160-170 doi: 10.13745/j.esf.2015.05.013
LI Xianhua, LIU Yu, TANG Yanjie, et al. In situ Li isotopic microanalysis using SIMS and its applications [J]. Earth Science Frontiers, 2015, 22(5): 160-170. doi: 10.13745/j.esf.2015.05.013
|
[26] |
Tomascak P B, Tera F, Helz R T, et al. The absence of lithium isotope fractionation during basalt differentiation: new measurements by multicollector sector ICP-MS [J]. Geochimica et Cosmochimica Acta, 1999, 63(6): 907-910. doi: 10.1016/S0016-7037(98)00318-4
|
[27] |
Magna T, Wiechert U H, Halliday A N. Low-blank isotope ratio measurement of small samples of lithium using multiple-collector ICPMS [J]. International Journal of Mass Spectrometry, 2004, 239(1): 67-76. doi: 10.1016/j.ijms.2004.09.008
|
[28] |
Millot R, Guerrot C, Vigier N. Accurate and high-precision measurement of lithium isotopes in two reference materials by MC-ICP-MS [J]. Geostandards and Geoanalytical Research, 2004, 28(1): 153-159. doi: 10.1111/j.1751-908X.2004.tb01052.x
|
[29] |
Le Roux P J. Lithium isotope analysis of natural and synthetic glass by laser ablation MC-ICP-MS [J]. Journal of Analytical Atomic Spectrometry, 2010, 25(7): 1033-1038. doi: 10.1039/b920341a
|
[30] |
Xu R, Liu Y S, Tong X R, et al. In-situ trace elements and Li and Sr isotopes in peridotite xenoliths from Kuandian, North China Craton: insights into Pacific slab subduction-related mantle modification [J]. Chemical Geology, 2013, 354: 107-123. doi: 10.1016/j.chemgeo.2013.06.022
|
[31] |
Li X H, Li Q L, Liu Y, et al. Further characterization of M257 zircon standard: a working reference for SIMS analysis of Li isotopes [J]. Journal of Analytical Atomic Spectrometry, 2011, 26(2): 352-358. doi: 10.1039/C0JA00073F
|
[32] |
Bell D R, Hervig R L, Buseck P R, et al. Lithium isotope analysis of olivine by SIMS: calibration of a matrix effect and application to magmatic phenocrysts [J]. Chemical Geology, 2009, 258(1-2): 5-16. doi: 10.1016/j.chemgeo.2008.10.008
|
[33] |
Flesch G D, Anderson A J Jr, Svee H J. A secondary isotopic standard for 6Li/7Li determinations [J]. International Journal of Mass Spectrometry and Ion Physics, 1973, 12(3): 265-272. doi: 10.1016/0020-7381(73)80043-9
|
[34] |
Kasemann S A, Jeffcoate A B, Elliott T. Lithium isotope composition of basalt glass reference material [J]. Analytical Chemistry, 2005, 77(16): 5251-5257. doi: 10.1021/ac048178h
|
[35] |
Michiels E, De Bièvre P. Absolute isotopic composition and the atomic weight of a natural sample of lithium [J]. International Journal of Mass Spectrometry and Ion Physics, 1983, 49(2): 265-274. doi: 10.1016/0020-7381(83)85068-2
|
[36] |
Tang Y J, Zhang H F, Ying J F. A brief review of isotopically light Li–a feature of the enriched mantle? [J]. International Geology Review, 2010, 52(9): 964-976. doi: 10.1080/00206810903211385
|
[37] |
Chan L H, Edmond J M, Thompson G, et al. Lithium isotopic composition of submarine basalts: implications for the lithium cycle in the oceans [J]. Earth and Planetary Science Letters, 1992, 108(1-3): 151-160. doi: 10.1016/0012-821X(92)90067-6
|
[38] |
Tang Y J, Zhang H F, Ying J F. Review of the lithium isotope system as a geochemical tracer [J]. International Geology Review, 2007, 49(4): 374-388. doi: 10.2747/0020-6814.49.4.374
|
[39] |
Parkinson I J, Hammond S J, James R H, et al. High-temperature lithium isotope fractionation: insights from lithium isotope diffusion in magmatic systems [J]. Earth and Planetary Science Letters, 2007, 257(3-4): 609-621. doi: 10.1016/j.jpgl.2007.03.023
|
[40] |
You C F, Chan L H. Precise determination of lithium isotopic composition in low concentration natural samples [J]. Geochimica et Cosmochimica Acta, 1996, 60(5): 909-915. doi: 10.1016/0016-7037(96)00003-8
|
[41] |
Tomascak P B. Developments in the understanding and application of lithium isotopes in the earth and planetary sciences [J]. Reviews in Mineralogy and Geochemistry, 2004, 55(1): 153-195. doi: 10.2138/gsrmg.55.1.153
|
[42] |
Teng F Z, McDonough W F, Rudnick R L, et al. Lithium isotopic composition and concentration of the upper continental crust [J]. Geochimica et Cosmochimica Acta, 2004, 68(20): 4167-4178. doi: 10.1016/j.gca.2004.03.031
|
[43] |
Zack T, Tomascak P B, Rudnick R L, et al. Extremely light Li in orogenic eclogites: the role of isotope fractionation during dehydration in subducted oceanic crust [J]. Earth and Planetary Science Letters, 2003, 208(3-4): 279-290. doi: 10.1016/S0012-821X(03)00035-9
|
[44] |
Wunder B, Meixner A, Romer R L, et al. Lithium isotope fractionation between Li-bearing staurolite, Li-mica and aqueous fluids: an experimental study [J]. Chemical Geology, 2007, 238(3-4): 277-290. doi: 10.1016/j.chemgeo.2006.12.001
|
[45] |
Bouman C, Elliott T, Vroon P Z. Lithium inputs to subduction zones [J]. Chemical Geology, 2004, 212(1-2): 59-79. doi: 10.1016/j.chemgeo.2004.08.004
|
[46] |
Leeman W P, Tonarini S, Chan L H, et al. Boron and lithium isotopic variations in a hot subduction zone-the southern Washington Cascades [J]. Chemical Geology, 2004, 212(1-2): 101-124. doi: 10.1016/j.chemgeo.2004.08.010
|
[47] |
Karson J A. Geologic structure of the uppermost oceanic crust created at fast-to intermediate-rate spreading centers [J]. Annual Review of Earth and Planetary Sciences, 2002, 30: 347-384. doi: 10.1146/annurev.earth.30.091201.141132
|
[48] |
Michibayashi K, Tominaga M, Ildefonse B, et al. What lies beneath: the formation and evolution of oceanic lithosphere [J]. Oceanography, 2019, 32(1): 138-149. doi: 10.5670/oceanog.2019.136
|
[49] |
Honnorez J. The aging of the oceanic crust at low temperature[M]//Emiliani C. The Sea, Vol. 7. New York: John Wiley and Sons, 1981: 525-587.
|
[50] |
Seitz H M, Woodland A B. The distribution of lithium in peridotitic and pyroxenitic mantle lithologies—an indicator of magmatic and metasomatic processes [J]. Chemical Geology, 2000, 166(1-2): 47-64. doi: 10.1016/S0009-2541(99)00184-9
|
[51] |
Pichler T, Ridley W I, Nelson E. Low-temperature alteration of dredged volcanics from the southern Chile Ridge: additional information about early stages of seafloor weathering [J]. Marine Geology, 1999, 159(1-4): 155-177. doi: 10.1016/S0025-3227(99)00008-0
|
[52] |
James R H, Allen D E, Seyfried W E Jr. An experimental study of alteration of oceanic crust and terrigenous sediments at moderate temperatures (51 to 350°C): insights as to chemical processes in near-shore ridge-flank hydrothermal systems [J]. Geochimica et Cosmochimica Acta, 2003, 67(4): 681-691. doi: 10.1016/S0016-7037(02)01113-4
|
[53] |
Böhlke J K, Honnorez J, Honnorez-Guerstein B M, et al. Heterogeneous alteration of the upper oceanic crust: correlation of rock chemistry, magnetic properties, and O isotope ratios with alteration patterns in basalts from site 396B, DSDP [J]. Journal of Geophysical Research:Solid Earth, 1981, 86(B9): 7935-7950. doi: 10.1029/JB086iB09p07935
|
[54] |
Mengel K, Hoefs J. Li-18O-SiO2 systematics in volcanic rocks and mafic lower crustal granulite xenoliths [J]. Earth and Planetary Science Letters, 1990, 101(1): 42-53. doi: 10.1016/0012-821X(90)90122-E
|
[55] |
Zuleger E, Alt J C, Erzinger J, et al. Data-report: trace-element geochemistry of the lower sheeted dike complex, hole 504B (Leg 140) [J]. Proceedings of the Ocean Drilling Program, Scientific Results, 1996, 148: 455-466.
|
[56] |
Browne P R L. Hydrothermal alteration in active geothermal fields [J]. Annual Review of Earth and Planetary Sciences, 1978, 6: 229-248. doi: 10.1146/annurev.ea.06.050178.001305
|
[57] |
Humphris S E, Thompson G. Trace element mobility during hydrothermal alteration of oceanic basalts [J]. Geochimica et Cosmochimica Acta, 1978, 42(1): 127-136. doi: 10.1016/0016-7037(78)90222-3
|
[58] |
Wunder B, Meixner A, Romer R L, et al. Temperature-dependent isotopic fractionation of lithium between clinopyroxene and high-pressure hydrous fluids [J]. Contributions to Mineralogy and Petrology, 2006, 151(1): 112-120. doi: 10.1007/s00410-005-0049-0
|
[59] |
Yu C L, Xiao Y L, Wang Y Y, et al. Lithium isotopic compositions of Mesozoic and Cenozoic basalts from South-Eastern China: implications for extremely low δ7Li of continental-type eclogites [J]. Frontiers in Earth Science, 2022, 10: 844353. doi: 10.3389/feart.2022.844353
|
[60] |
Lynton S J, Walker R J, Candela P A. Lithium isotopes in the system Qz-Ms-fluid: an experimental study [J]. Geochimica et Cosmochimica Acta, 2005, 69(13): 3337-3347. doi: 10.1016/j.gca.2005.02.009
|
[61] |
Yang D, Hou Z Q, Zhao Y, et al. Lithium isotope traces magmatic fluid in a seafloor hydrothermal system [J]. Scientific Reports, 2015, 5: 13812. doi: 10.1038/srep13812
|
[62] |
Verney-Carron A, Vigier N, Millot R. Experimental determination of the role of diffusion on Li isotope fractionation during basaltic glass weathering [J]. Geochimica et Cosmochimica Acta, 2011, 75(12): 3452-3468. doi: 10.1016/j.gca.2011.03.019
|
[63] |
Marschall H R, Tang M. High-temperature processes: is it time for lithium isotopes? [J]. Elements, 2020, 16(4): 247-252. doi: 10.2138/gselements.16.4.247
|
[64] |
Niu Y L. Bulk-rock major and trace element compositions of abyssal peridotites: Implications for mantle melting, melt extraction and post-melting processes beneath Mid-Ocean Ridges [J]. Journal of Petrology, 2004, 45(12): 2423-2458. doi: 10.1093/petrology/egh068
|
[65] |
Mével C. Serpentinization of abyssal peridotites at mid-ocean ridges [J]. Comptes Rendus Geoscience, 2003, 335(10-11): 825-852. doi: 10.1016/j.crte.2003.08.006
|
[66] |
McCollom T M, Shock E L. Fluid-rock interactions in the lower oceanic crust: thermodynamic models of hydrothermal alteration [J]. Journal of Geophysical Research:Solid Earth, 1998, 103(B1): 547-575. doi: 10.1029/97JB02603
|
[67] |
Hansen C T, Meixner A, Kasemann S A, et al. New insight on Li and B isotope fractionation during serpentinization derived from batch reaction investigations [J]. Geochimica et Cosmochimica Acta, 2017, 217: 51-79. doi: 10.1016/j.gca.2017.08.014
|
[68] |
Wunder B, Meixner A, Romer R L, et al. Li-isotope fractionation between silicates and fluids: Pressure dependence and influence of the bonding environment [J]. European Journal of Mineralogy, 2011, 23(3): 333-342. doi: 10.1127/0935-1221/2011/0023-2095
|
[69] |
Wunder B, Deschamps F, Watenphul A, et al. The effect of chrysotile nanotubes on the serpentine-fluid Li-isotopic fractionation [J]. Contributions to Mineralogy and Petrology, 2010, 159(6): 781-790. doi: 10.1007/s00410-009-0454-x
|
[70] |
Dohmen R, Kasemann S A, Coogan L, et al. Diffusion of Li in olivine. Part I: experimental observations and a multi species diffusion model [J]. Geochimica et Cosmochimica Acta, 2010, 74(1): 274-292. doi: 10.1016/j.gca.2009.10.016
|
[71] |
Richter F, Watson B, Chaussidon M, et al. Lithium isotope fractionation by diffusion in minerals. Part 1: pyroxenes [J]. Geochimica et Cosmochimica Acta, 2014, 126: 352-370. doi: 10.1016/j.gca.2013.11.008
|
[72] |
陈洁, 龚迎莉, 陈露, 等. 镁同位素地球化学研究新进展及其在碳酸岩研究中的应用[J]. 地球科学, 2021, 46(12):4366-4389 doi: 10.3321/j.issn.1000-2383.2021.12.dqkx202112010
CHEN Jie, GONG Yingli, CHEN Lu, et al. New advances in magnesium isotope geochemistry and its application to carbonatite rocks [J]. Earth Science, 2021, 46(12): 4366-4389. doi: 10.3321/j.issn.1000-2383.2021.12.dqkx202112010
|
[73] |
Huang J, Ke S, Gao Y J, et al. Magnesium isotopic compositions of altered oceanic basalts and gabbros from IODP site 1256 at the East Pacific Rise [J]. Lithos, 2015, 231: 53-61. doi: 10.1016/j.lithos.2015.06.009
|
[74] |
Huang J, Liu S A, Gao Y J, et al. Copper and zinc isotope systematics of altered oceanic crust at IODP Site 1256 in the eastern equatorial Pacific [J]. Journal of Geophysical Research:Solid Earth, 2016, 121(10): 7086-7100. doi: 10.1002/2016JB013095
|
1. |
李小梅,凌小东,王芳,米占宽,占鑫杰. 探讨低围压条件下如何准确测试土体强度. 岩土工程学报. 2023(S1): 148-152 .
![]() |