LIANG Xixing,WANG Riming,DAI Zhijun,et al. Spatial-temporal variations of bare flats in the Qinjiang River estuary, Maowei Sea[J]. Marine Geology & Quaternary Geology,2023,43(3):107-118. DOI: 10.16562/j.cnki.0256-1492.2022091201
Citation: LIANG Xixing,WANG Riming,DAI Zhijun,et al. Spatial-temporal variations of bare flats in the Qinjiang River estuary, Maowei Sea[J]. Marine Geology & Quaternary Geology,2023,43(3):107-118. DOI: 10.16562/j.cnki.0256-1492.2022091201

Spatial-temporal variations of bare flats in the Qinjiang River estuary, Maowei Sea

More Information
  • Received Date: September 09, 2022
  • Revised Date: October 07, 2022
  • Available Online: July 17, 2023
  • Estuarine tidal flats generally consist of vegetated wetlands in upper-middle intertidal zones and fringed bare flats in middle-lower intertidal zones. Spatial-temporal variations of bare flats directly regulate geomorphic erosions-accretions and vegetation successions of the whole tidal flats. Based on multi-satellite remote sensing imageries from Landsat 5/8 TM/OLI and Sentinel-2 MSI collections, random forest classification algorithm and Digital Shoreline Analysis System were used to examine the variations and characteristics of bare intertidal flats in the Qinjiang River estuary (QRE), Maowei Sea (MWS) of Beibu Gulf in 1986—2021. Results indicate that, (1) the overall area of bare flats in the QRE has shown obvious losses during the past four decades, which can be divided into four stages: maintained equilibrium of erosion-accumulation between 1986—2002, accumulated rapidly between 2002—2007, declined sharply between 2007—2014 and slowly deposited between 2014—2021. (2) Tidal flat accretions distributed mainly in the secondary Shajing outlet (SJO) and its inner channel of the QRE along the edges of tidal channels, while erosions occurred in the secondary SJO, Shachong outlet (SCO) and inner tidal channels. (3) Dredging projects in the MWS were the direct driven force that triggered the losses of bare intertidal flats in the QRE from 2008 to 2014, and the expansions of intertidal vegetation and weakened hydrodynamics followed by extensive oyster cultivations after 2015 caused seaward progradation of the bare flats. In addition, the modern sea-level rise has not significantly affected the dynamics of bare flats, and the losses were partly due to the reduced riverine suspended sediment load into the MWS. This study provided theoretical and technical supports for the sustainable and efficient utilizations of estuarine tidal flats.
  • [1]
    Swales A, Bentley S J, Lovelock C E. Mangrove-forest evolution in a sediment-rich estuarine system: opportunists or agents of geomorphic change? [J]. Earth Surface Processes and Landforms, 2015, 40(12): 1672-1687. doi: 10.1002/esp.3759
    [2]
    Davidson N C. How much wetland has the world lost? Long-term and recent trends in global wetland area [J]. Marine and Freshwater Research, 2014, 65(10): 934-941. doi: 10.1071/MF14173
    [3]
    徐彩瑶, 濮励杰, 朱明. 沿海滩涂围垦对生态环境的影响研究进展[J]. 生态学报, 2018, 38(3):1148-1162

    XU Caiyao, PU Lijie, ZHU Ming. Effect of reclamation activity on coastal ecological environment: progress and perspectives [J]. Acta Ecologica Sinica, 2018, 38(3): 1148-1162.
    [4]
    Murray N J, Phinn S R, Dewitt M, et al. The global distribution and trajectory of tidal flats [J]. Nature, 2019, 565(7738): 222-225. doi: 10.1038/s41586-018-0805-8
    [5]
    黄梅花, 卢远, 童新华, 等. 基于Landsat影像的茅尾海河口地貌演变研究[J]. 海洋测绘, 2020, 40(6):57-60,65

    HUANG Meihua, LU Yuan, TONG Xinhua, et al. Study on the landform evolution of Maowei Sea estuary based on Landsat image [J]. Hydrographic Surveying and Charting, 2020, 40(6): 57-60,65.
    [6]
    Zhu D K, Martini I P, Brookfield M E. Morphology and Land-Use of the coastal zone of the north Jiangsu plain Jiangsu Province, eastern China [J]. Journal of Coastal Research, 1998, 14(2): 591-599.
    [7]
    张蛟, 崔士友, 胡帅栋, 等. 水稻种植对沿海滩涂土壤有机碳及碳库管理指数的影响[J]. 中国土壤与肥料, 2020(3):107-112

    ZHANG Jiao, CUI Shiyou, HU Shuaidong, et al. Effects of rice cultivation on soil organic carbon and carbon pool management index in coastal areas [J]. Soil and Fertilizer Sciences in China, 2020(3): 107-112.
    [8]
    李霄宇, 程亮, 沙红良, 等. 天津市滨海新区滩涂开发利用特征的遥感分析[J]. 海洋通报, 2021, 40(4):379-386

    LI Xiaoyu, CHENG Liang, SHA Hongliang, et al. Remote sensing analysis of tidal flat utilization characteristic of Tianjin Binhai New Area [J]. Marine Science Bulletin, 2021, 40(4): 379-386.
    [9]
    Choi Y R. Profitable tidal flats, governable fishing communities: Assembling tidal flat fisheries in post-crisis South Korea [J]. Political Geography, 2019, 72: 20-30. doi: 10.1016/j.polgeo.2019.03.006
    [10]
    樊咏阳, 陈正兵, 张志林, 等. 长江口水下三角洲演变规律及河势控制初探[J]. 海洋工程, 2020, 38(4):91-99

    FAN Yongyang, CHEN Zhengbing, ZHANG Zhilin, et al. The evolution law of underwater delta in the estuary area of the Yangtze River and preliminary study on river regime control [J]. The Ocean Engineering, 2020, 38(4): 91-99.
    [11]
    张乔民, 隋淑珍, 张叶春, 等. 红树林宜林海洋环境指标研究[J]. 生态学报, 2001, 21(9):1427-1437

    ZHANG Qiaomin, SUI Shuzhen, ZHANG Yechun, et al. Marine environmental indexes related to mangrove growth [J]. Acta Ecologica Sinica, 2001, 21(9): 1427-1437.
    [12]
    邢超锋, 何青, 王宪业, 等. 崇明东滩地貌演变对生态治理工程的响应研究[J]. 泥沙研究, 2016(4):41-48

    XING Chaofeng, HE Qing, WANG Xianye, et al. Study on the response of morphological evolution of Eastern Chongming Shoal to ecological management project [J]. Journal of Sediment Research, 2016(4): 41-48.
    [13]
    Murray N J, Ma Z J, Fuller R A. Tidal flats of the Yellow Sea: A review of ecosystem status and anthropogenic threats [J]. Austral Ecology, 2015, 40(4): 472-481. doi: 10.1111/aec.12211
    [14]
    熊李虎, 陈俐骁, 黄世昌. 乐清湾水鸟群落变化及对滩涂围垦的响应[J]. 浙江水利科技, 2019, 47(5):5-10

    XIONG Lihu, CHEN Lixiao, HUANG Shichang. Variation of waterfowl community in Yueqing bay and its response to beach reclamation [J]. Zhejiang Hydrotechnics, 2019, 47(5): 5-10.
    [15]
    黎树式, 黄鹄. 近50年钦江水沙变化研究[J]. 广西科学, 2018, 25(4):409-417

    LI Shushi, HUANG Hu. Variations of runoff and sediment in Qinjiang River in the past 50 years [J]. Guangxi Sciences, 2018, 25(4): 409-417.
    [16]
    Chen L H, Wang Y, Touati B et al. Temporal characteristics detection and attribution analysis of hydrological time-series variation in the seagoing river of southern China under environmental change [J]. Acta Geophysica, 2018, 66(5): 1151-1170. doi: 10.1007/s11600-018-0198-y
    [17]
    董德信, 李谊纯, 陈宪云, 等. 海洋工程对钦州湾岸线地形及泥沙冲淤的影响[J]. 广西科学, 2015, 22(3):266-273

    DONG Dexin, LI Yichun, CHEN Xianyun, et al. Impacts of ocean engineering on shoreline, topography and deposition-erosion environment in Qinzhou Gulf [J]. Guangxi Sciences, 2015, 22(3): 266-273.
    [18]
    赵薛强, 林桂兰. 海湾综合整治与资源环境优化研究进展[J]. 海洋环境科学, 2011, 30(5):752-756 doi: 10.3969/j.issn.1007-6336.2011.05.034

    ZHAO Xueqiang, LIN Guilan. Review on integrated renovation and environment optimization of resource in bay [J]. Marine Environmental Science, 2011, 30(5): 752-756. doi: 10.3969/j.issn.1007-6336.2011.05.034
    [19]
    王日明, 梁喜幸, 周晓妍, 等. 钦江河口潮滩红树林群落空间分布[J]. 遥感学报, 2022, 26(6):1143-1154

    WANG Riming, LIANG Xixing, ZHOU Xiaoyan, et al. Spatial distribution pattern of mangrove community in tidal flats of the Qinjiang estuary [J]. National Remote Sensing Bulletin, 2022, 26(6): 1143-1154.
    [20]
    Mcfeeters S K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features [J]. International Journal of Remote Sensing, 1996, 17(7): 1425-1432. doi: 10.1080/01431169608948714
    [21]
    徐涵秋. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报, 2005, 9(5):589-595

    XU Hanqiu. A study on information extraction of water body with the modified normalized difference water index (MNDWI) [J]. Journal of remote sensing[J]. Journal of Remote Sensing, 2005, 9(5): 589-595.
    [22]
    Rouse J W Jr, Haas R H, Schell J A, et al. Monitoring vegetation systems in the great plains with ERTS [J]. Proceedings, 3rd Earth Resource Technology Satellite (ERTS) Symposium, 1974, 1: 48-62.
    [23]
    Huete A, Didan K, Miura T, et al. Overview of the radiometric and biophysical performance of the modis vegetation indices [J]. Remote Sensing of Environment, 2002, 83(1-2): 195-213. doi: 10.1016/S0034-4257(02)00096-2
    [24]
    Chen J Y, Li D J, Chen B L, et al. The processes of dynamic sedimentation in the Changjiang Estuary [J]. Journal of Sea Research, 1999, 41(1-2): 129-140. doi: 10.1016/S1385-1101(98)00047-1
    [25]
    Dai Z J, Fagherazzi S, Mei X F, et al. Linking the infilling of the North Branch in the Changjiang (Yangtze) estuary to anthropogenic activities from 1958 to 2013 [J]. Marine Geology, 2016, 379: 1-12. doi: 10.1016/j.margeo.2016.05.006
    [26]
    莫剑, 卢远, 王丹媛, 等. 广西钦江流域水沙年际变化规律分析[J]. 水利水电技术, 2020, 51(1):130-138

    MO Jian, LU Yuan, WANG Danyuan, et al. Analysis of interannual water-sediment variation law of Qinjiang River Basin in Guangxi [J]. Water Resources and Hydropower Engineering, 2020, 51(1): 130-138.
    [27]
    Chen Y N, Li Y, Thompson C E L, et al. Differential sediment trapping abilities of mangrove and saltmarsh vegetation in a subtropical estuary [J]. Geomorphology, 2018, 318: 270-282. doi: 10.1016/j.geomorph.2018.06.018
    [28]
    王日明, 黄鹄. 南流江口洲滩景观过程研究[J]. 海洋科学, 2020, 44(12):84-92

    WANG Riming, HUANG Hu. Research on the landscape process of the Nanliu estuary [J]. Marine Sciences, 2020, 44(12): 84-92.
    [29]
    杨桂山, 施雅风, 季子修. 江苏淤泥质潮滩对海平面变化的形态响应[J]. 地理学报, 2002, 57(1):76-84

    YANG Guishan, SHI Yafeng, JI Zixiu. The morphological response of typical mud flat to sea level change in Jiangsu coastal plain [J]. Acta Geographica Sinica, 2002, 57(1): 76-84.
    [30]
    Wu M Y, Harris P, Eberli G, et al. Sea-level, storms, and sedimentation – Controls on the architecture of the Andros tidal flats (Great Bahama Bank) [J]. Sedimentary Geology, 2021, 420: 105932. doi: 10.1016/j.sedgeo.2021.105932
    [31]
    杨蕙. 海湾环境整治效果评价指标体系及评价方法的研究[D]. 国家海洋局第三海洋研究所硕士学位论文, 2017

    YANG Hui. Study on evaluation index system and evaluation method of comprehensive renovation[D]. Master Dissertation of Third Institute of Oceanography, MNR, 2017.
    [32]
    杨钰文, 卢远, 黄萍. 基于遥感的北部湾茅尾海岸滩时空变化研究[J]. 海洋技术学报, 2020, 39(4):1-8

    YANG Yuwen, LU Yuan, HUANG Ping. Study on the spatial-temporal changes of Maowei shoreline and tidal flat based on remote sensing [J]. Journal of Ocean Technology, 2020, 39(4): 1-8.
    [33]
    夏长水, 陈振华, 韦重霄, 等. 广西钦州茅尾海综合整治水动力影响研究[J]. 海岸工程, 2020, 39(3):157-168

    XIA Changshui, CHEN Zhenhua, WEI Chongxiao, et al. Study on hydrodynamic influence induced by comprehensive regulation of the Maowei Sea in Qinzhou, Guangxi province [J]. Coastal Engineering, 2020, 39(3): 157-168.
    [34]
    Gu Y G, Huang H H, Liu Y, et al. Non-metric multidimensional scaling and human risks of heavy metal concentrations in wild marine organisms from the Maowei Sea, the Beibu Gulf, South China Sea [J]. Environmental Toxicology and Pharmacology, 2018, 59: 119-124. doi: 10.1016/j.etap.2018.03.002
    [35]
    Yang B, Lan R Z, Lu D L, et al. Phosphorus biogeochemical cycling in intertidal surface sediments from the Maowei Sea in the northern Beibu Gulf [J]. Regional Studies in Marine Science, 2019, 28: 100624. doi: 10.1016/j.rsma.2019.100624
    [36]
    钟方杰, 黄伟德, 李选积, 等. 广西钦州大蚝苗种产业发展现状与对策分析[J]. 水产养殖, 2020, 41(5):79-80

    ZHONG Fangjie, HUANG Weide, LI Xuanji, et al. Analysis on the development current situation and countermeasures of the Oyster seedling industry in Qinzhou, Guangxi [J]. Journal of Aquaculture, 2020, 41(5): 79-80.
    [37]
    杨留柱, 杨莉玲, 潘洪州, 等. 人类活动影响下的钦州湾近期滩槽冲淤演变特征[J]. 热带海洋学报, 2019, 38(6):41-50

    YANG Liuzhu, YANG Liling, PAN Hongzhou, et al. Characteristics of recent evolution in Qinzhou Bay influenced by human activities [J]. Journal of Tropical Oceanography, 2019, 38(6): 41-50.
    [38]
    陈主器. 广西钦州大蚝苗种产业发展的问题与对策[J]. 养殖与饲料, 2021, 20(11):166-167 doi: 10.3969/j.issn.1671-427X.2021.11.064

    CHEN Zhuqi. The development problems and countermeasures of Oyster seedling industry in Qinzhou, Guangxi [J]. Animals Breeding and Feed, 2021, 20(11): 166-167. doi: 10.3969/j.issn.1671-427X.2021.11.064
  • Related Articles

    [1]ZHOU Xiaokang, WEI Zhe, FU Heng, WU Tingting, LIANG Jie, ZENG Yi, LI Yingwei. Development characteristics and seismic identification of carbonate rocks in the deep-water area of the Pearl River Mouth Basin, northern South China Sea[J]. Marine Geology & Quaternary Geology, 2018, 38(6): 136-148. DOI: 10.16562/j.cnki.0256-1492.2018.06.014
    [2]YAN Wei, ZHANG Guangxue, ZHANG Li, XIA Bin, YANG Zhen, LEI Zhenyu, LUO Shuaibing, QIAN Xing. Seismic responses and distribution characteristics of the Miocene carbonate platforms in the Beikang Basin of southern South China Sea[J]. Marine Geology & Quaternary Geology, 2018, 38(6): 118-126. DOI: 10.16562/j.cnki.0256-1492.2018.06.012
    [3]MA Benjun, WU Shiguo, MI Lijun, WANG Dawei, TIAN Jie, GAO Jinwei. APPLICATION OF 3D SEISMIC INTERPRETATION TO THE DEEPWATER CHANNEL SYSTEM ON THE NORTHERN CONTINENTAL MARGIN OF SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2016, 36(4): 163-171. DOI: 10.16562/j.cnki.0256-1492.2016.04.019
    [4]LIU Ke, WANG Jianhua. CHARACTERISTIC OF NEOTECTONIC ACTIVITIES AND DIVIDING PARAMETERS OF EARTHQUAKE ZONE IN THE NOTHERN SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2016, 36(2): 85-92. DOI: 10.16562/j.cnki.0256-1492.2016.02.010
    [5]LI Xutong, WU Zhiqiang, ZHANG Xunhua. PETROLEUM GEOLOGY OF THE CRETACEOUS IN THE NORTHERN DEPRESSION OF SOUTH YELLOW SEA BASIN: EVIDENCE FROM SEISMIC ATTRIBUTE ANALYSIS[J]. Marine Geology & Quaternary Geology, 2015, 35(6): 119-126. DOI: 10.16562/j.cnki.0256-1492.2015.06.012
    [6]WU Shuyu, LIU Jun, XIAO Guolin, LUAN Xiwu. APPLICATION OF MULTIPLE ATTRIBUTE ANALYSIS TECHNOLOGY IN THE EASTERN DEPRESSION OF THE NORTH YELLOW SEA BASIN[J]. Marine Geology & Quaternary Geology, 2013, 33(5): 137-146. DOI: 10.3724/SP.J.1140.2013.05137
    [7]WANG Wenjuan, LI Gang, YANG Changqing, YANG Chuansheng. CHARACTRISTICS OF SESMIC SEQUENCES IN THE EAST CHINA SEA SHELF BASIN AND THEIR GEOLOGICAL ATTRIBUTES[J]. Marine Geology & Quaternary Geology, 2013, 33(3): 117-122. DOI: 10.3724/SP.J.1140.2013.03117
    [8]WU Shuyu, LIU Jun, XIAO Guolin, ZHANG Yinguo, ZHAO Tiehu. APPLICATION OF SEISMIC ATTRIBUTE ANALYSIS TO THE PERMIAN-TRIASSIC DEPOSITS IN THE SOUTH YELLOW SEA[J]. Marine Geology & Quaternary Geology, 2011, 31(5): 109-116. DOI: 10.3724/SP.J.1140.2011.05109
    [9]LIU Baoming, LIU Hailing. THE MESOZOIC IN THE SOUTH CHINA SEA AND ADJACENT AREAS: NEW TARGETS FOR HYDROCARBON EXPLORATION[J]. Marine Geology & Quaternary Geology, 2011, 31(2): 105-109. DOI: 10.3724/SP.J.1140.2011.02105
    [10]CAO Qiang, YE Jia-ren, SHI Wan-zhong. APPLICATION OF THE METHOD OF SEISMIC ATTRIBUTION TO PREDICTION OF SOURCE ROCK THICKNESS IN NEW EXPLORATION AREAS OF NORTH DEPRESSION IN SOUTH YELLOW SEA BASIN[J]. Marine Geology & Quaternary Geology, 2008, 28(5): 109-114.
  • Cited by

    Periodical cited type(13)

    1. 权蔚慈,杨凯,阚思蒙,孙叶龙,田应辉,万东,郑蕾,程红光. 金沙江上游堰塞湖相静水沉积物特性及其资源化利用研究. 环境工程. 2024(08): 1-7 .
    2. 倪和平,毕磊,郭玉龙,何中发,杨守业. 长江口沉积物化学相态分析及主泓变迁的指示. 沉积学报. 2023(01): 243-255 .
    3. 何中发,温晓华,王丹妮,赵宝成,谢建磊. 上海海岸带沉积物地球化学基准值特征. 上海国土资源. 2022(01): 34-39 .
    4. 姜宇,郭庆军,邓义楠. 长江流域沉积物和土壤重金属分布规律研究进展. 生态学杂志. 2022(04): 804-812 .
    5. 张诺,刘其根,陈丽平,展源,胡忠军. 长江口盐沼湿地沉积物重金属空间分布特征及其潜在生态风险评价. 大连海洋大学学报. 2021(01): 135-146 .
    6. 朱宜平,李小飞,梁霞. 上海青草沙水库表层沉积物重金属含量水平及其生态风险评价. 华东师范大学学报(自然科学版). 2021(02): 54-62 .
    7. Yu'na Zhang,Qianwen Wang. Determination and ecological risk assessment of arsenic and mercury in sediments from the Changjiang River Estuary and adjacent East China Sea. Acta Oceanologica Sinica. 2021(04): 32-38 .
    8. 张明宇,常鑫,胡利民,毕乃双,王厚杰,刘喜停. 东海内陆架有机碳的源—汇过程及其沉积记录. 沉积学报. 2021(03): 593-609 .
    9. 马香菊,徐慧韬,王丽平. 天津临港滨海湿地公园重金属污染特征及风险评价. 环境工程技术学报. 2021(05): 908-918 .
    10. 曹昉,杨守业,杨承帆,郭玉龙,毕磊,李雨泽. 锂同位素定量提取河流碎屑沉积物中大陆风化信号. 中国科学:地球科学. 2021(10): 1742-1752 .
    11. 林梵宇,尹希杰,黄杰超,粟蓉,李云海,孙治雷. 利用微区XRF技术测定地质样品中元素含量研究. 矿物岩石. 2021(04): 59-67 .
    12. 潘柳波,王舟,杨淋清. 深圳市售贝类铅的污染状况与健康风险评价. 中国公共卫生管理. 2020(01): 63-66 .
    13. 毕宝帅,余宏昌,张亚,唐文乔. 上海东风西沙水库表层沉积物重金属含量及生态风险评价. 上海海洋大学学报. 2020(05): 709-719 .

    Other cited types(6)

Catalog

    Article views (427) PDF downloads (21) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return