LI Linzhi,GUO Gang,QI Peng,et al. Prediction of favorable reservoir in granite weathering-crust buried-hill type—A case study of the Baoyunting area on Pinghu slope[J]. Marine Geology & Quaternary Geology,2023,43(2):160-169. DOI: 10.16562/j.cnki.0256-1492.2022062902
Citation: LI Linzhi,GUO Gang,QI Peng,et al. Prediction of favorable reservoir in granite weathering-crust buried-hill type—A case study of the Baoyunting area on Pinghu slope[J]. Marine Geology & Quaternary Geology,2023,43(2):160-169. DOI: 10.16562/j.cnki.0256-1492.2022062902

Prediction of favorable reservoir in granite weathering-crust buried-hill type—A case study of the Baoyunting area on Pinghu slope

More Information
  • Received Date: June 28, 2022
  • Revised Date: September 04, 2022
  • Accepted Date: September 04, 2022
  • Available Online: November 15, 2022
  • Pinghu slope is the key exploration area of oil and gas in the Xihu Sag, East China Sea basin. With the deepening of exploration and development, buried-hill-typed reservoirs in deep and basement have become an important target. To promote the exploration, the main controlling factors and favorable reservoir distribution of granite weathering-crust buried-hill reservoirs in the Baoyunting area of Pinghu slope were studied comprehensively using various data including logging, seismic, core, and experimental analysis. Results show that the mineral composition provided material bases for the formation of the granite weathering-crust buried-hill–typed reservoir; leaching controlled the formation of dissolution pores; and tectonic activities generated many fractures. These factors improved the physical properties of the reservoir, and jointly controlled the distribution of reservoirs in the buried-hill type. In addition, using paleogeomorphic restoration and ant body attribute extraction, the weathering and dissolution intensity and fracture development degree were predicted, and finally the granite buried hill reservoirs in the Baoyunting oil-gas area was evaluated in overall.
  • [1]
    沈澈, 蒋有录, 苏圣民, 等. 二连盆地乌兰花凹陷花岗岩潜山储层特征及发育模式[J]. 大庆石油地质与开发, 2021, 40(6):12-19

    SHEN Che, JIANG Youlu, SU Shengmin, et al. Characteristics and development modes of the granite buried-hill reservoir in Wulanhua Sag of Erlian Basin [J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(6): 12-19.
    [2]
    闫林辉, 常毓文, 田中元, 等. 乍得Bongor盆地潜山基岩储集层特征[J]. 地质科技情报, 2019, 38(6):60-68 doi: 10.19509/j.cnki.dzkq.2019.0608

    YAN linhui, CHANG Yuwen, TIAN Zhongyuan, et al. Characteristics of basement rock reservoirs in Bongor Basin, Chad [J]. Geological Science and Technology Information, 2019, 38(6): 60-68. doi: 10.19509/j.cnki.dzkq.2019.0608
    [3]
    伍劲, 高先志, 周伟, 等. 柴达木盆地东坪地区基岩风化壳与油气成藏[J]. 新疆石油地质, 2018, 39(6):666-672 doi: 10.7657/XJPG20180606

    WU Jin, GAO Xianzhi, ZHOU Wei, et al. Base rock weathering crusts and petroleum accumulation in Dongping Area, Qaidam Basin [J]. Xinjiang Petroleum Geology, 2018, 39(6): 666-672. doi: 10.7657/XJPG20180606
    [4]
    胡志伟, 徐长贵, 杨波, 等. 渤海海域蓬莱9-1油田花岗岩潜山储层成因机制及石油地质意义[J]. 石油学报, 2017, 38(3):274-285 doi: 10.7623/syxb201703004

    HU Zhiwei, XU Changgui, YANG Bo, et al. Reservoir forming mechanism of Penglai 9-1 granite buried-hills and its oil geology significance in Bohai Sea [J]. Acta Petrolei Sinica, 2017, 38(3): 274-285. doi: 10.7623/syxb201703004
    [5]
    徐守立, 尤丽, 毛雪莲, 等. 琼东南盆地松南低凸起周缘花岗岩潜山储层特征及控制因素[J]. 地球科学, 2019, 44(8):2717-2728

    XU Shouli, YOU Li, MAO Xuelian, et al. Reservoir characteristics and controlling factors of granite buried hill in Songnan low uplift, Qiongdongnan Basin [J]. Earth Science, 2019, 44(8): 2717-2728.
    [6]
    宋爱学, 杨金海, 胡斌, 等. 琼东南盆地深水区古潜山裂缝性储层展布特征及有利区含油气性预测[J]. 海洋地质前沿, 2021, 37(7):60-67

    SONG Aixue, YANG Jinhai, HU Bin, et al. Distribution patterns of fracture reservoirs in the buried-hills in deep water areas of Qiongdongnan Basin and prediction of favorable areas for hydrocarbon exploration [J]. Marine Geology Frontiers, 2021, 37(7): 60-67.
    [7]
    刘金水, 廖宗廷, 贾健谊, 等. 东海陆架盆地地质结构及构造演化[J]. 上海地质, 2003(3):1-6

    LIU Jinshui, LIAO Zongting, JIA Jianyi, et al. The geological structure and tectonic evolution of the East China Sea shelf basin [J]. Shanghai Geology, 2003(3): 1-6.
    [8]
    魏恒飞, 陈践发, 陈晓东. 东海盆地西湖凹陷凝析气藏成藏特征及分布控制因素[J]. 吉林大学学报:地球科学版, 2019, 49(6):1507-1517

    WEI Hengfei, CHEN Jianfa, CHEN Xiaodong. Characteristics and controlling factors of condensate reservoir accumulation in Xihu Sag, East China Sea Basin [J]. Journal of Jilin University:Earth Science Edition, 2019, 49(6): 1507-1517.
    [9]
    侯国伟, 李帅, 秦兰芝, 等. 西湖凹陷西部斜坡带平湖组源-汇体系特征[J]. 中国海上油气, 2019, 31(3):29-39

    HOU Guowei, LI Shuai, QIN Lanzhi, et al. Source-to-sink system of Pinghu Formation in west slope belt of Xihu Sag, East China Sea Basin [J]. China Offshore Oil and Gas, 2019, 31(3): 29-39.
    [10]
    苏奥, 陈红汉. 东海盆地西湖凹陷宝云亭气田油气成藏史: 来自流体包裹体的证据[J]. 石油学报, 2015, 36(3):300-309 doi: 10.7623/syxb201503005

    SU Ao, CHEN Honghan. Accumulation history of Baoyunting gas field in the Xihu Sag, East China Sea Basin: from evidence of fluid inclusions [J]. Acta Petrolei Sinica, 2015, 36(3): 300-309. doi: 10.7623/syxb201503005
    [11]
    黄建红, 谭先锋, 程承吉, 等. 花岗质基岩风化壳结构特征及油气地质意义: 以柴达木盆地东坪地区基岩风化壳为例[J]. 地球科学, 2016, 41(12):2041-2060

    HUANG Jianhong, TAN Xianfeng, CHENG Chengji, et al. Structural features of weathering crust of granitic basement rock and its petroleum geological significance: a case study of basement weathering crust of Dongping Area in Qaidam Basin [J]. Earth Science, 2016, 41(12): 2041-2060.
    [12]
    刘震, 朱茂林, 刘惠民, 等. 花岗岩风化壳储层形成机理及分布特征: 以东营凹陷北带西段为例[J]. 石油学报, 2021, 42(2):163-175

    LIU Zhen, ZHU Maolin, LIU Huimin, et al. Formation mechanism and distribution characteristics of granitic weathering crust reservoir: a case study of the western segment of the northern belt of Dongying Sag [J]. Acta Petrolei Sinica, 2021, 42(2): 163-175.
    [13]
    王德英, 王清斌, 刘晓健, 等. 渤海湾盆地海域片麻岩潜山风化壳型储层特征及发育模式[J]. 岩石学报, 2019, 35(4):1181-1193 doi: 10.18654/1000-0569/2019.04.13

    WANG Deying, WANG Qingbin, LIU Xiaojian, et al. Characteristics and developing patterns of gneiss buried hill weathering crust reservoir in the sea area of the Bohai Bay Basin [J]. Acta Petrologica Sinica, 2019, 35(4): 1181-1193. doi: 10.18654/1000-0569/2019.04.13
    [14]
    华仁民, 李晓峰, 张开平, 等. 金山金矿热液蚀变黏土矿物特征及水-岩反应环境研究[J]. 矿物学报, 2003, 23(1):23-30 doi: 10.3321/j.issn:1000-4734.2003.01.005

    HUA Renmin, LI Xiaofeng, ZHANG Kaiping, et al. Characteristics of clay minerals derived from hydrothermal alteration in Jinshan gold deposit: implication for the environment of water-rock interaction [J]. Acta Mineralogica Sinica, 2003, 23(1): 23-30. doi: 10.3321/j.issn:1000-4734.2003.01.005
    [15]
    张乃娴. 黏土矿物与风化作用[J]. 建材地质, 1992(6):1-6

    ZHANG Naixian. Clay minerals and weathering [J]. China Non-Metallic Minerals Industry, 1992(6): 1-6.
    [16]
    王昕, 周心怀, 徐国胜, 等. 渤海海域蓬莱9-1花岗岩潜山大型油气田储层发育特征与主控因素[J]. 石油与天然气地质, 2015, 36(2):262-270 doi: 10.11743/ogg20150211

    WANG Xin, ZHOU Xinhuai, XU Guosheng, et al. Characteristics and controlling factors of reservoirs in Penglai 9-1 large-scale oilfield in buried granite hills, Bohai Sea [J]. Oil & Gas Geology, 2015, 36(2): 262-270. doi: 10.11743/ogg20150211
    [17]
    胡修棉. 白垩纪"温室"气候与海洋[J]. 中国地质, 2004, 31(4):442-448 doi: 10.3969/j.issn.1000-3657.2004.04.017

    HU Xiumian. Greenhouse climate and ocean during the Cretaceous [J]. Geology in China, 2004, 31(4): 442-448. doi: 10.3969/j.issn.1000-3657.2004.04.017
    [18]
    易泽军, 王伟锋, 李飞, 等. 构造古地貌对石炭系火山岩风化壳型储层物性的控制作用[J]. 中国矿业, 2015, 24(S2):153-157 doi: 10.3969/j.issn.1004-4051.2015.z2.034

    YI Zejun, WANG Weifeng, LI Fei, et al. Tectonic geomorphology control factors on properties of weathering reservoirs of carboniferous volcanic rocks [J]. China Mining Magazine, 2015, 24(S2): 153-157. doi: 10.3969/j.issn.1004-4051.2015.z2.034
    [19]
    左丽群. 古地貌恢复方法综述[J]. 石油地质与工程, 2019, 33(3):12-16,21 doi: 10.3969/j.issn.1673-8217.2019.03.003

    ZUO Liqun. Review on methods of paleo-geomorphologic restoration [J]. Petroleum Geology and Engineering, 2019, 33(3): 12-16,21. doi: 10.3969/j.issn.1673-8217.2019.03.003
    [20]
    陈亮, 张珂嘉, 张振平, 等. 裂缝型储层预测技术优选: 以涪陵地区侏罗系大安寨段为例[J]. 石油地质与工程, 2013, 27(5):43-45 doi: 10.3969/j.issn.1673-8217.2013.05.012

    CHEN Liang, ZHANG Kejia, ZHANG Zhenping, et al. Optimization of fracture reservoir prediction technology: with reservoir of Daanzhai member of Jurassic in Fulin region as an example [J]. Petroleum Geology and Engineering, 2013, 27(5): 43-45. doi: 10.3969/j.issn.1673-8217.2013.05.012
    [21]
    姜晓宇, 张研, 甘利灯, 等. 花岗岩潜山裂缝地震预测技术[J]. 石油地球物理勘探, 2020, 55(3):694-704

    JIANG Xiaoyu, ZHANG Yan, GAN Lideng, et al. Seismic techniques for predicting fractures in granite buried hills [J]. Oil Geophysical Prospecting, 2020, 55(3): 694-704.
    [22]
    刘厚彬, 于兴川, 张震, 等. 长宁页岩地层井下复杂及裂缝三维展布规律研究[J]. 西南石油大学学报:自然科学版, 2021, 43(4):208-218

    LIU Houbin, YU Xingchuan, ZHANG Zhen, et al. A study on downhole complex and three dimensional distribution of fractures in Changning shale formation [J]. Journal of Southwest Petroleum University:Science & Technology Edition, 2021, 43(4): 208-218.
    [23]
    李楠, 王龙颖, 黄胜兵, 等. 利用高清蚂蚁体精细解释复杂断裂带[J]. 石油地球物理勘探, 2019, 54(1):182-190

    LI Nan, WANG Longying, HUANG Shengbing, et al. 3D seismic fine structural interpretation in complex fault zones based on the high-definition ant-tracking attribute volume [J]. Oil Geophysical Prospecting, 2019, 54(1): 182-190.
    [24]
    张欣. 蚂蚁追踪在断层自动解释中的应用: 以平湖油田放鹤亭构造为例[J]. 石油地球物理勘探, 2010, 45(2):278-281

    ZHANG Xin. Application of ant tracing algorithm in fault automatic interpretation: a case study on Fangheting structure in Pinghu oilfield [J]. Oil Geophysical Prospecting, 2010, 45(2): 278-281.
    [25]
    刘慧楠, 李婷婷, 张幸兴, 等. 蚂蚁体属性断裂解释技术及在苏德尔特地区的应用[J]. 中国锰业, 2019, 37(6): 38-41, 47.

    LIU Huinan, LI Tingting, ZHANG Xingxing, et al. Fracture interpretation technology on ant attribute and its application in suddelt area[j]. China’s Mangasnese Industry, 2019, 37(6): 38-41, 47.

Catalog

    Article views (1100) PDF downloads (120) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return