Citation: | SONG Zijun,MENG Fanyi,LI Weiding,et al. Preliminary study on source and sedimentary environment in the Mariana Trench[J]. Marine Geology & Quaternary Geology,2022,42(4):84-95. DOI: 10.16562/j.cnki.0256-1492.2022031801 |
[1] |
Wolff T. The concept of the hadal or ultra-abyssal fauna [J]. Deep Sea Research and Oceanographic Abstracts, 1970, 17(6): 983-1003. doi: 10.1016/0011-7471(70)90049-5
|
[2] |
Jamieson A J, Fujii T, Mayor D J, et al. Hadal trenches: the ecology of the deepest places on Earth [J]. Trends in Ecology & Evolution, 2010, 25(3): 190-197.
|
[3] |
Nakanishi M, Hashimoto J. A precise bathymetric map of the world's deepest seafloor, Challenger Deep in the Mariana Trench [J]. Marine Geophysical Research, 2011, 32(4): 455-463. doi: 10.1007/s11001-011-9134-0
|
[4] |
Watling L, Guinotte J, Clark M R, et al. A proposed biogeography of the deep ocean floor [J]. Progress in Oceanography, 2013, 111: 91-112. doi: 10.1016/j.pocean.2012.11.003
|
[5] |
林刚. 西太平洋新不列颠海沟沉积特征与源-汇过程及其时空变化[D]. 上海海洋大学硕士学位论文, 2019.
LIN Gang. The characteristics and source-sink processes of sediments in the New Britain Trench of western Pacific Ocean and their temporal and spatial variations[D]. Master Dissertation of Shanghai Ocean University, 2019.
|
[6] |
Nozaki Y, Ohta Y. Rapid and frequent turbidite accumulation in the bottom of Izu-Ogasawara Trench: Chemical and radiochemical evidence [J]. Earth and Planetary Science Letters, 1993, 120(3-4): 345-360. doi: 10.1016/0012-821X(93)90249-9
|
[7] |
Danovaro R, Croce N D, Dell’Anno A D, et al. A depocenter of organic matter at 7800m depth in the SE Pacific Ocean [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2003, 50(12): 1411-1420. doi: 10.1016/j.dsr.2003.07.001
|
[8] |
Glud R N, Wenzhöfer F, Middelboe M, et al. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth [J]. Nature Geoscience, 2013, 6(4): 284-288. doi: 10.1038/ngeo1773
|
[9] |
Oguri K, Kawamura K, Sakaguchi A, et al. Hadal disturbance in the Japan Trench induced by the 2011 Tohoku–Oki Earthquake [J]. Scientific Reports, 2013, 3: 1915. doi: 10.1038/srep01915
|
[10] |
Ikehara K, Kanamatsu T, Nagahashi Y, et al. Documenting large earthquakes similar to the 2011 Tohoku-oki earthquake from sediments deposited in the Japan Trench over the past 1500 years [J]. Earth & Planetary Science Letters, 2016, 445: 48-56.
|
[11] |
Howell D G, Murray R W. A budget for continental growth and denudation [J]. Science, 1986, 233(4762): 446-449. doi: 10.1126/science.233.4762.446
|
[12] |
Hay W W, Wold C N. Relation of selected mineral deposits to the mass/age distribution of Phanerozoic sediments [J]. Geologische Rundschau, 1990, 79(2): 495-512. doi: 10.1007/BF01830641
|
[13] |
Stewart H A, Jamieson A J. Habitat heterogeneity of hadal trenches: Considerations and implications for future studies [J]. Progress in Oceanography, 2018, 161: 47-65. doi: 10.1016/j.pocean.2018.01.007
|
[14] |
Glud R N, Berg P, Thamdrup B, et al. Hadal trenches are dynamic hotspots for early diagenesis in the deep sea [J]. Communications Earth & Environment, 2021, 2(1): 21.
|
[15] |
吕成功. 马里亚纳海槽两沉积岩芯主要化学元素的因子分析[J]. 黄渤海海洋, 1992, 10(1):34-41
LV Chenggong. Factor analysis of major chemical elements in the sediments of two cores from the Mariana trough [J]. Journal of Oceanography of Huanghai & Bohai Seas, 1992, 10(1): 34-41.
|
[16] |
吕海滨, 王永吉. 马里亚纳海槽沉积物中的火山碎屑及火山灰特征[J]. 海洋通报, 1998, 17(2):58-64
LV Haibin, WANG Yongji. A preliminary study on features of volcanic debris and ash layers in the Mariana trough [J]. Marine Science Bulletin, 1998, 17(2): 58-64.
|
[17] |
王汾连, 何高文, 王海峰, 等. 马里亚纳海沟柱状沉积物稀土地球化学特征及其指示意义[J]. 海洋地质与第四纪地质, 2016, 36(4):67-75
WANG Fenlian, HE Gaowen, WANG Haifeng, et al. Geochemistry of rare earth elements in a core from Mariana Trench and its significance [J]. Marine Geology & Quaternary Geology, 2016, 36(4): 67-75.
|
[18] |
朱坤杰, 何树平, 陈芳, 等. 马里亚纳海沟南部海域沉积物的工程地质特性及其成因[J]. 地质学刊, 2015, 39(2):251-257 doi: 10.3969/j.issn.1674-3636.2015.02.251
ZHU Kunjie, HE Shuping, CHEN Fang, et al. Engineering geological characteristics and genesis of the sediments from the southern Mariana Trench [J]. Journal of Geology, 2015, 39(2): 251-257. doi: 10.3969/j.issn.1674-3636.2015.02.251
|
[19] |
张金鹏, 邓希光, 杨胜雄, 等. 马里亚纳海沟挑战者深渊南部7000 m水深处发现硅藻化石软泥[J]. 地质通报, 2015, 34(12):2352-2354 doi: 10.3969/j.issn.1671-2552.2015.12.021
ZHANG Jinpeng, DENG Xigaung, YANG Shengxiong, et al. Diatom ooze found in 7000m submarine area of Challenger Depth in Mariana Trench [J]. Geological Bulletin of China, 2015, 34(12): 2352-2354. doi: 10.3969/j.issn.1671-2552.2015.12.021
|
[20] |
熊志方. 热带西太平洋硅藻席地球化学: 碳、硅循环及古海洋响应[D]. 中国科学院海洋研究所博士学位论文, 2010.
XIONG Zhifang. Geochemistry of diatom mats from tropical West Pacific: Implications for carbon and silicon cycle and response to paleoceanographic conditions[D]. Doctor Dissertation of the Institute of Oceanology, Chinese Academy of Sciences, 2010.
|
[21] |
Xiong Z F, Li T G, Algeo T, et al. Paleoproductivity and paleoredox conditions during late Pleistocene accumulation of laminated diatom mats in the tropical West Pacific [J]. Chemical Geology, 2012, 334: 77-91. doi: 10.1016/j.chemgeo.2012.09.044
|
[22] |
Xiong Z F, Li T G, Algeo T, et al. Rare earth element geochemistry of laminated diatom mats from tropical West Pacific: Evidence for more reducing bottomwaters and higher primary productivity during the Last Glacial Maximum [J]. Chemical Geology, 2012, 296-297: 103-118. doi: 10.1016/j.chemgeo.2011.12.012
|
[23] |
唐琴琴, 詹文欢, 李健, 等. 南海东部边缘火山活动所反映的板片窗构造[J]. 海洋地质与第四纪地质, 2017, 37(2):119-126
TANG Qinqin, ZHAN Wenhuan, LI Jian, et al. Volcanic evidence for slab window induced by fossil ridge subduction at east edge of South China Sea [J]. Marine Geology & Quaternary Geology, 2017, 37(2): 119-126.
|
[24] |
Fryer P. Serpentinite mud volcanism: observations, processes, and implications [J]. Annual Review of Marine Science, 2012, 4(1): 345-373. doi: 10.1146/annurev-marine-120710-100922
|
[25] |
刘鑫, 李三忠, 赵淑娟, 等. 马里亚纳俯冲系统的构造特征[J]. 地学前缘, 2017, 24(4):329-340
LIU Xin, LI Sanzhong, ZHAO Shujuan, et al. Structure of the Mariana subduction system [J]. Earth Science Frontiers, 2017, 24(4): 329-340.
|
[26] |
Shiraki K, Kuroda N, Maruyama S, et al. Evolution of the Tertiary volcanic rocks in the Izu-Mariana arc [J]. Bulletin Volcanologique, 1978, 41(4): 548-562. doi: 10.1007/BF02597386
|
[27] |
刘志兴. 马里亚纳海沟深渊沉积物地球化学特征及其地质意义[D]. 长安大学硕士学位论文, 2019.
LIU Zhixing. Geochemical characteristics and geological significance of the hadal trench sediments in the Mariana Trench[D]. Master Dissertation of Chang'an University, 2019.
|
[28] |
Liu R L, Wang L, Wei Y L, et al. The hadal biosphere: Recent insights and new directions [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2018, 155: 11-18. doi: 10.1016/j.dsr2.2017.04.015
|
[29] |
Warren B A, Owens W B. Deep currents in the central subarctic Pacific Ocean [J]. Journal of Physical Oceanography, 1988, 18(4): 529-551. doi: 10.1175/1520-0485(1988)018<0529:DCITCS>2.0.CO;2
|
[30] |
Kawabe M. Deep water properties and circulation in the western North Pacific [J]. Elsevier Oceanography Series, 1993, 59: 17-37.
|
[31] |
Johnson G C. Deep water properties, velocities, and dynamics over ocean trenches [J]. Journal of Marine Research, 1998, 56(2): 329-347. doi: 10.1357/002224098321822339
|
[32] |
Rea D K, Janecek T R. Mass-accumulation rates of the non-authigenic inorganic crystalline (eolian) component of deep-sea sediments from the western mid-Pacific mountains, deep sea drilling project site 463 [J]. Deep Sea Drilling Project Initial Reports, 1981, 62: 653-659.
|
[33] |
Clemens S C, Prell W L. Late Pleistocene variability of Arabian Sea summer monsoon winds and continental aridity: Eolian records from the lithogenic component of deep-sea sediments [J]. Paleoceanography and Paleoclimatology, 1990, 5(2): 109-145.
|
[34] |
Biscaye P E. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans [J]. Geological Society of America Bulletin, 1965, 76(7): 803-832. doi: 10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2
|
[35] |
Calvert S E, Pedersen T F, Thunell R C. Geochemistry of the surface sediments of the Sulu and South China Seas [J]. Marine Geology, 1993, 114(3-4): 207-231. doi: 10.1016/0025-3227(93)90029-U
|
[36] |
Luo M, Algeo T J, Tong H P, et al. More reducing bottom-water redox conditions during the Last Glacial Maximum in the southern Challenger Deep (Mariana Trench, western Pacific) driven by enhanced productivity [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2018, 155: 70-82. doi: 10.1016/j.dsr2.2017.01.006
|
[37] |
Jacobsen S B, Wasserburg G J. Sm-Nd isotopic evolution of chondrites [J]. Earth & Planetary Science Letters, 1980, 50(1): 139-155.
|
[38] |
Williams N S, Dixon M F, Johnston D. Reappraisal of the 5 centimetre rule of distal excision for carcinoma of the rectum: A study of distal intramural spread and of patients' survival [J]. British Journal of Surgery, 1983, 70(3): 150-154.
|
[39] |
赵万苍. 东亚沙漠粘粒地球化学研究: 矿物尘来源、传输及其示踪[D]. 南京大学博士学位论文, 2015.
ZHAO Wancang. Geochemistry characteristics of clay-sized fractions from East Asian deserts: Mineral dust provenance, transport and tracer[D]. Doctor Dissertation of Nanjing University, 2015.
|
[40] |
Jiang F Q, Frank M, Li T G, et al. Asian dust input in the western Philippine Sea: Evidence from radiogenic Sr and Nd isotopes [J]. Geochemistry, Geophysics, Geosystems, 2013, 14(5): 1538-1551. doi: 10.1002/ggge.20116
|
[41] |
Luo M, Algeo T J, Chen L Y, et al. Role of dust fluxes in stimulating Ethmodiscus rex giant diatom blooms in the northwestern tropical Pacific during the Last Glacial Maximum [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 511: 319-331. doi: 10.1016/j.palaeo.2018.08.017
|
[42] |
Jiang Z Z, Sun Z L, Liu Z Q, et al. Rare-earth element geochemistry reveals the provenance of sediments on the southwestern margin of the Challenger Deep [J]. Journal of Oceanology and Limnology, 2019, 37(3): 998-1009. doi: 10.1007/s00343-019-8046-8
|
[43] |
Feng J L, Zhu L P, Zhen X L, et al. Grain size effect on Sr and Nd isotopic compositions in eolian dust: Implications for tracing dust provenance and Nd model age [J]. Geochemical Journal, 2009, 43(2): 123-131. doi: 10.2343/geochemj.1.0007
|
[44] |
Defant M J, Maury R C, Joron J L, et al. The geochemistry and tectonic setting of the northern section of the Luzon arc (the Philippines and Taiwan) [J]. Tectonophysics, 1990, 183(1-4): 187-205. doi: 10.1016/0040-1951(90)90416-6
|
[45] |
Honda M, Yabuki S, Shimizu H. Geochemical and isotopic studies of aeolian sediments in China [J]. Sedimentology, 2004, 51(2): 211-230. doi: 10.1111/j.1365-3091.2004.00618.x
|
[46] |
Woodhead J D, Fraser D G. Pb, Sr and 10Be isotopic studies of volcanic rocks from the Northern Mariana Islands. Implications for magma genesis and crustal recycling in the Western Pacific [J]. Geochimica et Cosmochimica Acta, 1985, 49(9): 1925-1930. doi: 10.1016/0016-7037(85)90087-0
|
[47] |
Woodhead J D. Geochemistry of the Mariana arc (western Pacific): Source composition and processes [J]. Chemical Geology, 1989, 76(1-2): 1-24. doi: 10.1016/0009-2541(89)90124-1
|
[48] |
Chen J, Li G J, Yang J D, et al. Nd and Sr isotopic characteristics of Chinese deserts: Implications for the provenances of Asian dust [J]. Geochimica et Cosmochimica Acta, 2007, 71(15): 3904-3914. doi: 10.1016/j.gca.2007.04.033
|
[49] |
Rao W B, Chen J, Yang J D, et al. Sr-Nd isotopic characteristics of eolian deposits in the Erdos Desert and Chinese Loess Plateau: Implications for their provenances [J]. Geochemical Journal, 2008, 42(3): 273-282. doi: 10.2343/geochemj.42.273
|
[50] |
Nakano T, Yokoo Y, Nishikawa M, et al. Regional Sr-Nd isotopic ratios of soil minerals in northern China as Asian dust fingerprints [J]. Atmospheric Environment, 2004, 38(19): 3061-3067. doi: 10.1016/j.atmosenv.2004.02.016
|
[51] |
Seo I, Lee Y I, Yoo C M, et al. Sr-Nd isotope composition and clay mineral assemblages in eolian dust from the central Philippine Sea over the last 600 kyr: Implications for the transport mechanism of Asian dust [J]. Journal of Geophysical Research:Atmospheres, 2014, 119(19): 11492-11504. doi: 10.1002/2014JD022025
|
[52] |
Allegre C J, Othman D B, Polve M, et al. The Nd-Sr isotopic correlation in mantle materials and geodynamic consequences [J]. Physics of the Earth & Planetary Interiors, 1979, 19(4): 293-306.
|
[53] |
Xiong Z F, Li T G, Algeo T, et al. The silicon isotope composition of Ethmodiscus rex laminated diatom mats from the tropical West Pacific: Implications for silicate cycling during the Last Glacial Maximum [J]. Paleoceanography, 2015, 30(7): 803-823. doi: 10.1002/2015PA002793
|
[54] |
Xu Z K, Wan S M, Colin C, et al. Enhanced terrigenous organic matter input and productivity on the western margin of the Western Pacific Warm Pool during the Quaternary sea-level lowstands: Forcing mechanisms and implications for the global carbon cycle [J]. Quaternary Science Reviews, 2020, 232: 106211. doi: 10.1016/j.quascirev.2020.106211
|
[55] |
Yu Z J, Wan S M, Colin C, et al. ENSO-like modulated tropical Pacific climate changes since 2.36 Myr and its implication for the middle Pleistocene transition [J]. Geochemistry, Geophysics, Geosystems, 2018, 19(2): 415-426. doi: 10.1002/2017GC007247
|
[56] |
Xiong Z F, Li T G, Jiang F Q, et al. Millennial-scale evolution of elemental ratios in bulk sediments from the western Philippine Sea and implications for chemical weathering in Luzon since the Last Glacial Maximum [J]. Journal of Asian Earth Sciences, 2019, 179: 127-137. doi: 10.1016/j.jseaes.2019.04.021
|
[57] |
Xiong Z F, Li T G, Chang F M, et al. Rapid precipitation changes in the tropical West Pacific linked to North Atlantic climate forcing during the last deglaciation [J]. Quaternary Science Reviews, 2018, 197: 288-306. doi: 10.1016/j.quascirev.2018.07.040
|
[58] |
张富元, 李安春, 林振宏, 等. 深海沉积物分类与命名[J]. 海洋与湖沼, 2006, 37(6):517-523 doi: 10.3321/j.issn:0029-814X.2006.06.007
ZHANG Fuyuan, LI Anchun, LIN Zhenhong, et al. Classification and nomenclature of deep sea sediments [J]. Oceanologia et Limnologia Sinica, 2006, 37(6): 517-523. doi: 10.3321/j.issn:0029-814X.2006.06.007
|
[59] |
刘华华. 中新世以来奄美三角盆地沉积物中粘土矿物的来源[D]. 中国科学院海洋研究所硕士学位论文, 2016.
LIU Huahua. Provenance of clay minerals in the sediments from the Amami Sankaku Basin since Miocene[D]. Master Dissertation of the Institute of Oceanology, Chinese Academy of Sciences, 2016.
|
[60] |
王银, 吕士辉, 苏新, 等. 西北太平洋多金属结核区沉积物黏土矿物特征[J]. 中国有色金属学报, 2021, 31(10):2696-2712
WANG Yin, LÜ Shihui, SU Xin, et al. Assemblage of clay minerals at polymetallic nodules contract area in Northwest Pacific Ocean [J]. The Chinese Journal of Nonferrous Metals, 2021, 31(10): 2696-2712.
|
[61] |
Liu Z F, Zhao Y L, Colin C, et al. Chemical weathering in Luzon, Philippines from clay mineralogy and major-element geochemistry of river sediments [J]. Applied Geochemistry, 2009, 24(11): 2195-2205. doi: 10.1016/j.apgeochem.2009.09.025
|
[62] |
Biscaye P E, Grousset F E, Revel M, et al. Asian provenance of glacial dust (stage 2) in the Greenland Ice Sheet Project 2 Ice Core, Summit, Greenland [J]. Journal of Geophysical Research:Oceans, 1997, 102(C12): 26765-26781. doi: 10.1029/97JC01249
|
[63] |
German C R, Elderfield H. Rare earth elements in Saanich Inlet, British Columbia, a seasonally anoxic basin [J]. Geochimica et Cosmochimica Acta, 1989, 53(10): 2561-2571. doi: 10.1016/0016-7037(89)90128-2
|
[64] |
German C R, Holliday B P, Elderfield H. Redox cycling of rare earth elements in the suboxic zone of the Black Sea [J]. Geochimica et Cosmochimica Acta, 1991, 55(12): 3553-3558. doi: 10.1016/0016-7037(91)90055-A
|
[65] |
Alibo D S, Nozaki Y. Rare earth elements in seawater: particle association, shale-normalization, and Ce oxidation [J]. Geochimica et Cosmochimica Acta, 1999, 63(3-4): 363-372. doi: 10.1016/S0016-7037(98)00279-8
|
[66] |
Nozaki Y. Rare Earth Elements and their Isotopes in the Ocean[M]//Encyclopedia of Ocean Sciences. San Diego: Academic Press, 2001: 2354-2366.
|
[67] |
Luo M, Gieskes J, Chen L Y, et al. Sources, degradation, and transport of organic matter in the New Britain shelf-trench continuum, Papua New Guinea [J]. Journal of Geophysical Research:Biogeosciences, 2019, 124(6): 1680-1695. doi: 10.1029/2018JG004691
|