WANG Hu,HUANG Bo,SUN Yongfu. Measuring method on the seepage of fine particles on seabed based on chemical tracer[J]. Marine Geology & Quaternary Geology,2022,42(6):200-206. DOI: 10.16562/j.cnki.0256-1492.2022012802
Citation: WANG Hu,HUANG Bo,SUN Yongfu. Measuring method on the seepage of fine particles on seabed based on chemical tracer[J]. Marine Geology & Quaternary Geology,2022,42(6):200-206. DOI: 10.16562/j.cnki.0256-1492.2022012802

Measuring method on the seepage of fine particles on seabed based on chemical tracer

More Information
  • Received Date: January 27, 2022
  • Revised Date: May 02, 2022
  • Available Online: December 25, 2022
  • The seepage and transport of pore water and fine particles on the seabed have an important impact on the dynamic process of seabed deposition and the stability of seabed. To solve the difficulty in describing the seepage development process and quantifying the seepage mass of fine particles on seabed, we used white magnesium hydroxide powder that has good physical and chemical stability at seabed to indicate and qualify the process of fine sediments seepage via stratified sampling, reacting with hydrochloric acid, and ion chromatography. Experiments and analysis indicate that the proposed method could clearly describe the whole seepage development process including the upward migration of fine particles, the formation of different-scaled seepage channels, and the reach of partial tracer to the seabed surface, from which the seabed silt movement under cyclic load-induced excess pore water pressure and upward seepage pressure gradient were clearly presented and thus quantitative characterization of the layer-by-layer seepage of fine particles from the interior of the seabed to the bed surface was realized. This study in silt seabed. Moreover, the proposed method achieves quantitative characterization of the seepage mass of fine particles from the interior to the surface of seabed, which provides a practical tool for further clarify the coupling mechanism and developing quantitative evaluation methods of wave-induced liquefaction, seepage, and re-suspension of silt seabed.
  • [1]
    Wang J, Leung C, Chow Y. Numerical solutions for flow in porous media [J]. International Journal for numerical and analytical methods in geomechanics, 2003, 27(7): 565-583. doi: 10.1002/nag.286
    [2]
    Tam V T, Nga T T V. Assessment of urbanization impact on groundwater resources in Hanoi, Vietnam [J]. Journal of Environmental Management, 2018, 227(1): 107-116.
    [3]
    Jia Y, Zhang L, Zheng J, et al. Effects of wave-induced seabed liquefaction on sediment re-suspension in the Yellow River Delta [J]. Ocean Engineering, 2014, 89(1): 146-156.
    [4]
    Guo Z, Jeng D S, Zhao H, et al. Effect of seepage flow on sediment incipient motion around a free spanning pipeline [J]. Coastal Engineering, 2019, 143: 50-62. doi: 10.1016/j.coastaleng.2018.10.012
    [5]
    Liu X, Jia Y, Zheng J, et al. An experimental investigation of wave‐induced sediment responses in a natural silty seabed: New insights into seabed stratification [J]. Sedimentology, 2017, 64(2): 508-529. doi: 10.1111/sed.12312
    [6]
    单红仙, 刘涛, 陈友媛, 等. 波浪载荷导致黄河口潮坪沉积物垂向运移现场观测研究[J]. 工程地质学报, 2008, 16(2):216-221 doi: 10.3969/j.issn.1004-9665.2008.02.013

    Shan Hongxian, Liu Tao, Chen Youyuan, et al. Field observational study on vertical migration of tidal flat sediments in the Yellow River Estuary caused by wave loads [J]. Chinese Journal of Engineering Geology, 2008, 16(2): 216-221. doi: 10.3969/j.issn.1004-9665.2008.02.013
    [7]
    Zhang S, Jia Y, Wen M, et al. Vertical migration of fine-grained sediments from interior to surface of seabed driven by seepage flows: “sub-bottom sediment pump action” [J]. Journal of Ocean University of China, 2017, 16(1): 15-24. doi: 10.1007/s11802-017-3042-0
    [8]
    Uchiyama Y, Nadaoka K, Rölke P, et al. Submarine groundwater discharge into the sea and associated nutrient transport in a sandy beach [J]. Water Resources Research, 2000, 36(6): 1467-1479. doi: 10.1029/2000WR900029
    [9]
    王虎, 粟莉, 白玉川. 河口海岸铁板砂研究进展[J]. 水科学进展, 2019, 30(4):601-612 doi: 10.14042/j.cnki.32.1309.2019.04.015

    WANG Hu, SU Li, BAI Yuchuan. Research progress of estuarine and coastal iron plate sand [J]. Advances in Water Science, 2019, 30(4): 601-612. doi: 10.14042/j.cnki.32.1309.2019.04.015
    [10]
    张民生, 王秀海, 刘红军, 等. 循环水压作用下粉土渗流试验研究[J]. 中国海洋大学学报:自然科学版, 2014(9):82-89

    ZHANG Minsheng, WANG Xiuhai, LIU Hongjun, et al. Experimental study on silt seepage under the action of circulating water pressure [J]. Journal of Ocean University of China:Natural Science Edition, 2014(9): 82-89.
    [11]
    Takahashi H, Sassa S, Morikawa Y, et al. Stability of caisson-type breakwater foundation under tsunami-induced seepage [J]. Soils and Foundations, 2014, 54(4): 789-805. doi: 10.1016/j.sandf.2014.07.002
    [12]
    白玉川, 杨细根, 冀自青, 等. 波浪条件下海底管线与沙质海床间的相互作用[J]. 天津大学学报, 2011, 44(1):64-68

    BAI Yuchuan, YANG Xigen, JI Ziqing, et al. Interaction between submarine pipeline and sandy seabed under wave conditions [J]. Journal of Tianjin University, 2011, 44(1): 64-68.
    [13]
    Cheng X, Li G, Chen J, et al. Seismic response of a submarine tunnel under the action of a sea wave [J]. Marine structures, 2018, 60: 122-135. doi: 10.1016/j.marstruc.2018.03.004
    [14]
    Burnett W C, Dulaiova H. Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements [J]. Journal of environmental radioactivity, 2003, 69(1-2): 21-35. doi: 10.1016/S0265-931X(03)00084-5
    [15]
    陈建生, 董海洲, 李兴文, 等. 新安江右坝裂隙岩体渗流同位素示踪研究[J]. 水科学进展, 2001, 12(3):336-342 doi: 10.3321/j.issn:1001-6791.2001.03.010

    CHEN Jiansheng, DONG Haizhou, LI Xingwen, et al. Isotope tracing of seepage in the fractured rock mass of Youba in Xin'anjiang River [J]. Advances in Water Science, 2001, 12(3): 336-342. doi: 10.3321/j.issn:1001-6791.2001.03.010
    [16]
    孙晓宇, 刘华, 何长林, 等. 温度示踪法确定库水-地下水垂向交换速率[J]. 海洋湖沼通报, 2020(1):56-64

    SUN Xiaoyu, LIU Hua, HE Changlin, et al. Determining the vertical exchange rate of reservoir water and groundwater by temperature tracing method [J]. Bulletin of Oceanology and Limnology, 2020(1): 56-64.
    [17]
    Cascarano R N, Reeves D M, Henry M A. A Dye Tracer Approach for Quantifying Fluid and Solute Flux Across the Sediment–Water Interface [J]. Groundwater, 2021, 59(3): 428-437. doi: 10.1111/gwat.13060
    [18]
    高兴军, 徐薇薇, 余义常, 等. 智能化学示踪剂技术及其在油藏监测中的应用[J]. 地球科学进展, 2018, 33(05):532-544 doi: 10.11867/j.issn.1001-8166.2018.05.0532

    GAO Xingjun, XU Weiwei, YU Yichang, et al. Intelligent chemical tracer technology and its application in reservoir monitoring [J]. Advances in Earth Science, 2018, 33(05): 532-544. doi: 10.11867/j.issn.1001-8166.2018.05.0532
    [19]
    张丽萍, 贾永刚, 侯伟, 等. 液化过程对海床土性质改造的波浪水槽试验[J]. 海洋地质与第四纪地质, 2013, 33(3):171-180 doi: 10.3724/SP.J.1140.2013.030171

    ZHANG Liping, JIA Yonggang, HOU Wei, et al. Wave flume experiment on seabed soil property modification by liquefaction process [J]. Marine Geology & Quaternary Geology, 2013, 33(3): 171-180. doi: 10.3724/SP.J.1140.2013.030171
    [20]
    张少同, 贾永刚, 刘晓磊, 等. 现代黄河三角洲沉积物动态变化过程的特征与机理[J]. 海洋地质与第四纪地质, 2016, 36(6):33-44

    ZHANG Shaotong, JIA Yonggang, LIU Xiaolei, et al. Characteristics and mechanism of sediment dynamic change process in modern Yellow River Delta [J]. Marine Geology & Quaternary Geology, 2016, 36(6): 33-44.
    [21]
    Wang H, Liu H. Evaluation of storm wave-induced silty seabed instability and geo-hazards: A case study in the Yellow River delta [J]. Applied Ocean Research, 2016, 58: 135-145. doi: 10.1016/j.apor.2016.03.013
    [22]
    李广信. 高等土力学[M]. 清华大学出版社, 2004.

    Li Guangxin. Advanced Soil Mechanics [M]. Tsinghua University Press, 2004.
    [23]
    Wang L, Liang T, Kleinman P J A, et al. An experimental study on using rare earth elements to trace phosphorous losses from nonpoint sources [J]. Chemosphere, 2011, 85(6): 1075-1079. doi: 10.1016/j.chemosphere.2011.07.038
    [24]
    Lin R, Soong Y, Granite E J. Evaluation of trace elements in US coals using the USGS COALQUAL database version 3.0. Part I: Rare earth elements and yttrium (REY) [J]. International Journal of Coal Geology, 2018, 192: 1-13. doi: 10.1016/j.coal.2018.04.004
    [25]
    Wang X, Li N, Feng D, et al. Using chemical compositions of sediments to constrain methane seepage dynamics: a case study from Haima cold seeps of the South China Sea [J]. Journal of Asian Earth Sciences, 2018, 168: 137-144. doi: 10.1016/j.jseaes.2018.11.011
    [26]
    Jasechko S, Gibson J J, Birks S J, et al. Quantifying saline groundwater seepage to surface waters in the Athabasca oil sands region [J]. Applied Geochemistry, 2012, 27(10): 2068-2076. doi: 10.1016/j.apgeochem.2012.06.007
    [27]
    Su C, Zhang X, Fei Y, et al. Lateral seepage scope of downstream of Yellow River after the operation of Xiaolangdi reservoir and its impact on groundwater environment [J]. Geology in China, 2021, 48(6): 1669-1680.
    [28]
    Balvín A, Hokr M, Šteklová K, et al. Inverse modeling of natural tracer transport in a granite massif with lumped-parameter and physically based models: case study of a tunnel in Czechia [J]. Hydrogeology Journal, 2021, 29(8): 2633-2654. doi: 10.1007/s10040-021-02389-x
    [29]
    王刚, 许国辉, 黄哲, 等. 粉质土底床液化塌陷量形成试验研究[J]. 海洋地质与第四纪地质, 2014, 34(5):171-178

    WANG Gang, XU Guohui, HUANG Zhe, et al. Experimental study on the formation of liquefaction and collapse of silty soil bed [J]. Marine Geology & Quaternary Geology, 2014, 34(5): 171-178.
    [30]
    刘晓磊. 波浪导致现代黄河三角洲海床沉积物非均质化过程研究[D]. 中国海洋大学, 2013

    LIU Xiaolei. Study on the heterogeneity process of seabed sediments in the modern Yellow River Delta caused by waves [D]. Ocean University of China, 2013
  • Related Articles

    [1]LI Haiqi, WANG Aijun, YE Xiang, LIANG Haoshen, ZHANG Wangze, WU Shuilan, LI Yunhai. Spatio-temporal variations in grain size of surficial sediment on tidal flat of Langqi Island in Minjiang River estuary[J]. Marine Geology & Quaternary Geology, 2023, 43(6): 14-24. DOI: 10.16562/j.cnki.0256-1492.2023082302
    [2]ZHAO Xufeng, JIA Jianjun, WANG Xinkai, CAI Tinglu, YANG Yang, SHI Lianqiang, XIA Xiaoming. EVALUATION OF A NEW DYNAMIC LASER PARTICLE SIZE &SHAPE ANALYZER AND COMPARISON WITH THE SIEVING AND LASER DIFFRACTION PARTICLE SIZE ANALYZER[J]. Marine Geology & Quaternary Geology, 2015, 35(6): 175-184. DOI: 10.16562/j.cnki.0256-1492.2015.06.018
    [3]ZHU Qingguang, FENG Zhenxing, XU Xianan, WANG Yaping, GAO Jianhua. EVOLUTION OF TIDAL FLAT PROFILES UNDER THE INFLUENCE OF LAND RECLAMATION IN JIANGSU PROVINCE[J]. Marine Geology & Quaternary Geology, 2014, 34(3): 21-29. DOI: 10.3724/SP.J.1140.2014.03021
    [4]CAI Tinglu, JIA Jianjun, WANG Yaping. TECHNIQUES FOR PARTICLE SIZE DATA STANDARDIZATION: AN EXAMPLE FORM ESTUARINE AND COASTAL SEDIMENTS[J]. Marine Geology & Quaternary Geology, 2014, 34(1): 185-193. DOI: 10.3724/SP.J.1140.2014.01185
    [5]CHEN Jun, CHEN Hongyou, XU Guohua, WANG Yigang, CAI Hui. GRAIN SIZE CHARACTERISTICS AND INFLUENCE FACTORS OF THE TIDAL FLAT DEPOSITS AT THE TIAOZINI SANDBANK, JIANGSU PROVINCE[J]. Marine Geology & Quaternary Geology, 2011, 31(6): 21-26. DOI: 10.3724/SP.J.1140.2011.06021
    [6]MENG Xiangmei, JIA Yonggang, YANG Zhongnian, LIU Hui, SONG Jingtai, HOU Wei, ZHENG Jiewen. FIELD TESTING OF THE ERODIBILITY OF TIDAL FLAT SEDIMENT IN THE MODERN YELLOW RIVER DELTA[J]. Marine Geology & Quaternary Geology, 2010, 30(3): 39-45. DOI: 10.3724/SP.J.1140.2010.03039
    [7]QIAN Peng, ZHENG Xiangmin, WANG Xiaoyong, ZHANG Weiguo. PARTICLE SIZES,MAGNETIC PROPERTIES AND ORIGINS OF LOESS DEPOSITS FROM HUANGNISHAN HILL IN NANTONG, JIANGSU PROVINCE[J]. Marine Geology & Quaternary Geology, 2010, 30(1): 109-114. DOI: 10.3724/SP.J.1140.2010.01109
    [8]LIU Xu-ying, GAO Jian-hua, BAI Feng-long, LIU Zhi-yong, PAN Shao-ming. GRAIN SIZE INFORMATION IN DIFFERENT EVOLUTION PERIODS OF XINYANGGANG TIDAL FLAT IN JIANGSU PROVINCE[J]. Marine Geology & Quaternary Geology, 2008, 28(4): 27-35. DOI: 10.3724/SP.J.1140.2008.03027
    [9]DU Xiao-qin, GAO Shu, WANG Ya-ping. COMPARISON OF VELOCITY PROFILES ASSOCIATED WITH TIDAL ACCELERATION AND DECELERATION OVER INTERTIDAL FLATS[J]. Marine Geology & Quaternary Geology, 2006, 26(5): 37-44.
    [10]ZHOU Liang-yong, LI Guang-xue, LIU Jian, LI An-long, DENG Sheng-gui, WEN Guo-yi, ZHAO Dong-bo. CHARACTERISTICS OF TIDAL FLAT PROFILES IN THE YELLOW RIVER DELTA[J]. Marine Geology & Quaternary Geology, 2006, 26(2): 1-8.
  • Cited by

    Periodical cited type(2)

    1. 闫施帅,鄢全树,石学法,袁龙. 海底高原与俯冲带相互作用的地质效应的研究进展. 地球科学进展. 2024(07): 702-716 .
    2. 鄢全树,袁龙,闫施帅,刘振轩,吴增,石学法. 菲律宾海板块东南边界地质过程与研究展望. 海洋地质与第四纪地质. 2023(05): 50-63 . 本站查看

    Other cited types(0)

Catalog

    Article views PDF downloads Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return