SU Huaqiang,WANG Xiaojing,REN Yijun,et al. Speciation and enrichment of trace metals in Laptev Sea shelf sediment[J]. Marine Geology & Quaternary Geology,2022,42(4):61-72. DOI: 10.16562/j.cnki.0256-1492.2022012701
Citation: SU Huaqiang,WANG Xiaojing,REN Yijun,et al. Speciation and enrichment of trace metals in Laptev Sea shelf sediment[J]. Marine Geology & Quaternary Geology,2022,42(4):61-72. DOI: 10.16562/j.cnki.0256-1492.2022012701

Speciation and enrichment of trace metals in Laptev Sea shelf sediment

More Information
  • Received Date: January 26, 2022
  • Revised Date: March 28, 2022
  • Accepted Date: March 28, 2022
  • Available Online: August 08, 2022
  • Trace metals play an important role in marine biogeochemical cycles and participate in various marine biological, chemical and geological processes, which is of great significance for understanding marine environmental changes. In this paper, the grain size, organic carbon, trace metals (V, Cu, Co, Ni, Mo, U) and metal speciation of multi-core sediments collected from four stations in the Laptev Sea were analyzed, and the distribution characteristics and controlling factors of trace metals were discussed. By using our improved BCR continuous extraction method, the speciation of trace metals was extracted into four metal forms in the states of isolated weak acid soluble, reducible, oxidative, and residue. In addition, to understand the enriching mechanism of trace metals in the Laptev Sea from the continental shelf to the deep basin, the main factors involved in the formation of the metals during sedimentation were identified. Results show that the bulk contents of V, Cu, Co, Ni, Mo and U increased from Laptev Sea shelf to the adjacent slope, and the accumulation of trace metals in the sediment are controlled by the scavenging removal of iron and manganese oxides, and the input of terrigenous rivers. The phase state experiments show that the metallic elements exist mainly in residue state, while those in non-residue state, the reducible state dominated and its content increased from shelf to slope. Therefore, the mechanism of enrichment and transportation of trace metals from continental shelf to sea basin of the study region is mainly the “shelf-to-basin shuttling” controlled by Fe/Mn oxides, and affected by sediment re-suspension as well.
  • [1]
    李力, 王保栋. 痕量金属在海水中的存在形态和分析方法的研究进展[J]. 海洋科学, 2013, 37(1):119-125

    LI Li, WANG Baodong. Current researches on trace metal speciation in seawater [J]. Marine Sciences, 2013, 37(1): 119-125.
    [2]
    Morel F M M, Price N M. The biogeochemical cycles of trace metals in the oceans [J]. Science, 2003, 300(5621): 944-947. doi: 10.1126/science.1083545
    [3]
    Algeo T J, Tribovillard N. Environmental analysis of paleoceanographic systems based on molybdenum–Uranium Covariation [J]. Chemical Geology, 2009, 268(3-4): 211-225. doi: 10.1016/j.chemgeo.2009.09.001
    [4]
    常华进, 储雪蕾, 冯连君, 等. 氧化还原敏感微量元素对古海洋沉积环境的指示意义[J]. 地质论评, 2009, 55(1):91-99 doi: 10.3321/j.issn:0371-5736.2009.01.011

    CHANG Huajin, CHU Xuelei, FENG Lianjun, et al. Redox sensitive trace elements as paleoenvironments proxies [J]. Geological Review, 2009, 55(1): 91-99. doi: 10.3321/j.issn:0371-5736.2009.01.011
    [5]
    解兴伟, 袁华茂, 宋金明, 等. 东海季节性低氧海区柱状沉积物中氧化还原敏感元素对沉积环境变化的响应[J]. 海洋学报, 2020, 42(2):30-43

    XIE Xingwei, YUAN Huamao, SONG Jinming, et al. Response of redox sensitive elements to changes of sedimentary environment in core sediments of seasonal low-oxygen zone in East China Sea [J]. Acta Oceanologica Sinica, 2020, 42(2): 30-43.
    [6]
    Butler A. Acquisition and utilization of transition metal ions by marine organisms [J]. Science, 1998, 281(5374): 207-210. doi: 10.1126/science.281.5374.207
    [7]
    Moffett J W, Brand L E, Croot P L, et al. Cu speciation and cyanobacterial distribution in harbors subject to anthropogenic Cu inputs [J]. Limnology and Oceanography, 1997, 42(5): 789-799. doi: 10.4319/lo.1997.42.5.0789
    [8]
    Jakobsson M. Hypsometry and volume of the Arctic Ocean and its constituent seas [J]. Geochemistry, Geophysics, Geosystems, 2002, 3(5): 1-18.
    [9]
    Bauch H A, Kassens H. Arctic Siberian shelf environments: an introduction [J]. Global and Planetary Change, 2005, 48(1-3): 1-8. doi: 10.1016/j.gloplacha.2004.12.003
    [10]
    Kuzyk Z Z A, Gobeil C, Goñi M A, et al. Early diagenesis and trace element accumulation in North American Arctic margin sediments [J]. Geochimica et Cosmochimica Acta, 2017, 203: 175-200. doi: 10.1016/j.gca.2016.12.015
    [11]
    Li L, Wang X L, Ren Y J, et al. Enrichment of trace metals (V, Cu, Co, Ni, and Mo) in arctic sediments: from Siberian arctic Shelves to the Basin [J]. Journal of Geophysical Research:Oceans, 2021, 126(4): 1-14.
    [12]
    Whitmore L M, Morton P L, Twining B S, et al. Vanadium cycling in the Western Arctic Ocean is influenced by shelf-basin connectivity [J]. Marine Chemistry, 2019, 216: 103701. doi: 10.1016/j.marchem.2019.103701
    [13]
    Charette M A, Kipp L E, Jensen L T, et al. The transpolar drift as a source of riverine and shelf‐derived trace elements to the central Arctic Ocean [J]. Journal of Geophysical Research:Oceans, 2020, 125(5): e2019JC015920.
    [14]
    Wheeler P A, Watkins J M, Hansing R L. Nutrients, organic carbon and organic nitrogen in the upper water column of the Arctic Ocean: implications for the sources of dissolved organic carbon [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 1997, 44(8): 15271-1575,1577-1592.
    [15]
    Klunder M B, Bauch D, Laan P, et al. Dissolved iron in the Arctic shelf seas and surface waters of the central Arctic Ocean: impact of Arctic river water and ice-melt [J]. Journal of Geophysical Research:Oceans, 2012, 117(C1): C01027.
    [16]
    Kipp L E, Charette M A, Moore W S, et al. Increased fluxes of shelf-derived materials to the central Arctic Ocean [J]. Science Advances, 2018, 4(1): eaao1302. doi: 10.1126/sciadv.aao1302
    [17]
    Rauret G, López-Sánchez J F, Sahuquillo A, et al. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials [J]. Journal of Environmental Monitoring, 1999, 1(1): 57-61. doi: 10.1039/a807854h
    [18]
    Shepard F P. Nomenclature based on sand-silt-clay ratios [J]. Journal of Sedimentary Research, 1954, 24(3): 151-158.
    [19]
    Rudnick R L, Gao S. Composition of the continental crust[M]//Holland H D, Turekian K K. Treatise on Geochemistry. Oxford: Elsevier, 2014: 1-51.
    [20]
    董春肖, 李铁, 刘春颖, 等. 长江口及其邻近海域表层沉积物中部分金属元素赋存形态研究[J]. 海洋湖沼通报, 2017(5):114-124

    DONG Chunxiao, LI Tie, LIU Chunying, et al. A study on the geochemical forms of metal elements in the surface sediments of Yangtze estuary and its Adjacent Sea Areas [J]. Transactions of Oceanology and Limnology, 2017(5): 114-124.
    [21]
    王小静, 李力, 高晶晶, 等. 渤海西南部近岸功能区表层沉积物重金属形态分析及环境评价[J]. 海洋与湖沼, 2015, 46(3):517-525 doi: 10.11693/hyhz20140900258

    WANG Xiaojing, LI Li, GAO Jingjing, et al. Geochemical speciation and environmental assessment of heavy metals in surface sediments infunctional zones of southwest Bohai Sea, China [J]. Oceanologia et Limnologia Sinica, 2015, 46(3): 517-525. doi: 10.11693/hyhz20140900258
    [22]
    Crusius J, Calvert S, Pedersen T, et al. Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition [J]. Earth and Planetary Science Letters, 1996, 145(1-4): 65-78. doi: 10.1016/S0012-821X(96)00204-X
    [23]
    Koschinsky A. Heavy metal distributions in Peru Basin surface sediments in relation to historic, present and disturbed redox environments [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2001, 48(17-18): 3757-3777. doi: 10.1016/S0967-0645(01)00066-2
    [24]
    Canfield D E, Thamdrup B, Hansen J W, et al. The anaerobic degradation of organic matter in Danish coastal sediments: Iron reduction, manganese reduction, and sulfate reduction [J]. Geochimica et Cosmochimica Acta, 1993, 57(16): 3867-3883. doi: 10.1016/0016-7037(93)90340-3
    [25]
    Calvert S E, Pedersen T F. Geochemistry of Recent oxic and anoxic marine sediments: Implications for the geological record [J]. Marine Geology, 1993, 113(1-2): 67-88. doi: 10.1016/0025-3227(93)90150-T
    [26]
    Morford J L, Emerson S. The geochemistry of redox sensitive trace metals in sediments [J]. Geochimica et Cosmochimica Acta, 1999, 63(11-12): 1735-1750. doi: 10.1016/S0016-7037(99)00126-X
    [27]
    Sattarova V, Aksentov K, Astakhov A, et al. Trace metals in surface sediments from the Laptev and East Siberian Seas: Levels, enrichment, contamination assessment, and sources [J]. Marine Pollution Bulletin, 2021, 173: 112997. doi: 10.1016/j.marpolbul.2021.112997
    [28]
    Gordeev V V. Fluvial sediment flux to the Arctic Ocean [J]. Geomorphology, 2006, 80(1-2): 94-104. doi: 10.1016/j.geomorph.2005.09.008
    [29]
    Rachold V. Major, trace and rare earth element geochemistry of suspended particulate material of East Siberian rivers draining to the Arctic Ocean[M]//Kassens H, Bauch H A, Dmitrenko I A, et al Land-Ocean Systems in the Siberian Arctic-Dynamics and History. Berlin: Springer Verlag, 1999: 199-222.
    [30]
    程俊, 黄怡, 王淑红, 等. 南海典型断面表层沉积物中氧化还原敏感元素的分布特征及其控制因素[J]. 海洋地质与第四纪地质, 2019, 39(2):90-103

    CHENG Jun, HUANG Yi, WANG Shuhong, et al. Distribution pattern and controlling factors of redox sensitive elements in the surface sediments from four typical transects in the South China Sea [J]. Marine Geology & Quaternary Geology, 2019, 39(2): 90-103.
    [31]
    Li G, Rashid H, Zhong L F, et al. Changes in deep water oxygenation of the South China Sea since the last glacial period [J]. Geophysical Research Letters, 2018, 45(17): 9058-9066. doi: 10.1029/2018GL078568
    [32]
    Wehrli B, Stumm W. Vanadyl in natural waters: Adsorption and hydrolysis promote oxygenation [J]. Geochimica et Cosmochimica Acta, 1989, 53(1): 69-77. doi: 10.1016/0016-7037(89)90273-1
    [33]
    Breit G N, Wanty R B. Vanadium accumulation in carbonaceous rocks: A review of geochemical controls during deposition and diagenesis [J]. Chemical Geology, 1991, 91(2): 83-97. doi: 10.1016/0009-2541(91)90083-4
    [34]
    Algeo T J, Maynard J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems [J]. Chemical Geology, 2004, 206(3-4): 289-318. doi: 10.1016/j.chemgeo.2003.12.009
    [35]
    März C, Poulton S W, Brumsack H J, et al. Climate-controlled variability of iron deposition in the Central Arctic Ocean (southern Mendeleev Ridge) over the last 130, 000 years [J]. Chemical Geology, 2012, 330-331: 116-126. doi: 10.1016/j.chemgeo.2012.08.015
    [36]
    李文君, 卢彦宏, 高峰, 等. 东海泥质区表层沉积物中锰、铁和铝的赋存形态及影响因素研究[J]. 中国海洋大学学报, 2012, 42(S1):165-171

    LI Wenjun, LU Yanhong, GAO Feng, et al. Study of the geochemical forms of manganese, iron and aluminum in surface sediments of mud area from the east China Sea continental shelf and their influence factors [J]. Journal of Ocean University of China, 2012, 42(S1): 165-171.
    [37]
    Kondo Y, Obata H, Hioki N, et al. Transport of trace metals (Mn, Fe, Ni, Zn and Cd) in the western Arctic Ocean (Chukchi Sea and Canada Basin) in late summer 2012 [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2016, 116: 236-252. doi: 10.1016/j.dsr.2016.08.010
    [38]
    Scholz F, Hensen C, Noffke A, et al. Early diagenesis of redox-sensitive trace metals in the Peru upwelling area-response to ENSO-related oxygen fluctuations in the water column [J]. Geochimica et Cosmochimica Acta, 2011, 75(22): 7257-7276. doi: 10.1016/j.gca.2011.08.007
    [39]
    Klunder M B, Laan P, Middag R, et al. Dissolved iron in the Arctic Ocean: Important role of hydrothermal sources, shelf input and scavenging removal [J]. Journal of Geophysical Research:Oceans, 2012, 117(C4): C04014.
    [40]
    Van de Velde S J, Hylén A, Kononets M, et al. Elevated sedimentary removal of Fe, Mn, and trace elements following a transient oxygenation event in the Eastern Gotland Basin, central Baltic Sea [J]. Geochimica et Cosmochimica Acta, 2020, 271: 16-32. doi: 10.1016/j.gca.2019.11.034
  • Cited by

    Periodical cited type(6)

    1. 黄子强,吴招才,方银霞,许明炬,张家岭. 菲律宾海板块地壳结构特征:基于地震约束的重力反演. 地球科学. 2025(01): 234-245 .
    2. 于传海,刘思青,高维,曾信,赵旭,徐敏. 莫克兰俯冲带巨厚沉积层速度结构及含水量分布特征. 地球物理学报. 2025(03): 1054-1068 .
    3. 刘振轩,鄢全树,刘焱光,杨刚,石学法. 九州-帕劳脊南段基底玄武岩的单斜辉石矿物化学及成因意义. 海洋学报. 2023(06): 75-92 .
    4. Tian-yu Zhang,Pan-feng Li,Lu-ning Shang,Jing-yi Cong,Xia Li,Yong-jian Yao,Yong Zhang. Identification and evolution of tectonic units in the Philippine Sea Plate. China Geology. 2022(01): 96-109 .
    5. 侯方辉,秦轲,陆凯,赵京涛,李攀峰,孟祥君,黄威,胡刚,孙军,龚小晗. 九州-帕劳海脊中段及两侧盆地构造沉积特征及俯冲起始:多道反射地震综合研究. 海洋地质与第四纪地质. 2022(05): 187-198 . 本站查看
    6. 杨慧良,尉佳,李攀峰,刘长春,董凌宇. 九州-帕劳海脊两侧深海盆地浅部地层结构特征与分析. 海洋地质与第四纪地质. 2021(01): 14-21 . 本站查看

    Other cited types(4)

Catalog

    Article views (2400) PDF downloads (66) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return