BAO Yanjun,ZHANG Penghui,CHEN Jianwen,et al. Pore characteristics and influencing factors of the Lower Cambrian marine shale in the Lower Yangtze area[J]. Marine Geology & Quaternary Geology,2022,42(2):144-157. DOI: 10.16562/j.cnki.0256-1492.2021110201
Citation: BAO Yanjun,ZHANG Penghui,CHEN Jianwen,et al. Pore characteristics and influencing factors of the Lower Cambrian marine shale in the Lower Yangtze area[J]. Marine Geology & Quaternary Geology,2022,42(2):144-157. DOI: 10.16562/j.cnki.0256-1492.2021110201

Pore characteristics and influencing factors of the Lower Cambrian marine shale in the Lower Yangtze area

More Information
  • Received Date: November 01, 2021
  • Revised Date: November 23, 2021
  • Accepted Date: November 23, 2021
  • Available Online: April 13, 2022
  • The marine shale samples of the Lower Cambrian Mufushan Formation collected from the Well GD1 in the Lower Yangtze area are systematically studied in this paper for pore structure characteristics and their influencing factors. Various testing methods, such as field emission scanning electron microscope, X-ray diffraction analysis, gas adsorption, high-pressure mercury injection and organic geochemical analysis are adopted for this research. It is revealed that the Mufushan shale is mainly composed of quartz, calcite and clay minerals in mineralogy. The total organic carbon content is quite high, and the organic matter is dominated by the type I of kerogen overmatured. The pores are dominated by matrix pores including intergranular and intragranular pores, organic matter pores and microfractures. Organic matter pores are well developed, and the proportion of intergranular pores is the highest. Organic matter abundance has certain influence on the pore size and specific surface area of organic matter pores. Compaction is the main factor for pore evolution in the overmatured stage, while rigid minerals, as supporting components, play a positive role in the preservation of organic matter pores. The fractal dimension has a good correlation with the total organic carbon content and specific surface area but weak correlation with pore volume, suggesting that the roughness of the pore wall and the complexity of the pore structure are affected by organic matter abundance.
  • [1]
    邹才能, 董大忠, 王玉满, 等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010, 37(6):641-653 doi: 10.1016/S1876-3804(11)60001-3

    ZOU Caineng, DONG Dazhong, WANG Yuman, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China [J]. Petroleum Exploration and Development, 2010, 37(6): 641-653. doi: 10.1016/S1876-3804(11)60001-3
    [2]
    Slatt R M, O’Brien N R. Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks [J]. AAPG Bulletin, 2011, 95: 2017-2030. doi: 10.1306/03301110145
    [3]
    Nelson P H. Pore-throat sizes in sandstones, tight sanstones, and shales [J]. AAPG Bulletin, 2009, 93: 329-340. doi: 10.1306/10240808059
    [4]
    Ross D J K, Bustin R M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs [J]. Marine and Petroleum Geology, 2009, 26: 916-927. doi: 10.1016/j.marpetgeo.2008.06.004
    [5]
    Mastalerz M, Schimmelmann A, Drobniak A, et al. Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: Insight from organic petrology, gas adsorption, and mercury intrusion [J]. AAPG Bulletin, 2013, 97: 1621-1643. doi: 10.1306/04011312194
    [6]
    Bernard S, Horsfield B. Thermal maturation of gas shale systems [J]. Annual Review of Earth and Planetary Sciences, 2014, 42(1): 635-651. doi: 10.1146/annurev-earth-060313-054850
    [7]
    张鹏辉, 梁杰, 陈建文, 等. 海相页岩气储层特征研究进展与发展动态[J]. 海相油气地质, 2017, 22(4):69-76 doi: 10.3969/j.issn.1672-9854.2017.04.009

    ZHANG Penghui, LIANG Jie, CHEN Jianwen, et al. Reservoir characteristics of marine gas shales: Advances and trends [J]. Marine Origin Petroleum Geology, 2017, 22(4): 69-76. doi: 10.3969/j.issn.1672-9854.2017.04.009
    [8]
    王阳, 朱炎铭. 上扬子区龙马溪组页岩微观孔缝演化与页岩气赋存[M]. 徐州: 中国矿业大学出版社, 2018

    WANG Yang, ZHU Yanming. Microscopic pore evolution and shale gas occurrence of Longmaxi Formation in Upper Tangtze aera[M]. Xuzhou: China University of Mining and Technology Press, 2018.
    [9]
    Zhang P H, Lee Y I, Zhang J L. A review of high-resolution X-ray computered tomography applied to petroleum geology and a case study [J]. Micron, 2019, 124,102702: 1-10.
    [10]
    鲍衍君, 张鹏辉, 梁杰, 等. 加拿大魁北克省奥陶系Utica海相页岩矿物分析及孔隙结构特征[J]. 海洋地质前沿, 2020, 36(10):57-67

    BAO Yanjun, ZHANG Penghui, LIANG Jie, et al. Mineralogy and pore structures of the Ordovician Utica shale in Quebec, Canada [J]. Marine Geology Frontiers, 2020, 36(10): 57-67.
    [11]
    Keller L M, Schuetz P, Erni R, et al. Characterization of multi-scale microstructural features in Opalinus clay [J]. Microporous and Mesoporous Materials, 2012, 170(4): 84-90.
    [12]
    Pommer M, Milliken K. Pore types and pore-size distributions across thermal maturity, Eagle Ford Formation, southern Texas [J]. AAPG Bulletin, 2015, 99: 1713-1744. doi: 10.1306/03051514151
    [13]
    王羽, 金婵, 汪丽华, 等. 应用氩离子抛光-扫描电镜方法研究四川九老洞组页岩微观孔隙特征[J]. 岩矿测试, 2015, 34(3):278-285

    WANG Yu, JIN Chan, WANG Lihua, et al. Characterization of pore structures of Jiulaodong Formation shale in the Sichuan Basin by SEM with Ar-ion milling [J]. Rock and Mineral Analysis, 2015, 34(3): 278-285.
    [14]
    张磊磊, 陆正元, 王军, 等. 渤海湾盆地沾化凹陷沙三下亚段页岩油层段微观孔隙结构[J]. 石油与天然气地质, 2016, 37(1):80-86 doi: 10.11743/ogg20160111

    ZHANG Leilei, LU Zhengyuan, WANG Jun, et al. Microscopic pore structure of shale oil reservoirs in the Lower 3rd Member of Shahejie Formation in Zhanhua Sag, Bohai Bay Basin [J]. Oil & Gas Geology, 2016, 37(1): 80-86. doi: 10.11743/ogg20160111
    [15]
    戚明辉, 李君军, 曹茜. 基于扫描电镜和JMicroVision图像分析软件的泥页岩孔隙结构表征研究[J]. 岩矿测试, 2019, 38(3):260-269

    QI Minghui, LI Junjun, CAO Qian. The pore structure characterization of shale based on scanning electron microscopy and JMicroVision [J]. Rock and Mineral Analysis, 2019, 38(3): 260-269.
    [16]
    Katz A J, Thompson A H. Fractal sandstone pores: Implications for conductivity and pore formation [J]. Physical Review Letters, 1985, 54(12): 1325-1328. doi: 10.1103/PhysRevLett.54.1325
    [17]
    Cox B L, Wang J S Y. Fractal surfaces: Measurement and applications in the earth sciences [J]. Fractals, 1993, 1(1): 87-115. doi: 10.1142/S0218348X93000125
    [18]
    Schlueter E M, Zimmerman R W, Witherspoon P A, et al. The fractal dimension of pores in sedimentary rocks and its influence on permeability [J]. Engineering Geology., 1997, 48(3): 199-215.
    [19]
    Yu B M, Cheng P. A fractal permeability model for bi-dispersed porous media [J]. International Journal of Heat and Mass Transfer, 2002, 45(14): 2983-2993. doi: 10.1016/S0017-9310(02)00014-5
    [20]
    Sun W, Zuo Y J, Wu Z H, et al. Fractal analysis of pores and the pore structure of the Lower Cambrian Niutitang shale in northern Guizhou province: Investigations using NMR, SEM and image analyses [J]. Marine and Petroleum Geology, 2019, 99: 416-428. doi: 10.1016/j.marpetgeo.2018.10.042
    [21]
    Song W H, Wang D Y, Yao J, et al. Multiscale image-based fractal characteristic of shale pore structure with implication to accurate prediction of gas permeability [J]. Fuel, 2019, 241: 522-532. doi: 10.1016/j.fuel.2018.12.062
    [22]
    Liu B, Gao Y F, Liu K Q, et al. Pore structure and adsorption hysteresis of the middle Jurassic Xishanyao shale formation in the Southern Junggar Basin, northwest China [J]. Energy Exploration & Exploitation, 2021, 39(3): 761-778.
    [23]
    Yang F, Ning Z F, Liu H Q. Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin, China [J]. Fuel, 2014, 115: 378-384. doi: 10.1016/j.fuel.2013.07.040
    [24]
    Wang M, Xue H T, Tian S S, et al. Fractal characteristics of Upper Cretaceous lacustrine shale from the Songliao Basin, NE China [J]. Marine and Petroleum Geology, 2015, 67: 144-153. doi: 10.1016/j.marpetgeo.2015.05.011
    [25]
    Li A, Ding W L, He J H, et al. Investigation of pore structure and fractal characteristics of organicrich shale reservoirs: A case study of Lower Cambrian Qiongzhusi Formation in Malong block of eastern Yunnan Province, South China [J]. Marine and Petroleum Geology, 2016, 70: 46-57. doi: 10.1016/j.marpetgeo.2015.11.004
    [26]
    Yang R, He S, Yi J Z, et al. Nano-scale pore structure and fractal dimension of organic-rich Wufeng-Longmaxi shale from Jiaoshiba area, Sichuan Basin: Investigations using FE-SEM, gas adsorption and helium pycnometry [J]. Marine and Petroleum Geology, 2016, 70: 27-45. doi: 10.1016/j.marpetgeo.2015.11.019
    [27]
    Hao F, Zou H, Lu Y. Mechanisms of shale gas storage: Implications for shale gas exploration in China [J]. AAPG Bulletin, 2013, 97: 1325-1346. doi: 10.1306/02141312091
    [28]
    张金川, 杨超, 陈前, 等. 中国潜质页岩形成和分布[J]. 地学前缘, 2016, 23(1):074-086

    ZHANG Jinchuan, YANG Chao, CHEN Qian, et al. Deposition and distribution of potential shales in China [J]. Earth Science Frontiers, 2016, 23(1): 074-086.
    [29]
    邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(二)[J]. 石油勘探与开发, 2016, 43(2):1-13

    ZOU Caineng, DONG Dazhong, WANG Yuman, et al. Shale gas in China: Characteristics, challenges and prospects (II) [J]. Petroleum Exploration and Development, 2016, 43(2): 1-13.
    [30]
    梁狄刚, 郭彤楼, 陈建平, 等. 中国南方海相生烃成藏研究的若干新进展(一)——南方四套区域性海相烃源岩的分布[J]. 海相石油地质, 2008, 13(2):1-16

    LIANG Digang, GUO Tonglou, CHEN Jianping, et al. Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions, southern China (Part 1): Distribution of four suits of regional marine source rocks [J]. Marine Origin Petroleum Geology, 2008, 13(2): 1-16.
    [31]
    刘小平, 潘继平, 刘东鹰, 等. 苏北地区下寒武统幕府山组页岩气勘探前景[J]. 成都理工大学学报:自然科学版, 2012, 39(2):198-205

    LIU Xiaoping, PAN Jiping, LIU Dongying, et al. Shale-gas exploration prospect of Lower Cambrian Mufushan Formation in the northern Jiangsu, China [J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2012, 39(2): 198-205.
    [32]
    张鹏辉, 付奕霖, 梁杰, 等. 南黄海盆地下古生界油气地质条件与勘探前景[J]. 地质通报, 2021, 40(2/3):243-251

    ZHANG Penghui, FU Yilin, LIANG Jie, et al. Hydrocarbon geological conditions and exploration prospects of Lower Paleozoic in the South Yellow Sea Basin [J]. Geological Bulletin of China, 2021, 40(2/3): 243-251.
    [33]
    陈建文, 雷宝华, 梁杰, 等. 南黄海盆地油气资源调查新进展[J]. 海洋地质与第四纪地质, 2018, 38(3):1-23

    CHEN Jianwen, LEI Baohua, LIANG Jie, et al. New progress of petroleum resources survey in South Yellow Sea basin [J]. Marine Geology & Quaternary Geology, 2018, 38(3): 1-23.
    [34]
    Du X B, Zhang M Q, Lu Y C, et al. Lithofacies and depositional characteristics of gas shales in the western area of the Lower Yangtze, China. Geological Journal, 2015, 50(5): 683-701.
    [35]
    Cai Z R, Huang Q T, Xia B, et al. Differences in shale gas exploration prospects of the upper Yangtze Platform and the lower Yangtze Platform: Insights from computer modelling of tectonic development [J]. Journal of Natural Gas Science and Engineering, 2016, 36: 42-53. doi: 10.1016/j.jngse.2016.10.004
    [36]
    陈建文, 梁杰, 张银国, 等. 中国海域油气资源潜力分析与黄东海海域油气资源调查进展[J]. 海洋地质与第四纪地质, 2019, 39(6):1-29

    CHEN Jianwen, LIANG Jie, ZHANG Yingguo, et al. Regional evaluation of oil and gas resources in offshore China and exploration of marine Paleo-Mesozoic oil and gas in the Yellow Sea and East China Sea [J]. Marine Geology & Quaternary Geology, 2019, 39(6): 1-29.
    [37]
    梁杰, 许明, 陈建文, 等. 印支运动在南黄海盆地的响应及其对油气地质条件的影响[J]. 地质通报, 2021, 40(2/3):252-259

    LIANG Jie, XU Ming, CHEN Jianwen, et al. The response of the Indosinian Movement to the South Yellow Sea basin and its influence on the hydrocarbon geological conditions [J]. Geological Bulletin of China, 2021, 40(2/3): 252-259.
    [38]
    陈建文, 龚建明, 李刚, 等. 南黄海盆地海相中—古生界油气资源潜力巨大[J]. 海洋地质前沿, 2016, 32(1):1-7

    CHEN Jianwen, GONG Jianming, LI Gang, et al. Great resources potential of the marine Mesozoic-Paleozoic in the South Yellow Sea Basin [J]. Marine Geology Frontiers, 2016, 32(1): 1-7.
    [39]
    吴淑玉, 刘俊, 陈建文, 等. 南黄海崂山隆起石炭系—下二叠统孔隙型碳酸盐岩储层预测[J]. 海洋地质与第四纪地质, 2020, 40(5):136-148

    WU Shuyu, LIU Jun, CHEN Jianwen, et al. Prediction of pore-dominated Carboniferous-Lower Permian carbonate reservoir at the Laoshan Uplift, South Yellow Sea Basin [J]. Marine Geology & Quaternary Geology, 2020, 40(5): 136-148.
    [40]
    张玉玺, 周江羽, 陈建文, 等. 下扬子地区幕府山组陆缘海-台地黑色细粒沉积岩系沉积学和孔隙结构特征[J]. 地球科学, 2021, 46(1):186-199

    ZHANG Yuxi, ZHOU Jiangyu, CHEN Jianwen, et al. Sedimentology and porosity structures of the epicontinental sea-platform fine-grained deposits of Mufushan Formation in Lower Yangtze area [J]. Earth Science, 2021, 46(1): 186-199.
    [41]
    Zhang K, Song Y, Jiang S, et al. Mechanism analysis of organic matter enrichment in different sedimentary backgrounds: A case study of the Lower Cambrian and the Upper Ordovician-Lower Silurian, in Yangtze region [J]. Marine and Petroleum Geology, 2019, 99: 488-497. doi: 10.1016/j.marpetgeo.2018.10.044
    [42]
    Loucks R G, Reed R M, Ruppel S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores [J]. AAPG Bulletin, 2012, 96: 1071-1098. doi: 10.1306/08171111061
    [43]
    Sing K S. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) [J]. Pure and Applied Chemistry, 1985, 57(4): 603-619. doi: 10.1351/pac198557040603
    [44]
    Wee J H, Jun C S, Lee K Y. The Surface fractal investigation of anode electrode of molten carbonate fuel cell [J]. Studies in Surface Science and Catalysis, 2006, 159: 621-624.
    [45]
    Yao Y B, Liu D M, Tang D Z, et al. Fractal characterization of adsorption-pores of coals from North China: An investigation on CH4 adsorption capacity of coals [J]. International Journal of Coal Geology, 2008, 73(1): 27-42. doi: 10.1016/j.coal.2007.07.003
    [46]
    Bu H L, Ju Y W, Tan J Q, et al. Fractal characteristics of pores in non-marine shales from the Huainan coalfield, eastern China [J]. Journal of Natural Gas Science and Engineering, 2015, 24: 166-177. doi: 10.1016/j.jngse.2015.03.021
    [47]
    Pfeifer P, Avnir D. Chemistry in Noninteger Dimensions Between Two and Three: I. Fractal Theory of Heterogeneous Surfaces [J]. Journal of Chemical Physics, 1983, 79(7): 3558-3565. doi: 10.1063/1.446210
    [48]
    Ahnad A L, Mustafa N N N. Pore surface fractal analysis of palladium-alumina ceramic membrane using Frenkel–Halsey–Hill (FHH) model [J]. Journal of Colloid and Interface Science, 2006, 301(2): 575-584. doi: 10.1016/j.jcis.2006.05.041
    [49]
    汪啸风, Hoffknecht A, 萧建新, 等. 笔石、几丁虫和牙反射率在热成熟度上的应用[J]. 地质学报, 1992, 66(3):269-279

    WANG Xiaofeng, Hoffknecht A, XIAO Jianxin, et al. Graptolite, Chitinozoan and Scolecodont Reflec, Tances and their use as an indicator of thermal maturity [J]. Acta Geologica Sinica, 1992, 66(3): 269-279.
    [50]
    Bertrand R. Correlations among the reflectances of vitrinite, chitinozoans, graptolites and scolecodonts [J]. Organic Geochemistry, 1990, 15(6): 565-574. doi: 10.1016/0146-6380(90)90102-6
    [51]
    Liu B, Schieber J, Mastalerz M. Petrographic and micro-FTIR study of organic matter in the Upper Devonian New Albany shale during thermal maturation: Implications for kerogen transformation[C]// Shale Diagenesis: Research Perspectives for Shale Hydrocarbon Reservoirs, Seals, and Source Rocks. Tulsa: AAPG Memoir, 2019: 165-188.
    [52]
    张鹏辉, 陈志勇, 薛路, 等. 塔里木盆地西北缘下寒武统黑色岩系差异性成岩演化及其影响因素[J]. 岩石学报, 2020, 36(11):3463-3476

    ZHANG Penghui, CHEN Zhiyong, XUE Lu, et al. The differential diagenetic evolution and its influencing factors of Lower Cambrian black rock series in the northwestern margin of Tarim Basin [J]. Acta Petrologica Sinica, 2020, 36(11): 3463-3476.
    [53]
    Thommes M, Kaneko K, Neimark A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) [J]. Pure and Applied Chemistry, 2015, 87(9-10): 1051-1069. doi: 10.1515/pac-2014-1117
    [54]
    Milliken K L, Rudnicki M, Awwiller D N, et al. Organic matter-hosted ore system, Marcellus formation (Devonian), Pennsylvania [J]. AAPG Bulletin, 2013, 97(2): 177-200. doi: 10.1306/07231212048
    [55]
    Zhang Y F, Yu B S, Pan Z J, et al. Effect of thermal maturity on shale pore structure: A combined study using extracted organic matter and bulk shale from Sichuan Basin, China [J]. Journal of Natural Gas Science and Engineering, 2020, 74: 103089. doi: 10.1016/j.jngse.2019.103089
    [56]
    Li X, Jiang Z X, Wang P F, et al. Porosity-preserving mechanisms of marine shale in Lower Cambrian of Sichuan Basin, South China [J]. Journal of Natural Gas Science and Engineering, 2018, 55: 191-205. doi: 10.1016/j.jngse.2018.05.002
    [57]
    Liu X J, Xiong J, Liang L X. Investigation of pore structure and fractal characteristics of organicrich Yanchang formation shale in central China by nitrogen adsorption/desorption analysis [J]. Journal of Natural Gas Science and Engineering, 2015, 27(2): 402-409.
    [58]
    Ji W M, Song Y, Jiang Z X, et al. Fractal characteristics of nano-pores in the Lower Silurian Longmaxi shales from the Upper Yangtze Platform, south China [J]. Marine and Petroleum Geology, 2016, 78: 88-98. doi: 10.1016/j.marpetgeo.2016.08.023
    [59]
    陈燕燕, 邹才能, Maria Mastalerz, 等. 页岩微观孔隙演化及分形特征研究[J]. 天然气地球科学, 2015, 26(9):1646-1656

    CHEN Yanyan, ZOU Caineng, Maria Mastalerz, et al. Porosity and fractal characteristics of shale across a maturation gradient [J]. Natural Gas Geoscience, 2015, 26(9): 1646-1656.
    [60]
    胡琳, 朱炎铭, 陈尚斌, 等. 蜀南双河龙马溪组页岩孔隙结构的分形特征[J]. 新疆石油地质, 2013, 34(1):79-82

    HU Lin, ZHU Yanming, CHEN Shangbin, et al. Fractal characteristics of shale pore structure of Longmaxi Formation in Shuanghe area in southern Sichuan [J]. Xinjiang Petroleum Geology, 2013, 34(1): 79-82.
  • Related Articles

    [1]WANG Wenjuan, ZHANG Yinguo, CHEN Jianwen, YANG Yanqiu. Sequence stratigraphy and sedimentary evolution in the Lower Cretaceous of the Eastern Depression in the North Yellow Sea Basin[J]. Marine Geology & Quaternary Geology, 2024, 44(3): 125-135. DOI: 10.16562/j.cnki.0256-1492.2023100701
    [2]XU Ming, CHEN Jianwen, YUAN Yong, ZHANG Yinguo, LIANG Jie, LI Huijun, WANG Jianqiang, WU Shuyu. Sedimentary environment of the Lower Cambrian Mufushan Formation in the Lower Yangtze region: Evidence from whole-rock geochemistry[J]. Marine Geology & Quaternary Geology, 2021, 41(6): 82-90. DOI: 10.16562/j.cnki.0256-1492.2020101601
    [3]WU Shuyu, LIU Jun, CHEN Jianwen, LIANG Jie, ZHANG Yinguo, YUAN Yong, XU Ming. Prediction of pore-dominated Carboniferous-Lower Permian carbonate reservoir at the Laoshan Uplift, South Yellow Sea Basin[J]. Marine Geology & Quaternary Geology, 2020, 40(5): 136-148. DOI: 10.16562/j.cnki.0256-1492.2020031701
    [4]LIU Jiyong, ZHANG Feiyan, YIN Yanling. Lithofacies and paleogeographic study on late Cambrian hydrocarbon source rocks in Lower Yangtze region[J]. Marine Geology & Quaternary Geology, 2018, 38(3): 85-95. DOI: 10.16562/j.cnki.0256-1492.2018.03.008
    [5]XIA Zailian, HUA Caixia, LIU Jiyong, YU Hao. Favorable Lower Paleozoic exploration targets in the Lower Yangtze region[J]. Marine Geology & Quaternary Geology, 2018, 38(3): 66-74. DOI: 10.16562/j.cnki.0256-1492.2018.03.006
    [6]WANG Wenjuan, DOU Zhenya, CHEN Jianwen, ZHANG Yinguo, LIANG Jie. MARINE PALEO-MESOZOIC HYDROCARBON SOURCE ROCKS ON LAND OF THE LOWER YANGTZE PLATFORM AND THEIR IMPLICATIONS FOR OIL AND GAS EXPLORATION IN THE SOUTH YELLOW SEA BASIN[J]. Marine Geology & Quaternary Geology, 2017, 37(3): 138-146. DOI: 10.16562/j.cnki.0256-1492.2017.03.014
    [7]ZHANG Zhenwei, DING Hansheng, ZHANG Yajin. CARBON AND OXYGEN STABLE ISOTOPE FEATURES OF THE LOWER ORDOVICIAN IN GUCHENG REGION OF TARIM BASIN[J]. Marine Geology & Quaternary Geology, 2016, 36(2): 59-64. DOI: 10.16562/j.cnki.0256-1492.2016.02.007
    [8]LIU Jun, WU Shuyu, XIAO Guolin, LUAN Xiwu, . THE APPLICATION OF SPECTRAL DECOMPOSITION TECHNOLOGY TO THE LOWER CRETACEOUS RESERVOIRS PREDICTION IN EASTERN DEPRESSION OF THE NORTH YELLOW SEA[J]. Marine Geology & Quaternary Geology, 2015, 35(4): 95-103. DOI: 10.16562/j.cnki.0256-1492.2015.04.010
    [9]CHEN Yongquan, ZHOU Xinyuan. GEOCHEMICAL CHARACTERISTICS OF MIDDLE CAMBRIAN-EARLY ORDOVICIAN LIMESTONE AND PALEO-OCEAN RECONSTRUCTION BASED ON δ18OSMOW, 87Sr/86Sr AND RARE EARTH ELEMENTS, TARIM BASIN[J]. Marine Geology & Quaternary Geology, 2009, 29(1): 47-52. DOI: 10.3724/SP.J.1140.2009.01047
    [10]LIN Xiao-yun, LIU Jian. APPLICATION OF THE MECHANISM OF HYDROCARBON REGENERATION TO EVALUATION OF SOURCE ROCKS OF HIGH MATURITY IN MIDDLE AND LOWER YANGTZE REGION[J]. Marine Geology & Quaternary Geology, 2007, 27(5): 99-104.
  • Cited by

    Periodical cited type(1)

    1. 刘文良,褚宏宪,法鸿洁,王洪松,鲍宽乐,李晓阳,刘京强. 基于机载LiDAR和剖面数据的海滩地形动态监测. 海洋地质前沿. 2025(01): 81-92 .

    Other cited types(1)

Catalog

    Article views (1617) PDF downloads (22) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return