Citation: | WU Nengyou, LI Yanlong, LIU Lele, WAN Yizhao, ZHANG Zhengcai, CHEN Mingtao. Controlling factors and research prospect on creeping behaviors of marine natural gas hydrate-bearing-strata[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 3-11. DOI: 10.16562/j.cnki.0256-1492.2021092201 |
[1] |
吴能友, 黄丽, 胡高伟, 等. 海域天然气水合物开采的地质控制因素和科学挑战[J]. 海洋地质与第四纪地质, 2017, 37(5):1-11
WU Nengyou, HUANG Li, HU Gaowei, et al. Geological controlling factors and scientific challenges for offshore gas hydrate exploitation [J]. Marine Geology & Quaternary Geology, 2017, 37(5): 1-11.
|
[2] |
Collett T. Gas hydrate production testing – knowledge gained[C]//Offshore Technology Conference. Houston, Texas: Offshore Technology Conference, 2019: 1-16.
|
[3] |
Yamamoto K, Terao Y, Fujii T, et al. Operational overview of the first offshore production test of methane hydrates in the Eastern Nankai Trough[C]//Offshore Technology Conference. Houston, Texas, USA: Offshore Technology Conference, 2014.
|
[4] |
Yamamoto K, Wang X X, Tamaki M, et al. The second offshore production of methane hydrate in the Nankai Trough and gas production behavior from a heterogeneous methane hydrate reservoir [J]. RSC Advances, 2019, 9(45): 25987-26013. doi: 10.1039/C9RA00755E
|
[5] |
Li J F, Ye J L, Qin X W, et al. The first offshore natural gas hydrate production test in South China Sea [J]. China Geology, 2018, 1(1): 5-16. doi: 10.31035/cg2018003
|
[6] |
Mao P X, Sun J X, Ning F L, et al. Effect of permeability anisotropy on depressurization-induced gas production from hydrate reservoirs in the South China Sea [J]. Energy Science & Engineering, 2020, 8(8): 2690-2707.
|
[7] |
Wu N Y, Li Y L, Chen Q, et al. Sand production management during marine natural gas hydrate exploitation: review and an innovative solution [J]. Energy & Fuels, 2021, 35(6): 4617-4632.
|
[8] |
Li Y L, Wu N Y, Ning F L, et al. A sand-production control system for gas production from clayey silt hydrate reservoirs [J]. China Geology, 2019, 2(2): 121-132. doi: 10.31035/cg2018081
|
[9] |
Jin Y R, Li Y L, Wu N Y, et al. Characterization of sand production for clayey-silt sediments conditioned to openhole gravel-packing: experimental observations [J]. SPE Journal, 2021: 1-18. doi: 10.2118/206708-PA
|
[10] |
Mu Y H, Ma W, Li G Y, et al. Long-term thermal and settlement characteristics of air convection embankments with and without adjacent surface water ponding in permafrost regions [J]. Engineering Geology, 2020, 266: 105464. doi: 10.1016/j.enggeo.2019.105464
|
[11] |
Wang R H, Liu W G, Li Y H, et al. Effects of porosity on the creep behavior of hydrate-bearing sediments[C]//ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering. Rio de Janeiro, Brazil: ASME, 2012.
|
[12] |
Liu L L, Zhang Z, Li C F, et al. Hydrate growth in quartzitic sands and implication of pore fractal characteristics to hydraulic, mechanical, and electrical properties of hydrate-bearing sediments [J]. Journal of Natural Gas Science and Engineering, 2020, 75: 103109. doi: 10.1016/j.jngse.2019.103109
|
[13] |
Li Y H, Liu W G, Song Y C, et al. Creep behaviors of methane hydrate coexisting with ice [J]. Journal of Natural Gas Science and Engineering, 2016, 33: 347-354. doi: 10.1016/j.jngse.2016.05.042
|
[14] |
Yang J, Hassanpouryouzband A, Tohidi B, et al. Gas hydrates in permafrost: distinctive effect of gas hydrates and ice on the geomechanical properties of simulated hydrate-bearing permafrost sediments [J]. Journal of Geophysical Research:Solid Earth, 2019, 124(3): 2551-2563. doi: 10.1029/2018JB016536
|
[15] |
Pearson C F, Halleck P M, McGuire P L, et al. Natural gas hydrate deposits: a review of in situ properties [J]. The Journal of Physical Chemistry, 1983, 87(21): 4180-4185. doi: 10.1021/j100244a041
|
[16] |
张峰瑞, 姜谙男, 杨秀荣, 等. 冻融循环下花岗岩剪切蠕变试验与模型研究[J]. 岩土力学, 2020, 41(2):509-519
ZHANG Fengrui, JIANG Annan, YANG Xiurong, et al. Experimental and model research on shear creep of granite under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2020, 41(2): 509-519.
|
[17] |
陈国庆, 万亿, 裴本灿, 等. 冻融循环作用下砂岩蠕变特性及损伤模型研究[J]. 工程地质学报, 2020, 28(1):19-28
CHEN Guoqing, WAN Yi, PEI Bencan, et al. The creep characteristics and damage model of sandstone under freeze-thaw cycles [J]. Journal of Engineering Geology, 2020, 28(1): 19-28.
|
[18] |
Fan Z, Sun C M, Kuang Y M, et al. MRI analysis for methane hydrate dissociation by depressurization and the concomitant ice generation [J]. Energy Procedia, 2017, 105: 4763-4768. doi: 10.1016/j.egypro.2017.03.1038
|
[19] |
陈卫忠, 李翻翻, 雷江, 等. 热-水-力耦合条件下黏土岩蠕变特性研究[J]. 岩土力学, 2020, 41(2):379-388 doi: 10.16285/j.rsm.2019.0016
CHEN Weizhong, LI Fanfan, LEI Jiang, et al. Study on creep characteristics of claystone under thermo-hydro-mechanical coupling [J]. Rock and Soil Mechanics, 2020, 41(2): 379-388. doi: 10.16285/j.rsm.2019.0016
|
[20] |
Sun Y H, Ma X L, Guo W, et al. Numerical simulation of the short- and long-term production behavior of the first offshore gas hydrate production test in the South China Sea [J]. Journal of Petroleum Science and Engineering, 2019, 181: 106196. doi: 10.1016/j.petrol.2019.106196
|
[21] |
Yang M J, Zhao J, Zheng J N, et al. Hydrate reformation characteristics in natural gas hydrate dissociation process: A review [J]. Applied Energy, 2019, 256: 113878. doi: 10.1016/j.apenergy.2019.113878
|
[22] |
Li Y L, Wu N Y, He C Q, et al. Nucleation probability and memory effect of methane-propane mixed gas hydrate [J]. Fuel, 2021, 291: 120103. doi: 10.1016/j.fuel.2020.120103
|
[23] |
Zhu Y M, Chen C, Luo T T, et al. Creep behaviours of methane hydrate-bearing sediments [J]. Environmental Geotechnics, 2019: 1-11. doi: 10.1680/jenge.18.00196
|
[24] |
Bu Q T, Hu G W, Liu C L, et al. Acoustic characteristics and micro-distribution prediction during hydrate dissociation in sediments from the South China Sea [J]. Journal of Natural Gas Science and Engineering, 2019, 65: 135-144. doi: 10.1016/j.jngse.2019.02.010
|
[25] |
于超云, 唐世斌, 唐春安. 含水率对红砂岩瞬时和蠕变力学性质影响的试验研究[J]. 煤炭学报, 2019, 44(2):473-481
YU Chaoyun, TANG Shibin, TANG Chun'an. Experimental investigation on the effect of water content on the short-term and creep mechanical behaviors of red sandstone [J]. Journal of China Coal Society, 2019, 44(2): 473-481.
|
[26] |
李彦龙, 刘昌岭, 廖华林, 等. 泥质粉砂沉积物—天然气水合物混合体系的力学特性[J]. 天然气工业, 2020, 40(8):159-168 doi: 10.3787/j.issn.1000-0976.2020.08.013
LI Yanlong, LIU Changling, LIAO Hualin, et al. Mechanical properties of the mixed system of clayey-silt sediments and natural gas hydrates [J]. Natural Gas Industry, 2020, 40(8): 159-168. doi: 10.3787/j.issn.1000-0976.2020.08.013
|
[27] |
郝永卯, 黎晓舟, 李淑霞, 等. 天然气水合物降压开采半解析两相产能模型[J]. 中国科学:物理学 力学 天文学, 2020, 50(6):064701
HAO Yongmao, LI Xiaozhou, LI Shuxia, et al. The semi-analytical two-phase productivity model of natural gas hydrate by depressurization [J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2020, 50(6): 064701.
|
[28] |
罗飞, 张元泽, 朱占元, 等. 一种青藏高原冻结砂土蠕变本构模型[J]. 哈尔滨工业大学学报, 2020, 52(2):26-32 doi: 10.11918/201810053
LUO Fei, ZHANG Yuanze, ZHU Zhanyuan, et al. Creep constitutive model for frozen sand of Qinghai-Tibet Plateau [J]. Journal of Harbin Institute of Technology, 2020, 52(2): 26-32. doi: 10.11918/201810053
|
[29] |
李彦龙, 刘昌岭, 刘乐乐, 等. 含甲烷水合物松散沉积物的力学特性[J]. 中国石油大学学报(自然科学版), 2017, 41(3):105-113
LI Yanlong, LIU Changling, LIU Lele, et al. Mechanical properties of methane hydrate-bearing unconsolidated sediments [J]. Journal of China University of Petroleum, 2017, 41(3): 105-113.
|
[30] |
Li Y L, Dong L, Wu N Y, et al. Influences of hydrate layered distribution patterns on triaxial shearing characteristics of hydrate-bearing sediments [J]. Engineering Geology, 2021, 294: 106375. doi: 10.1016/j.enggeo.2021.106375
|
[31] |
Liu Z C, Dai S, Ning F L, et al. Strength estimation for hydrate-bearing sediments from direct shear tests of hydrate-bearing sand and silt [J]. Geophysical Research Letters, 2018, 45(2): 715-723. doi: 10.1002/2017GL076374
|
[32] |
Li Y L, Hu G W, Wu N Y, et al. Undrained shear strength evaluation for hydrate-bearing sediment overlying strata in the Shenhu area, northern South China Sea [J]. Acta Oceanologica Sinica, 2019, 38(3): 114-123. doi: 10.1007/s13131-019-1404-8
|
[33] |
孔亮, 刘文卓, 袁庆盟, 等. 常剪应力路径下含气砂土的三轴试验[J]. 岩土力学, 2019, 40(9):3319-3326
KONG Liang, LIU Wenzhuo, YUAN Qingmeng, et al. Triaxial tests on gassy sandy soil under constant shear stress paths [J]. Rock and Soil Mechanics, 2019, 40(9): 3319-3326.
|
[34] |
韦昌富, 颜荣涛, 田慧会, 等. 天然气水合物开采的土力学问题: 现状与挑战[J]. 天然气工业, 2020, 40(8):116-132 doi: 10.3787/j.issn.1000-0976.2020.08.009
WEI Changfu, YAN Rongtao, TIAN Huihui, et al. Geotechnical problems in exploitation of natural gas hydrate: Status and challenges [J]. Natural Gas Industry, 2020, 40(8): 116-132. doi: 10.3787/j.issn.1000-0976.2020.08.009
|
[35] |
李彦龙, 刘昌岭, 刘乐乐. 含水合物沉积物损伤统计本构模型及其参数确定方法[J]. 石油学报, 2016, 37(10):1273-1279 doi: 10.7623/syxb201610007
LI Yanlong, LIU Changling, LIU Lele. Damage statistic constitutive model of hydrate-bearing sediments and the determination method of parameters [J]. Acta Petrolei Sinica, 2016, 37(10): 1273-1279. doi: 10.7623/syxb201610007
|
[36] |
颜荣涛, 张炳晖, 杨德欢, 等. 不同温-压条件下含水合物沉积物的损伤本构关系[J]. 岩土力学, 2018, 39(12):4421-4428
YAN Rongtao, ZHANG Binghui, YANG Dehuan, et al. Damage constitutive model for hydrate-bearing sediment under different temperature and pore pressure conditions [J]. Rock and Soil Mechanics, 2018, 39(12): 4421-4428.
|
[37] |
Chen J, Liu C J, Zhang Z C, et al. Molecular study on the behavior of methane hydrate decomposition induced by ions electrophoresis [J]. Fuel, 2022, 307: 121866. doi: 10.1016/j.fuel.2021.121866
|
[38] |
Zhang Z C, Kusalik P G, Guo G J, et al. Insight on the stability of polycrystalline natural gas hydrates by molecular dynamics simulations [J]. Fuel, 2021, 289: 119946. doi: 10.1016/j.fuel.2020.119946
|
[39] |
Cao P Q, Wu J Y, Zhang Z S, et al. Mechanical properties of methane hydrate: intrinsic differences from ice [J]. The Journal of Physical Chemistry C, 2018, 122(51): 29081-29093. doi: 10.1021/acs.jpcc.8b06002
|
[40] |
Cladek B R, Everett S M, McDonnell M T, et al. Guest-host interactions in mixed CH4-CO2 hydrates: insights from molecular dynamics simulations [J]. Journal of Physical Chemistry C, 2018, 122(34): 19575-19583. doi: 10.1021/acs.jpcc.8b05228
|
[41] |
Song W L, Sun X L, Zhou G G, et al. Molecular dynamics simulation study of N2/CO2 displacement process of methane hydrate [J]. ChemistrySelect, 2020, 5(44): 1393613950.
|
[42] |
Zhang Y C, Liu L L, Wang D G, et al. Application of Low-Field Nuclear Magnetic Resonance (LFNMR) in characterizing the dissociation of gas hydrate in a porous media [J]. Energy & Fuels, 2021, 35(3): 2174-2182.
|
[43] |
张永超, 刘昌岭, 刘乐乐, 等. 水合物生成导致沉积物孔隙结构和渗透率变化的低场核磁共振观测[J]. 海洋地质与第四纪地质, 2021, 41(3):193-202
ZHANG Yongchao, LIU Changling, LIU Lele, et al. Sediment pore-structure and permeability variation induced by hydrate formation: Evidence from low field nuclear magnetic resonance observation [J]. Marine Geology & Quaternary Geology, 2021, 41(3): 193-202.
|
[44] |
吴能友, 李彦龙, 刘昌岭, 等. 一种基于低场核磁分析水合物沉积物力学特性的装置及方法: 中国, 202010147539.5[P]. 2021-02-26
.WU Nengyou, LI Yanlong, LIU Changling, et al. Dwtection device and method for mechanical properties of hydrate-bearing sediment based on low-field nuclear magnetic resonance: CN, 202010147539.5[P]. 2021-02-26. ]
|
[45] |
Seol Y, Lei L, Choi J H, et al. Integration of triaxial testing and pore-scale visualization of methane hydrate bearing sediments [J]. Review of Scientific Instruments, 2019, 90(12): 124504. doi: 10.1063/1.5125445
|
[46] |
张诚成, 施斌, 朱鸿鹄, 等. 分布式光纤探测地裂缝的理论基础探讨[J]. 工程地质学报, 2019, 27(6):1473-1482
ZHANG Chengcheng, SHI Bin, ZHU Honghu, et al. A theoretical framework for detecting and monitoring ground fissures using distributed fiber optic sensing [J]. Journal of Engineering Geology, 2019, 27(6): 1473-1482.
|
[47] |
Zhang C C, Zhu H H, Liu S P, et al. A kinematic method for calculating shear displacements of landslides using distributed fiber optic strain measurements [J]. Engineering Geology, 2018, 234: 83-96. doi: 10.1016/j.enggeo.2018.01.002
|
[48] |
万义钊, 吴能友, 胡高伟, 等. 南海神狐海域天然气水合物降压开采过程中储层的稳定性[J]. 天然气工业, 2018, 38(4):117-128 doi: 10.3787/j.issn.1000-0976.2018.04.014
WAN Yizhao, WU Nengyou, HU Gaowei, et al. Reservoir stability in the process of natural gas hydrate production by depressurization in the Shenhu area of the South China Sea [J]. Natural Gas Industry, 2018, 38(4): 117-128. doi: 10.3787/j.issn.1000-0976.2018.04.014
|
[49] |
Jin G R, Lei H W, Xu T F, et al. Simulated geomechanical responses to marine methane hydrate recovery using horizontal wells in the Shenhu area, South China Sea [J]. Marine and Petroleum Geology, 2018, 92: 424-436. doi: 10.1016/j.marpetgeo.2017.11.007
|
1. |
黄子强,吴招才,方银霞,许明炬,张家岭. 菲律宾海板块地壳结构特征:基于地震约束的重力反演. 地球科学. 2025(01): 234-245 .
![]() | |
2. |
吴增,鄢全树,张海桃,袁龙,李凤春,刘振轩,赵仁杰,闫施帅. 西太平洋卡罗琳海底高原裂解作用的岩浆过程响应. 岩石学报. 2024(08): 2585-2600 .
![]() | |
3. |
董冬冬,张正一,范建柯,李翠琳,张广旭,杨柳. 西太平洋卡罗琳洋底高原俯冲系统的构造特征与钻探建议. 海洋地质与第四纪地质. 2022(05): 178-186 .
![]() |