Citation: | KONG Liru, LUO Min, CHEN Duofu. A tracing study of sediment diagenesis in the Hikurangi subduction zone, New Zealand: Evidence from Sr isotope of pore fluid[J]. Marine Geology & Quaternary Geology, 2021, 41(6): 115-123. DOI: 10.16562/j.cnki.0256-1492.2021071202 |
[1] |
Stern J R. Subduction zones [J]. Reviews of Geophysics, 2002, 40(4): 1012. doi: 10.1029/2001RG000108
|
[2] |
Zheng Y F, Chen Y X. Continental versus oceanic subduction zones [J]. National Science Review, 2016, 3(4): 495-519. doi: 10.1093/nsr/nww049
|
[3] |
唐盼, 郭顺. 绿帘石记录俯冲带变质流体活动[J]. 岩石学报, 2019, 35(7):2045-2060 doi: 10.18654/1000-0569/2019.07.07
TANG Pan, GUO Shun. Epidote records subduction-zone metamorphic fluid actions [J]. Acta Petrologica Sinica, 2019, 35(7): 2045-2060. doi: 10.18654/1000-0569/2019.07.07
|
[4] |
Davis D, Suppe J, Dahlen F A. Mechanics of fold-and-thrust belts and accretionary wedges [J]. Journal of Geophysical Research:Solid Earth, 1983, 88(B2): 1153-1172. doi: 10.1029/JB088iB02p01153
|
[5] |
Huene R V, Ranero C R, Vannucchi P. Generic model of subduction erosion [J]. Geology, 2004, 32(10): 913-916. doi: 10.1130/G20563.1
|
[6] |
Moore C J, Saffer D. Updip limit of the seismogenic zone beneath the accretionary prism of southwest Japan: An effect of diagenetic to low-grade metamorphic processes and increasing effective stress [J]. Geology, 2001, 29(2): 183-186. doi: 10.1130/0091-7613(2001)029<0183:ULOTSZ>2.0.CO;2
|
[7] |
Schnabel M, Flueh E R, Klaeschen D, et al. AVA analysis reveals in situ sediment diagenesis at the Costa Rican décollement [J]. Sedimentary Geology, 2007, 196(1-4): 269-277. doi: 10.1016/j.sedgeo.2006.06.003
|
[8] |
于在平. 俯冲带的流体地质作用[J]. 地学前缘, 1995, 2(1-2):175-182
YU Zaiping. Fluids in subduction zones [J]. Earth Science Frontiers, 1995, 2(1-2): 175-182.
|
[9] |
Deyhle A, Kopf A, Frape S, et al. Evidence for fluid flow in the Japan Trench forearc using isotope geochemistry (Cl, Sr, B): Results from ODP Site 1150 [J]. Island Arc, 2004, 13(1): 258-270. doi: 10.1111/j.1440-1738.2003.00424.x
|
[10] |
Clough G W, Sitar N, Bachus R C, et al. Cemented sands under static loading [J]. Journal of the Geotechnical Engineering Division, 1981, 107(6): 799-817. doi: 10.1061/AJGEB6.0001152
|
[11] |
Karig D E. Reconsolidation tests and sonic velocity measurements of clay-rich sediments from the Nankai Trough [J]. Proceedings of the Ocean Drilling Program, Scientific Results, 1993, 131: 247-260.
|
[12] |
White R J, Spinelli G A, Mozley P S, et al. Importance of volcanic glass alteration to sediment stabilization: offshore Japan [J]. Sedimentology, 2011, 58(5): 1138-1154. doi: 10.1111/j.1365-3091.2010.01198.x
|
[13] |
Kameda J, Hina S, Kobayashi K, et al. Silica diagenesis and its effect on interplate seismicity in cold subduction zones [J]. Earth and Planetary Science Letters, 2012, 317-318: 136-144. doi: 10.1016/j.jpgl.2011.11.041
|
[14] |
Harris R, Yamano M, Kinoshita M, et al. A synthesis of heat flow determinations and thermal modeling along the Nankai Trough, Japan [J]. Journal of Geophysical Research:Solid Earth, 2013, 118(6): 2687-2702. doi: 10.1002/jgrb.50230
|
[15] |
Audet P, Bostock M G, Christensen N I, et al. Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing [J]. Nature, 2009, 457(7225): 76-78. doi: 10.1038/nature07650
|
[16] |
Bell R, Sutherland R, Barker D H N, et al. Seismic reflection character of the Hikurangi subduction interface, New Zealand, in the region of repeated Gisborne slow slip events [J]. Geophysical Journal International, 2010, 180(1): 34-48. doi: 10.1111/j.1365-246X.2009.04401.x
|
[17] |
Song T R A, Helmberger D V, Brudzinski M R, et al. Subducting slab ultra-slow velocity layer coincident with silent earthquakes in southern Mexico [J]. Science, 2009, 324(5926): 502-506. doi: 10.1126/science.1167595
|
[18] |
Veizer J. Strontium isotopes in seawater through time [J]. Annual Review of Earth and Planetary Sciences, 1989, 17: 141-167. doi: 10.1146/annurev.ea.17.050189.001041
|
[19] |
Teichert B M A, Torres M E, Bohrmann G, et al. Fluid sources, fluid pathways and diagenetic reactions across an accretionary prism revealed by Sr and B geochemistry [J]. Earth and Planetary Science Letters, 2005, 239(1-2): 106-121. doi: 10.1016/j.jpgl.2005.08.002
|
[20] |
Torres M E, Teichert B M A, Tréhu A M, et al. Relationship of pore water freshening to accretionary processes in the Cascadia margin: Fluid sources and gas hydrate abundance [J]. Geophysical Research Letters, 2004, 31(22): L22305.
|
[21] |
Mccarthy M, Zirkle B, Torres M E, et al. Data report: 87Sr/86Sr in pore fluids from Expedition 362[R]. Proceedings of the International Ocean Discovery Program, 2019, 362.
|
[22] |
Murray N A, McManus J, Palmer M R, et al. Diagenesis in tephra-rich sediments from the Lesser Antilles Volcanic Arc: Pore fluid constraints [J]. Geochimica et Cosmochimica Acta, 2018, 228: 119-135. doi: 10.1016/j.gca.2018.02.039
|
[23] |
Gieskes J M, Elderfield H, Palmer M R. Strontium and its isotopic composition in interstitial waters of marine carbonate sediments [J]. Earth and Planetary Science Letters, 1986, 77(2): 229-235. doi: 10.1016/0012-821X(86)90163-9
|
[24] |
Wallace L M, Beavan J, McCaffrey R, et al. Subduction zone coupling and tectonic block rotations in the North Island, New Zealand [J]. Journal of Geophysical Research:Solid Earth, 2004, 109(B12): B12406. doi: 10.1029/2004JB003241
|
[25] |
Pedley K L, Barnes P M, Pettinga J R, et al. Seafloor structural geomorphic evolution of the accretionary frontal wedge in response to seamount subduction, Poverty Indentation, New Zealand [J]. Marine Geology, 2010, 270(1-4): 119-138. doi: 10.1016/j.margeo.2009.11.006
|
[26] |
Wallace L M, Beavan J. Diverse slow slip behavior at the Hikurangi subduction margin, New Zealand [J]. Journal of Geophysical Research:Solid Earth, 2010, 115(B12): B12402. doi: 10.1029/2010JB007717
|
[27] |
Wallace L M, Saffer D M, Barnes P M, et al. Hikurangi subduction margin coring, logging, and observatories[R]. Proceedings of the International Ocean Discovery Program, 2019, 372B.
|
[28] |
Saffer D M, Wallace L M, Barnes P M, et al. Site U1518[R]. Proceedings of the International Ocean Discovery Program, 2019, 372B.
|
[29] |
Barnes P M, Wallace L M, Saffer D M, et al. Site U1520[R]. Proceedings of the International Ocean Discovery Program, 2019, 372B.
|
[30] |
Gieskes J M, Lawrence J R. Alteration of volcanic matter in deep sea sediments: evidence from the chemical composition of interstitial waters from deep sea drilling cores [J]. Geochimica et Cosmochimica Acta, 1981, 45(10): 1687-1703. doi: 10.1016/0016-7037(81)90004-1
|
[31] |
Gieskes J M. The chemistry of interstitial waters of deep sea sediments: Interpretation of deep sea drilling data[M]//Riley J P, Chester R. Chemical Oceanography. London: Academic Press, 1983, 8: 221-269.
|
[32] |
Hein J R, O'Neil J R, Jones M G. Origin of authigenic carbonates in sediment from the deep Bering Sea [J]. Sedimentology, 1979, 26(5): 681-705. doi: 10.1111/j.1365-3091.1979.tb00937.x
|
[33] |
Gieskes J M, Lawrence J R, Perry E A, et al. Chemistry of interstitial waters and sediments in the Norwegian-Greenland Sea, Deep Sea Drilling Project Leg 38 [J]. Chemical Geology, 1987, 63(1-2): 143-155. doi: 10.1016/0009-2541(87)90081-7
|
[34] |
Scholz F, Hensen C, Schmidt M, et al. Submarine weathering of silicate minerals and the extent of pore water freshening at active continental margins [J]. Geochimica et Cosmochimica Acta, 2013, 100: 200-216. doi: 10.1016/j.gca.2012.09.043
|
[35] |
Martin J B, Kastner M, Henry P, et al. Chemical and isotopic evidence for sources of fluids in a mud volcano field seaward of the Barbados accretionary wedge [J]. Journal of Geophysical Research: Solid Earth, 1996, 101(B9): 20325-20345. doi: 10.1029/96JB00140
|
[36] |
James R H, Palmer M R. Marine geochemical cycles of the alkali elements and boron: the role of sediments [J]. Geochimica et Cosmochimica Acta, 2000, 64(18): 3111-3122. doi: 10.1016/S0016-7037(00)00418-X
|
[37] |
Mcduff R E, Gieskes J M. Calcium and magnesium profiles in DSDP interstitial waters: Diffusion or reaction? [J]. Earth and Planetary Science Letters, 1976, 33(1): 1-10. doi: 10.1016/0012-821X(76)90151-5
|
[38] |
Lyons T W, Murray R W, Pearson D G. 19. A comparative study of diagenetic pathways in sediments of the Caribbean Sea: highlights from pore-water results [J]. Proceedings of the Ocean Drilling Program, Scientific Results, 1995, 165: 287-298.
|
[39] |
Gieskes J M, Vrolijk P, Blanc G. Hydrogeochemistry, ODP Leg 110: An Overview [J]. Proceedings of the Ocean Drilling Program, Scientific results, 1986, 110: 395-408.
|
[40] |
Aller R C. Sedimentary diagenesis, depositional environments, and benthic fluxes[M]//Holland H D, Turekian K K. Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier Ltd., 2014, 8: 293-334.
|
[41] |
Hesse R, Schacht U. Early diagenesis of deep-sea sediments [J]. Developments in Sedimentology, 2011, 63: 557-713.
|
[42] |
Joseph C, Torres M E, Martin R A, et al. Using the 87Sr/86Sr of modern and paleoseep carbonates from northern Cascadia to link modern fluid flow to the past [J]. Chemical Geology, 2012, 334: 122-130. doi: 10.1016/j.chemgeo.2012.10.020
|
[43] |
Sample J C, Torres M E, Fisher A, et al. Geochemical constraints on the temperature and timing of carbonate formation and lithification in the Nankai Trough, NanTroSEIZE transect [J]. Geochimica et Cosmochimica Acta, 2017, 198: 92-114. doi: 10.1016/j.gca.2016.10.013
|
[44] |
Perry E A Jr, Gieskes J M, Lawrence J R. Mg, Ca and exchange in the sediment-pore water system, hole 149, DSDP [J]. Geochimica et Cosmochimica Acta, 1976, 40(4): 413-423. doi: 10.1016/0016-7037(76)90006-5
|
[45] |
Higgins J A, Schrag D P. Records of Neogene seawater chemistry and diagenesis in deep-sea carbonate sediments and pore fluids [J]. Earth and Planetary Science Letters, 2012, 357-358: 386-396. doi: 10.1016/j.jpgl.2012.08.030
|
[46] |
Saffer D M, Tobin H J. Hydrogeology and mechanics of subduction zone forearcs: Fluid flow and pore pressure [J]. Annual Review of Earth and Planetary Sciences, 2011, 39(1): 157-186. doi: 10.1146/annurev-earth-040610-133408
|
[47] |
Saffer D M, Wallace L M. The frictional, hydrologic, metamorphic and thermal habitat of shallow slow earthquakes [J]. Nature Geoscience, 2015, 8(8): 594-600. doi: 10.1038/ngeo2490
|
[48] |
Torres M E, Cox T, Hong W L, et al. Crustal fluid and ash alteration impacts on the biosphere of Shikoku Basin sediments, Nankai Trough, Japan [J]. Geobiology, 2015, 13(6): 562-580. doi: 10.1111/gbi.12146
|
[49] |
Morgan J K, Karig D E, Maniatty A. The estimation of diffuse strains in the toe of the western Nankai accretionary prism: A kinematic solution [J]. Journal of Geophysical Research:Solid Earth, 1994, 99(B4): 7019-7032. doi: 10.1029/93JB03367
|
[50] |
Saidi F, Bernabé Y, Reuschlé T. The mechanical behaviour of synthetic, poorly consolidated granular rock under uniaxial compression [J]. Tectonophysics, 2003, 370(1-4): 105-120. doi: 10.1016/S0040-1951(03)00180-X
|
[51] |
Schnaid F, Prietto P D M, Consoli N C. Characterization of cemented sand in triaxial compression [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(10): 857-868. doi: 10.1061/(ASCE)1090-0241(2001)127:10(857)
|
[52] |
Spinelli G A, Mozley P S, Tobin H J, et al. Diagenesis, sediment strength, and pore collapse in sediment approaching the Nankai Trough subduction zone [J]. GSA Bulletin, 2007, 119(3-4): 377-390. doi: 10.1130/B25920.1
|
[53] |
McDuff R E. Major cation gradients in DSDP interstitial waters: the role of diffusive exchange between seawater and upper oceanic crust [J]. Geochimica et Cosmochimica Acta, 1981, 45(10): 1705-1713. doi: 10.1016/0016-7037(81)90005-3
|
[1] | DENG Xingyu, CAO Wenrui, JIANG Mingyu, ZENG Zhigang, CHANG Fengming, SONG Zhaojun. Microbial vertical diversity in core sediments and its response to environmental factors near the hydrothermal field of the southern Okinawa Trough[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 198-213. DOI: 10.16562/j.cnki.0256-1492.2023061901 |
[2] | YE Fanfan, ZENG Zhigang. States of element occurrence of sediments in the southern Okinawa Trough and its hydrothermal activity[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 160-172. DOI: 10.16562/j.cnki.0256-1492.2023022701 |
[3] | ZHANG Xia, SUN Zhilei. Low sulfur fugacity mineralization in CLAM hydrothermal field[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 17-25. DOI: 10.16562/j.cnki.0256-1492.2023072501 |
[4] | ZENG Zhigang, CHEN Zuxing, QI Haiyan, CHEN Shuai. Chemical and sulfur isotopic compositions of anhydrite from the Tangyin hydrothermal field in the Okinawa Trough[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 1-16. DOI: 10.16562/j.cnki.0256-1492.2023060601 |
[5] | WU Nengyou, SUN Zhilei, LU Jianguo, CAI Feng, CAO Hong, GENG Wei, LUO Min, ZHANG Xilin, LI Qing, SHANG Luning, WANG Libo, ZHANG Xianrong, XU Cuiling, ZHAI Bin, LI Xin, GONG Jianming, HU Yu, LIN Genmei. Interaction between seafloor cold seeps and adjacent hydrothermal activities in the Okinawa Trough[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 23-35. DOI: 10.16562/j.cnki.0256-1492.2019070102 |
[6] | Luning SHANG, Lei CHEN, Xunhua ZHANG, Zhigang ZENG, Yong ZHANG, Di LUO. Topographic features of the hydrothermal field and their genetic mechanisms in southern Okinawa Trough[J]. Marine Geology & Quaternary Geology, 2019, 39(4): 12-22. DOI: 10.16562/j.cnki.0256-1492.2017112301 |
[7] | YANG Baoju, WU Yonghua, LIU Jihua, LIU Yanguang, ZHANG Hui, WANG Xiaojing, LI Li. Elemental geochemistry of surface sediments in Okinawa Trough and its implications for provenance and hydrothermal activity[J]. Marine Geology & Quaternary Geology, 2018, 38(2): 25-37. DOI: 10.16562/j.cnki.0256-1492.2018.02.003 |
[8] | LIU Fei-fei, YU Zeng-hui, GAO Yu-hua, ZHAI Shi-kui, ZHANG Ai-bin. SEQUENTIAL EXTRACTION PROCEDURE FOR MARINE SEDIMENTS AND APPLICATION TO THE MIDDLE OKINAWA TROUGH[J]. Marine Geology & Quaternary Geology, 2008, 28(5): 137-144. |
[9] | ZENG Zhi-gang, CHEN Li-rong. PRELIMINARY STUDY ON VOLCANIC CRATER IN THE MIDDLE OKINAWA TROUGH[J]. Marine Geology & Quaternary Geology, 2008, 28(3): 31-34. |
[10] | LUAN Xi-wu. RELATIONSHIP BETWEEN THE NUMBER OF HYDROTHERMAL ACTIVITY FIELDS AND SPREADING RATE AND ITS APPLICATION IN THE OKINAWA TROUGH[J]. Marine Geology & Quaternary Geology, 2006, 26(2): 55-64. |
1. |
崔梦婷,刘璇,吴继龙,黄涛,孙庆业. 基于修订的最小数据集的土壤质量评价—以安徽合肥巢湖湖滨国家湿地公园为例. 地球与环境. 2024(01): 41-52 .
![]() | |
2. |
霍胜伟,张国城,吴丹,沈上圯,俞杰. 马尔文激光粒度仪测定亚利桑那试验粉尘粒径分布的研究. 计量科学与技术. 2022(03): 30-33+61 .
![]() | |
3. |
李华勇,袁俊英,杨艺萍,梁志姣,李智慧,吴帅虎,张虎才. 山东弥河流域现代洪水沉积特征与水动力过程反演. 海洋地质与第四纪地质. 2022(02): 178-189 .
![]() | |
4. |
李华勇,赵楠,杨艺萍,于正松,孙启发,吴帅虎,张曼,张虎才. 山东丹河2018年洪水沉积特征、物源分析及水文过程重建. 地质力学学报. 2022(02): 226-236 .
![]() | |
5. |
查玲珑,徐宗恒,张宇. 基于Mastersizer 2000的不同前处理方式对滑坡堰塞湖沉积物粒度特征的影响. 第四纪研究. 2022(06): 1643-1654 .
![]() | |
6. |
张孝严. 潮滩表层沉积物临界起动切应力研究. 绿色科技. 2022(22): 125-128+133 .
![]() | |
7. |
李华勇,朱佳丽,张虎才,袁俊英,张雅楠,张雯清,吴帅虎. 鲁北丹河下游洪水决口扇沉积岩芯粒度特征与沉积过程重建. 干旱区资源与环境. 2021(02): 176-182 .
![]() |