ZHAO Jinhuan, LIU Changling, ZOU Changchun, CHEN Qiang, MENG Qingguo, LIU Yang, BU Qingtao. An experimental study on visual detection of hydrate-bearing sediments based on ERT[J]. Marine Geology & Quaternary Geology, 2021, 41(6): 206-212. DOI: 10.16562/j.cnki.0256-1492.2021060901
Citation: ZHAO Jinhuan, LIU Changling, ZOU Changchun, CHEN Qiang, MENG Qingguo, LIU Yang, BU Qingtao. An experimental study on visual detection of hydrate-bearing sediments based on ERT[J]. Marine Geology & Quaternary Geology, 2021, 41(6): 206-212. DOI: 10.16562/j.cnki.0256-1492.2021060901

An experimental study on visual detection of hydrate-bearing sediments based on ERT

More Information
  • Received Date: June 08, 2021
  • Revised Date: August 22, 2021
  • Available Online: September 16, 2021
  • Reservoir evaluation of gas hydrate based on electrical response, as a key mean to discriminate natural gas hydrate and estimate its resource potential, plays an important role in the exploration and development of natural gas hydrate. The physical simulation experiment for gas hydrate formation in sediments was carried out in this paper to detect the morphology of dispersed hydrate and massive hydrate based on electrical resistivity tomography during the formation of hydrate. The resistivity responses of the two gas hydrate morphology were carefully studied. The results show that the high resistivity of dispersed hydrate has a scattered distribution pattern whereas the high resistivity of massive hydrate distributed in a concentrated pattern. The free gas in sediments may cause the position deviation of massive hydrate. The resistivity response characteristics of dispersed hydrate and massive hydrate change largely. Compared to the dispersed hydrate, the resistivity of massive hydrate increases rapidly with the formation of hydrate.
  • [1]
    刘昌岭, 郝锡荦, 孟庆国, 等. 气体水合物基础特性研究进展[J]. 海洋地质前沿, 2020, 36(9):1-10

    LIU Changling, HAO Xiluo, MENG Qingguo, et al. Research progress in basic characteristics of gas hydrate [J]. Marine Geology Frontiers, 2020, 36(9): 1-10.
    [2]
    孙运宝, 蔡峰, 李清, 等. 海洋浅表层天然气水合物资源评价[J]. 海洋地质前沿, 2020, 36(9):87-93

    SUN Yunbao, CAI Feng, LI Qing, et al. Evaluation of natural gas hydrate resources in shallow marine sediments [J]. Marine Geology Frontiers, 2020, 36(9): 87-93.
    [3]
    Pearson C, Murphy J, Hermes R. Acoustic and resistivity measurements on rock samples containing tetrahydrofuran hydrates: Laboratory analogues to natural gas hydrate deposits [J]. Journal of Geophysical Research:Solid Earth, 1986, 91(B14): 14132-14138. doi: 10.1029/JB091iB14p14132
    [4]
    Lee J Y, Santamarina J C, Ruppel C. Parametric study of the physical properties of hydrate‐bearing sand, silt, and clay sediments: 1. Electromagnetic properties [J]. Journal of Geophysical Research:Solid Earth, 2010, 115(B11): B11104. doi: 10.1029/2009JB006669
    [5]
    Sun Y, Goldberg D, Collett T, et al. High-resolution well-log derived dielectric properties of gas-hydrate-bearing sediments, Mount Elbert gas hydrate stratigraphic test well, Alaska north slope [J]. Marine and Petroleum Geology, 2011, 28(2): 450-459. doi: 10.1016/j.marpetgeo.2010.03.001
    [6]
    Li F G, Sun C Y, Li S L, et al. Experimental studies on the evolvement of electrical resistivity during methane hydrate formation in sediments [J]. Energy & Fuels, 2012, 26(10): 6210-6217.
    [7]
    Collett T S, Lee M W, Zyrianova M V, et al. Gulf of Mexico gas hydrate joint industry project leg II logging-while-drilling data acquisition and analysis [J]. Marine and Petroleum Geology, 2012, 34(1): 41-61. doi: 10.1016/j.marpetgeo.2011.08.003
    [8]
    陈玉凤, 李栋梁, 梁德青, 等. 南海沉积物天然气水合物饱和度与电阻率的关系[J]. 石油学报, 2013, 34(3):507-512 doi: 10.7623/syxb201303012

    CHEN Yufeng, LI Dongliang, LIANG Deqing, et al. Relationship between gas hydrate saturation and resistivity in sediments of the South China Sea [J]. Acta Petrolei Sinica, 2013, 34(3): 507-512. doi: 10.7623/syxb201303012
    [9]
    Du Frane W L, Stern L A, Constable S, et al. Electrical properties of methane hydrate sediment mixtures [J]. Journal of Geophysical Research:Solid Earth, 2015, 120(7): 4773-4783. doi: 10.1002/2015JB011940
    [10]
    Lim D, Ro H, Seo Y J, et al. Electrical resistivity measurements of methane hydrate during N2/CO2 gas exchange [J]. Energy & Fuels, 2017, 31(1): 708-713.
    [11]
    Liu H, Guo P, Zhan S Y, et al. Experimental investigation into formation/dissociation characteristics of methane hydrate in consolidated sediments with resistance measurement [J]. Fuel, 2018, 234: 985-995. doi: 10.1016/j.fuel.2018.07.101
    [12]
    卜庆涛, 刘圣彪, 胡高伟, 等. 含水合物沉积物声学特性—实验模拟与数值模拟的对比分析[J]. 海洋地质前沿, 2020, 36(9):56-67

    BU Qingtao, LIU Shengbiao, HU Gaowei, et al. Acoustic characteristics of hydrate-bearing sediments: a comparative analysis of experimental and numerical simulations results [J]. Marine Geology Frontiers, 2020, 36(9): 56-67.
    [13]
    Lee M W, Collett T S. Gas hydrate saturations estimated from fractured reservoir at Site NGHP-01-10, Krishna-Godavari Basin, India [J]. Journal of Geophysical Research:Solid Earth, 2009, 114(B7): B07102.
    [14]
    Cook A E, Anderson B I, Rasmus J, et al. Electrical anisotropy of gas hydrate-bearing sand reservoirs in the Gulf of Mexico [J]. Marine and Petroleum Geology, 2012, 34(1): 72-84. doi: 10.1016/j.marpetgeo.2011.09.003
    [15]
    Wang X J, Liu B, Qian J, et al. Geophysical evidence for gas hydrate accumulation related to methane seepage in the Taixinan Basin, South China Sea [J]. Journal of Asian Earth Sciences, 2018, 168: 27-37. doi: 10.1016/j.jseaes.2017.11.011
    [16]
    王秀娟, 钱进, LEE M. 天然气水合物和游离气饱和度评价方法及其在南海北部的应用[J]. 海洋地质与第四纪地质, 2017, 37(5):35-47

    WANG Xiujuan, QIAN Jin, LEE M. Methods for estimation of gas hydrate and free gas saturations and application to the northern slope of south China sea [J]. Marine Geology & Quaternary Geology, 2017, 37(5): 35-47.
    [17]
    Spangenberg E, Kulenkampff J. Influence of methane hydrate content on electrical sediment properties [J]. Geophysical Research Letters, 2006, 33(24): L24315. doi: 10.1029/2006GL028188
    [18]
    陈强, 刘昌岭, 邢兰昌, 等. 孔隙水垂向不均匀分布体系中水合物生成过程的电阻率变化[J]. 石油学报, 2016, 37(2):222-229 doi: 10.7623/syxb201602008

    CHEN Qiang, LIU Changling, XING Lanchang, et al. Resistivity variation during hydrate formation in vertical inhomogeneous distribution system of pore water [J]. Acta Petrolei Sinica, 2016, 37(2): 222-229. doi: 10.7623/syxb201602008
    [19]
    陈国旗, 李承峰, 刘昌岭, 等. 多孔介质中甲烷水合物的微观分布对电阻率的影响[J]. 新能源进展, 2019, 7(6):493-499

    CHEN Guoqi, LI Chengfeng, LIU Changling, et al. Effect of microscopic distribution of methane hydrate on resistivity in porous media [J]. Advances in New and Renewable Energy, 2019, 7(6): 493-499.
    [20]
    Lei L, Liu Z C, Seol Y, et al. An investigation of hydrate formation in unsaturated sediments using X‐Ray computed tomography [J]. Journal of Geophysical Research:Solid Earth, 2019, 124(4): 3335-3349. doi: 10.1029/2018JB016125
    [21]
    Walsh M, Ogra K, Hazineh W, et al. Laboratory and high-pressure flowloop investigationof gas hydrate formation and distribution using electrical tomography[C]//Proceedings of the 8th International Conference on Gas Hydrates. Beijing, 2014.
    [22]
    Priegnitz M, Thaler J, Spangenberg E, et al. Characterizing electrical properties and permeability changes of hydrate bearing sediments using ERT data [J]. Geophysical Journal International, 2015, 202(3): 1599-1612. doi: 10.1093/gji/ggv245
    [23]
    李彦龙, 孙海亮, 孟庆国, 等. 沉积物中天然气水合物生成过程的二维电阻层析成像观测[J]. 天然气工业, 2019, 39(10):132-138 doi: 10.3787/j.issn.1000-0976.2019.10.017

    LI Yanlong, SUN Hailiang, MENG Qingguo, et al. 2-D electrical resistivity tomography assessment of hydrate formation in sandy sediments [J]. Natural Gas Industry, 2019, 39(10): 132-138. doi: 10.3787/j.issn.1000-0976.2019.10.017
    [24]
    孙海亮, 李彦龙, 刘昌岭, 等. 电阻层析成像技术及其在水合物开采模拟实验中的应用[J]. 计量学报, 2019, 40(3):455-461 doi: 10.3969/j.issn.1000-1158.2019.03.17

    SUN Hailiang, LI Yanlong, LIU Changling, et al. Electrical resistance tomography and the application in the simulation experiment of hydrate mining [J]. Acta Metrologica Sinica, 2019, 40(3): 455-461. doi: 10.3969/j.issn.1000-1158.2019.03.17
    [25]
    李彦龙, 陈强, 吴能友, 等. 电阻率层析成像技术在岩芯尺度水合物可视化探测中的应用[J]. 地质论评, 2020, 66(S1):84-86

    LI Yanlong, CHEN Qiang, WU Nengyou, et al. Core-scale application of electrical resistivity tomography technology on visual detection of natural gas hydrate [J]. Geological Review, 2020, 66(S1): 84-86.
    [26]
    刘洋, 陈强, 邹长春, 等. 气体水合物生成实验过程动态监测: 一种新的ERT方法及其效果分析[J/OL]. 现代地质, 2021 (2021-07-21).https://t.cnki.net/kcms/detail?v=3uoqIhG8C46NmWw7YpEsKHTPvOGrUOOqX1coEOzL8AGxgg6Tl8ilwBvSZDnERhKJYb36_bwg5WzpUaR_8lt7MjRABTSiWpU2.

    LIU Yang, CHEN Qiang, ZOU Changchun, et al. Dynamic monitoring of experimental process of gas hydrate formation: a new ERT method and its effect analysis[J/OL]. Geoscience, 2021 (2021-07-21).https://t.cnki.net/kcms/detail?v=3uoqIhG8C46NmWw7YpEsKHTPvOGrUOOqX1coEOzL8AGxgg6Tl8ilwBvSZDnERhKJYb36_bwg5WzpUaR_8lt7MjRABTSiWpU2.
    [27]
    景鹏飞, 胡高伟, 卜庆涛, 等. 基于岩石物理模拟与声学实验识别孔隙—裂隙充填型水合物[J]. 海洋地质与第四纪地质, 2020, 40(6):208-218

    JING Pengfei, HU Gaowei, BU Qingtao, et al. Identification of pore-filling and fracture-filling hydrate by petrophysical simulation and acoustic experiment [J]. Marine Geology & Quaternary Geology, 2020, 40(6): 208-218.
    [28]
    苏丕波, 梁金强, 张伟, 等. 南海北部神狐海域天然气水合物成藏系统[J]. 天然气工业, 2020, 40(8):77-89 doi: 10.3787/j.issn.1000-0976.2020.08.006

    SU Pibo, LIANG Jinqiang, ZHANG Wei, et al. Natural gas hydrate accumulation system in the Shenhu sea area of the northern South China Sea [J]. Natural Gas Industry, 2020, 40(8): 77-89. doi: 10.3787/j.issn.1000-0976.2020.08.006
    [29]
    Chen L T, Li N, Sun C Y, et al. Hydrate formation in sediments from free gas using a one-dimensional visual simulator [J]. Fuel, 2017, 197: 298-309. doi: 10.1016/j.fuel.2017.02.034
    [30]
    Ren S R, Liu Y J, Liu Y X, et al. Acoustic velocity and electrical resistance of hydrate bearing sediments [J]. Journal of Petroleum Science and Engineering, 2010, 70(1-2): 52-56. doi: 10.1016/j.petrol.2009.09.001
    [31]
    Lei L, Seol Y, Choi J H, et al. Pore habit of methane hydrate and its evolution in sediment matrix-Laboratory visualization with phase-contrast micro-CT [J]. Marine and Petroleum Geology, 2019, 104: 451-467. doi: 10.1016/j.marpetgeo.2019.04.004
    [32]
    Lei L, Seol Y. High-saturation gas hydrate reservoirs-a pore scale investigation of their formation from free gas and dissociation in sediments [J]. Journal of Geophysical Research:Solid Earth, 2019, 124(12): 12430-12444. doi: 10.1029/2019JB018243
    [33]
    Liu T, Liu X W, Zhu T Y. Joint analysis of P-wave velocity and resistivity for morphology identification and quantification of gas hydrate [J]. Marine and Petroleum Geology, 2020, 112: 104036. doi: 10.1016/j.marpetgeo.2019.104036
    [34]
    Peng C, Zou C C, Lu Z Q, et al. Evidence of pore‐ and fracture‐filling gas hydrates from geophysical logs in consolidated rocks of the Muli area, Qinghai–Tibetan Plateau permafrost, China [J]. Journal of Geophysical Research: Solid Earth, 2019, 124(7): 6297-6301. doi: 10.1029/2018JB016041
  • Related Articles

    [1]LIU Jian, ZHANG Xin, DING Xuan, QIU Jiandong, WANG Hong, AN Yuhui. Sedimentary facies characteristics and dating of the late Quaternary sedimentary sequence in the nearshore coastal area of Nantong, Jiangsu Province, China[J]. Marine Geology & Quaternary Geology, 2023, 43(3): 35-48. DOI: 10.16562/j.cnki.0256-1492.2023051501
    [2]LIU Rongbo, YUAN Xiaodong, LIN Zheyuan, QIU Jiandong, HU Rijun, GAO Junfeng, LIU Longlong, ZHANG Shengjiang. Geochemical characteristics and their geological implication in sediments from Laizhou Bay since late Quaternary[J]. Marine Geology & Quaternary Geology, 2022, 42(3): 100-110. DOI: 10.16562/j.cnki.0256-1492.2022012301
    [3]LIU Dezheng, XIA Fei. Characteristics of grain size and magnetic susceptibility of the Late Quaternary sediments from core 07SR01 in the middle Jiangsu coast and their paleoenvironmental significances[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 210-220. DOI: 10.16562/j.cnki.0256-1492.2021051901
    [4]CHEN Xiaohui, MENG Xiangjun, LI Rihui. Sequence stratigraphy of the Late Quaternary in Liaodong Bay[J]. Marine Geology & Quaternary Geology, 2020, 40(2): 37-47. DOI: 10.16562/j.cnki.0256-1492.2019042301
    [5]WANG Xuemu, CHEN Wanli, XUE Yulong, LIU Gang. The Late Quaternary Carbonate sand deposits at the Xuande Atoll[J]. Marine Geology & Quaternary Geology, 2018, 38(6): 37-45. DOI: 10.16562/j.cnki.0256-1492.2018.06.004
    [6]CHEN Hongjun, HUANG Wenkai, QIU Yan. THE INVERSION OF LATE QUATERNARY PALEO-WATER DEPTH IN SOUTHWESTERN OFFSHORE HAINAN ISLAND[J]. Marine Geology & Quaternary Geology, 2017, 37(6): 128-139. DOI: 10.16562/j.cnki.0256-1492.2017.06.014
    [7]CUI Zhengke, YANG Wenda. LATE QUATERNARY SEQUENCE STRATIGRAPHY AND SEDIMENTARY ENVIRONMENT OF EAST CHINA SEA CONTINENTAL SHELF[J]. Marine Geology & Quaternary Geology, 2014, 34(4): 1-10. DOI: 10.3724/SP.J.1140.2014.04001
    [8]WANG Zhongbo, YANG Shouye, ZHANG Zhixun, LI Rihui, LAN Xianhong, YIN Ping, ZHANG Xunhua. A REVIEW OF THE LATE QUATERNARY SEDIMENTOLOGICAL STUDIES ON THE OUTER SHELF OF THE EAST CHINA SEA[J]. Marine Geology & Quaternary Geology, 2012, 32(3): 1-10. DOI: 10.3724/SP.J.1140.2012.03001
    [9]GE Qian, CHU Fengyou, FANG Yinxia, MENG Xianwei. PALEOENVIRONMENTAL RECORDS OF INFLUENCE OF GAS HYDRATE-DERIVED METHANE ON CLIMATE OF THE LATE QUATERNARY[J]. Marine Geology & Quaternary Geology, 2010, 30(1): 87-94. DOI: 10.3724/SP.J.1140.2010.01087
    [10]WANG Guo-qing, SHI Xue-fa, LI Cong-xian. A REVIEW ON LATE QUATERNARY SEDIMENTARY GEOLOGY OF THE YANGTZE RIVER DELTA[J]. Marine Geology & Quaternary Geology, 2006, 26(6): 131-137.
  • Cited by

    Periodical cited type(4)

    1. 李双林,赵青芳,王建强,董贺平. 南黄海盆地崂山隆起中南部海底沉积物饱和烃类地球化学特征与热成因烃类输入. 地质通报. 2023(05): 669-679 .
    2. 张鹏辉,付奕霖,梁杰,陈建文,张银国,鲍衍君,薛路,李慧君. 南黄海盆地下古生界油气地质条件与勘探前景. 地质通报. 2021(Z1): 243-251 .
    3. 陈春峰,万延周,张伯成,付晓伟,欧戈,王军,陈浩. 南黄海盆地阜宁组烃源岩地层热压生烃特征. 海洋地质前沿. 2021(04): 18-24 .
    4. 张玉玺,陈建文,张银国. 下扬子-南黄海地区下三叠统“错时相”沉积及成因. 海洋地质前沿. 2021(04): 68-76 .

    Other cited types(0)

Catalog

    Article views (13738) PDF downloads (126) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return