ZHAO Jinhuan, LIU Changling, ZOU Changchun, CHEN Qiang, MENG Qingguo, LIU Yang, BU Qingtao. An experimental study on visual detection of hydrate-bearing sediments based on ERT[J]. Marine Geology & Quaternary Geology, 2021, 41(6): 206-212. DOI: 10.16562/j.cnki.0256-1492.2021060901
Citation: ZHAO Jinhuan, LIU Changling, ZOU Changchun, CHEN Qiang, MENG Qingguo, LIU Yang, BU Qingtao. An experimental study on visual detection of hydrate-bearing sediments based on ERT[J]. Marine Geology & Quaternary Geology, 2021, 41(6): 206-212. DOI: 10.16562/j.cnki.0256-1492.2021060901

An experimental study on visual detection of hydrate-bearing sediments based on ERT

More Information
  • Received Date: June 08, 2021
  • Revised Date: August 22, 2021
  • Available Online: September 16, 2021
  • Reservoir evaluation of gas hydrate based on electrical response, as a key mean to discriminate natural gas hydrate and estimate its resource potential, plays an important role in the exploration and development of natural gas hydrate. The physical simulation experiment for gas hydrate formation in sediments was carried out in this paper to detect the morphology of dispersed hydrate and massive hydrate based on electrical resistivity tomography during the formation of hydrate. The resistivity responses of the two gas hydrate morphology were carefully studied. The results show that the high resistivity of dispersed hydrate has a scattered distribution pattern whereas the high resistivity of massive hydrate distributed in a concentrated pattern. The free gas in sediments may cause the position deviation of massive hydrate. The resistivity response characteristics of dispersed hydrate and massive hydrate change largely. Compared to the dispersed hydrate, the resistivity of massive hydrate increases rapidly with the formation of hydrate.
  • [1]
    刘昌岭, 郝锡荦, 孟庆国, 等. 气体水合物基础特性研究进展[J]. 海洋地质前沿, 2020, 36(9):1-10

    LIU Changling, HAO Xiluo, MENG Qingguo, et al. Research progress in basic characteristics of gas hydrate [J]. Marine Geology Frontiers, 2020, 36(9): 1-10.
    [2]
    孙运宝, 蔡峰, 李清, 等. 海洋浅表层天然气水合物资源评价[J]. 海洋地质前沿, 2020, 36(9):87-93

    SUN Yunbao, CAI Feng, LI Qing, et al. Evaluation of natural gas hydrate resources in shallow marine sediments [J]. Marine Geology Frontiers, 2020, 36(9): 87-93.
    [3]
    Pearson C, Murphy J, Hermes R. Acoustic and resistivity measurements on rock samples containing tetrahydrofuran hydrates: Laboratory analogues to natural gas hydrate deposits [J]. Journal of Geophysical Research:Solid Earth, 1986, 91(B14): 14132-14138. doi: 10.1029/JB091iB14p14132
    [4]
    Lee J Y, Santamarina J C, Ruppel C. Parametric study of the physical properties of hydrate‐bearing sand, silt, and clay sediments: 1. Electromagnetic properties [J]. Journal of Geophysical Research:Solid Earth, 2010, 115(B11): B11104. doi: 10.1029/2009JB006669
    [5]
    Sun Y, Goldberg D, Collett T, et al. High-resolution well-log derived dielectric properties of gas-hydrate-bearing sediments, Mount Elbert gas hydrate stratigraphic test well, Alaska north slope [J]. Marine and Petroleum Geology, 2011, 28(2): 450-459. doi: 10.1016/j.marpetgeo.2010.03.001
    [6]
    Li F G, Sun C Y, Li S L, et al. Experimental studies on the evolvement of electrical resistivity during methane hydrate formation in sediments [J]. Energy & Fuels, 2012, 26(10): 6210-6217.
    [7]
    Collett T S, Lee M W, Zyrianova M V, et al. Gulf of Mexico gas hydrate joint industry project leg II logging-while-drilling data acquisition and analysis [J]. Marine and Petroleum Geology, 2012, 34(1): 41-61. doi: 10.1016/j.marpetgeo.2011.08.003
    [8]
    陈玉凤, 李栋梁, 梁德青, 等. 南海沉积物天然气水合物饱和度与电阻率的关系[J]. 石油学报, 2013, 34(3):507-512 doi: 10.7623/syxb201303012

    CHEN Yufeng, LI Dongliang, LIANG Deqing, et al. Relationship between gas hydrate saturation and resistivity in sediments of the South China Sea [J]. Acta Petrolei Sinica, 2013, 34(3): 507-512. doi: 10.7623/syxb201303012
    [9]
    Du Frane W L, Stern L A, Constable S, et al. Electrical properties of methane hydrate sediment mixtures [J]. Journal of Geophysical Research:Solid Earth, 2015, 120(7): 4773-4783. doi: 10.1002/2015JB011940
    [10]
    Lim D, Ro H, Seo Y J, et al. Electrical resistivity measurements of methane hydrate during N2/CO2 gas exchange [J]. Energy & Fuels, 2017, 31(1): 708-713.
    [11]
    Liu H, Guo P, Zhan S Y, et al. Experimental investigation into formation/dissociation characteristics of methane hydrate in consolidated sediments with resistance measurement [J]. Fuel, 2018, 234: 985-995. doi: 10.1016/j.fuel.2018.07.101
    [12]
    卜庆涛, 刘圣彪, 胡高伟, 等. 含水合物沉积物声学特性—实验模拟与数值模拟的对比分析[J]. 海洋地质前沿, 2020, 36(9):56-67

    BU Qingtao, LIU Shengbiao, HU Gaowei, et al. Acoustic characteristics of hydrate-bearing sediments: a comparative analysis of experimental and numerical simulations results [J]. Marine Geology Frontiers, 2020, 36(9): 56-67.
    [13]
    Lee M W, Collett T S. Gas hydrate saturations estimated from fractured reservoir at Site NGHP-01-10, Krishna-Godavari Basin, India [J]. Journal of Geophysical Research:Solid Earth, 2009, 114(B7): B07102.
    [14]
    Cook A E, Anderson B I, Rasmus J, et al. Electrical anisotropy of gas hydrate-bearing sand reservoirs in the Gulf of Mexico [J]. Marine and Petroleum Geology, 2012, 34(1): 72-84. doi: 10.1016/j.marpetgeo.2011.09.003
    [15]
    Wang X J, Liu B, Qian J, et al. Geophysical evidence for gas hydrate accumulation related to methane seepage in the Taixinan Basin, South China Sea [J]. Journal of Asian Earth Sciences, 2018, 168: 27-37. doi: 10.1016/j.jseaes.2017.11.011
    [16]
    王秀娟, 钱进, LEE M. 天然气水合物和游离气饱和度评价方法及其在南海北部的应用[J]. 海洋地质与第四纪地质, 2017, 37(5):35-47

    WANG Xiujuan, QIAN Jin, LEE M. Methods for estimation of gas hydrate and free gas saturations and application to the northern slope of south China sea [J]. Marine Geology & Quaternary Geology, 2017, 37(5): 35-47.
    [17]
    Spangenberg E, Kulenkampff J. Influence of methane hydrate content on electrical sediment properties [J]. Geophysical Research Letters, 2006, 33(24): L24315. doi: 10.1029/2006GL028188
    [18]
    陈强, 刘昌岭, 邢兰昌, 等. 孔隙水垂向不均匀分布体系中水合物生成过程的电阻率变化[J]. 石油学报, 2016, 37(2):222-229 doi: 10.7623/syxb201602008

    CHEN Qiang, LIU Changling, XING Lanchang, et al. Resistivity variation during hydrate formation in vertical inhomogeneous distribution system of pore water [J]. Acta Petrolei Sinica, 2016, 37(2): 222-229. doi: 10.7623/syxb201602008
    [19]
    陈国旗, 李承峰, 刘昌岭, 等. 多孔介质中甲烷水合物的微观分布对电阻率的影响[J]. 新能源进展, 2019, 7(6):493-499

    CHEN Guoqi, LI Chengfeng, LIU Changling, et al. Effect of microscopic distribution of methane hydrate on resistivity in porous media [J]. Advances in New and Renewable Energy, 2019, 7(6): 493-499.
    [20]
    Lei L, Liu Z C, Seol Y, et al. An investigation of hydrate formation in unsaturated sediments using X‐Ray computed tomography [J]. Journal of Geophysical Research:Solid Earth, 2019, 124(4): 3335-3349. doi: 10.1029/2018JB016125
    [21]
    Walsh M, Ogra K, Hazineh W, et al. Laboratory and high-pressure flowloop investigationof gas hydrate formation and distribution using electrical tomography[C]//Proceedings of the 8th International Conference on Gas Hydrates. Beijing, 2014.
    [22]
    Priegnitz M, Thaler J, Spangenberg E, et al. Characterizing electrical properties and permeability changes of hydrate bearing sediments using ERT data [J]. Geophysical Journal International, 2015, 202(3): 1599-1612. doi: 10.1093/gji/ggv245
    [23]
    李彦龙, 孙海亮, 孟庆国, 等. 沉积物中天然气水合物生成过程的二维电阻层析成像观测[J]. 天然气工业, 2019, 39(10):132-138 doi: 10.3787/j.issn.1000-0976.2019.10.017

    LI Yanlong, SUN Hailiang, MENG Qingguo, et al. 2-D electrical resistivity tomography assessment of hydrate formation in sandy sediments [J]. Natural Gas Industry, 2019, 39(10): 132-138. doi: 10.3787/j.issn.1000-0976.2019.10.017
    [24]
    孙海亮, 李彦龙, 刘昌岭, 等. 电阻层析成像技术及其在水合物开采模拟实验中的应用[J]. 计量学报, 2019, 40(3):455-461 doi: 10.3969/j.issn.1000-1158.2019.03.17

    SUN Hailiang, LI Yanlong, LIU Changling, et al. Electrical resistance tomography and the application in the simulation experiment of hydrate mining [J]. Acta Metrologica Sinica, 2019, 40(3): 455-461. doi: 10.3969/j.issn.1000-1158.2019.03.17
    [25]
    李彦龙, 陈强, 吴能友, 等. 电阻率层析成像技术在岩芯尺度水合物可视化探测中的应用[J]. 地质论评, 2020, 66(S1):84-86

    LI Yanlong, CHEN Qiang, WU Nengyou, et al. Core-scale application of electrical resistivity tomography technology on visual detection of natural gas hydrate [J]. Geological Review, 2020, 66(S1): 84-86.
    [26]
    刘洋, 陈强, 邹长春, 等. 气体水合物生成实验过程动态监测: 一种新的ERT方法及其效果分析[J/OL]. 现代地质, 2021 (2021-07-21).https://t.cnki.net/kcms/detail?v=3uoqIhG8C46NmWw7YpEsKHTPvOGrUOOqX1coEOzL8AGxgg6Tl8ilwBvSZDnERhKJYb36_bwg5WzpUaR_8lt7MjRABTSiWpU2.

    LIU Yang, CHEN Qiang, ZOU Changchun, et al. Dynamic monitoring of experimental process of gas hydrate formation: a new ERT method and its effect analysis[J/OL]. Geoscience, 2021 (2021-07-21).https://t.cnki.net/kcms/detail?v=3uoqIhG8C46NmWw7YpEsKHTPvOGrUOOqX1coEOzL8AGxgg6Tl8ilwBvSZDnERhKJYb36_bwg5WzpUaR_8lt7MjRABTSiWpU2.
    [27]
    景鹏飞, 胡高伟, 卜庆涛, 等. 基于岩石物理模拟与声学实验识别孔隙—裂隙充填型水合物[J]. 海洋地质与第四纪地质, 2020, 40(6):208-218

    JING Pengfei, HU Gaowei, BU Qingtao, et al. Identification of pore-filling and fracture-filling hydrate by petrophysical simulation and acoustic experiment [J]. Marine Geology & Quaternary Geology, 2020, 40(6): 208-218.
    [28]
    苏丕波, 梁金强, 张伟, 等. 南海北部神狐海域天然气水合物成藏系统[J]. 天然气工业, 2020, 40(8):77-89 doi: 10.3787/j.issn.1000-0976.2020.08.006

    SU Pibo, LIANG Jinqiang, ZHANG Wei, et al. Natural gas hydrate accumulation system in the Shenhu sea area of the northern South China Sea [J]. Natural Gas Industry, 2020, 40(8): 77-89. doi: 10.3787/j.issn.1000-0976.2020.08.006
    [29]
    Chen L T, Li N, Sun C Y, et al. Hydrate formation in sediments from free gas using a one-dimensional visual simulator [J]. Fuel, 2017, 197: 298-309. doi: 10.1016/j.fuel.2017.02.034
    [30]
    Ren S R, Liu Y J, Liu Y X, et al. Acoustic velocity and electrical resistance of hydrate bearing sediments [J]. Journal of Petroleum Science and Engineering, 2010, 70(1-2): 52-56. doi: 10.1016/j.petrol.2009.09.001
    [31]
    Lei L, Seol Y, Choi J H, et al. Pore habit of methane hydrate and its evolution in sediment matrix-Laboratory visualization with phase-contrast micro-CT [J]. Marine and Petroleum Geology, 2019, 104: 451-467. doi: 10.1016/j.marpetgeo.2019.04.004
    [32]
    Lei L, Seol Y. High-saturation gas hydrate reservoirs-a pore scale investigation of their formation from free gas and dissociation in sediments [J]. Journal of Geophysical Research:Solid Earth, 2019, 124(12): 12430-12444. doi: 10.1029/2019JB018243
    [33]
    Liu T, Liu X W, Zhu T Y. Joint analysis of P-wave velocity and resistivity for morphology identification and quantification of gas hydrate [J]. Marine and Petroleum Geology, 2020, 112: 104036. doi: 10.1016/j.marpetgeo.2019.104036
    [34]
    Peng C, Zou C C, Lu Z Q, et al. Evidence of pore‐ and fracture‐filling gas hydrates from geophysical logs in consolidated rocks of the Muli area, Qinghai–Tibetan Plateau permafrost, China [J]. Journal of Geophysical Research: Solid Earth, 2019, 124(7): 6297-6301. doi: 10.1029/2018JB016041
  • Related Articles

    [1]LI Chengfeng, YE Wangquan, CHEN Liang, GUI Bin, HAO Xiluo, SUN Jianye, ZHANG Yongchao, LIU Lele, CHEN Qiang, ZHENG Ronger. Super-resolution CT image recognition of micro-occurrence characteristics of natural gas hydrates from Shenhu area in northern South China Sea[J]. Marine Geology & Quaternary Geology, 2024, 44(3): 149-159. DOI: 10.16562/j.cnki.0256-1492.2023092801
    [2]ZHANG Hanyu, CHEN Jiaojiao, CHEN Yunping, LIU Huaishan. Internal friction resistance of saturated rocks under cyclic loading[J]. Marine Geology & Quaternary Geology, 2022, 42(3): 194-203. DOI: 10.16562/j.cnki.0256-1492.2021062101
    [3]LI Yanda, YI Liang. A review on ecological response of coral reefs to global warming and oceanic acidification[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 33-41. DOI: 10.16562/j.cnki.0256-1492.2020080501
    [4]TIAN Ye, YIN Ping, JIA Yonggang, LIU Jinqing, ZHU Yamei, CAO Ke, CHEN Xiaoying. Response of beach characteristics to typhoon “Yagi”: Evidence from Argus video images and on-site measurement[J]. Marine Geology & Quaternary Geology, 2020, 40(5): 201-210. DOI: 10.16562/j.cnki.0256-1492.2019090601
    [5]LI Yanlong, CHEN Qiang, LIU Changling, WU Nengyou, SUN Jianye, SHEN Zhicong, ZHANG Minsheng, HU Gaowei. Development of engineering-geological parameters evaluation system for hydrate-bearing sediment and its functional verification[J]. Marine Geology & Quaternary Geology, 2020, 40(5): 192-200. DOI: 10.16562/j.cnki.0256-1492.2019110401
    [6]HE Zhongfa, YANG Shouye, ZHAO Baocheng, LI Xiao, XIE Jianlei, WEN Xiaohua. Changes in heavy metal elements in the sediments from Changjiang Estuary and their environmental responses in recent 1500 years[J]. Marine Geology & Quaternary Geology, 2019, 39(2): 21-30. DOI: 10.16562/j.cnki.0256-1492.2018053003
    [7]WANG Xiujuan, QIAN Jin, Lee Myung. METHODS FOR ESTIMATION OF GAS HYDRATE AND FREE GAS SATURATIONS AND APPLICATION TO THE NORTHERN SLOPE OF SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2017, 37(5): 35-47. DOI: 10.16562/j.cnki.0256-1492.2017.05.004
    [8]ZHANG Zhen, LIU Jian, CHEN Bin, XU Gang, QIU Jiandong, WANG Shuang. DEPOSITIONAL RECORDS OF HEAVY METALS FOR THE LAST 140 YEARS IN THE ZHEJIANG COASTAL MUDDY AREA OF THE YANGTZE RIVER BASIN AND THEIR RESPONSES TO HUMAN ACTIVITIES[J]. Marine Geology & Quaternary Geology, 2016, 36(3): 23-33. DOI: 10.16562/j.cnki.0256-1492.2016.03.003
    [9]XIA Xin, JIA Yonggang, CHANG Fangqiang. AN IN-SITU RESISTIVITY MONITORING SYSTEM FOR SEABED EROSION AND DEPOSITION CHANGES AND ITS EXPERIMENT STUDY[J]. Marine Geology & Quaternary Geology, 2016, 36(1): 197-203. DOI: 10.16562/j.cnki.0256-1492.2016.01.020
    [10]ZHANG Xiuli, PEI Jianxin, WANG Qi. PRELIMINARY STUDY OF PARAMETERS DESIGN FOR EXPLORATION OF HIGH RESISTIVITY RESERVOIR USING MARINE CSEM METHOD[J]. Marine Geology & Quaternary Geology, 2014, 34(4): 181-188. DOI: 10.3724/SP.J.1140.2014.04181
  • Cited by

    Periodical cited type(3)

    1. TAN Kui,ZHANG Qi,HE Tao. Research Progress on the Electrical Properties of Gas Hydrate-bearing Sediments. Acta Geologica Sinica(English Edition). 2023(03): 816-827 .
    2. 胡艳. 基于生态环境保护的沉积物环境污染自动监测系统研究. 能源与环保. 2023(08): 67-72+79 .
    3. 贡益明,孔德仁,商飞. 基于FPGA的宽量程高速ERT系统设计与图像重建. 国外电子测量技术. 2022(07): 173-178 .

    Other cited types(0)

Catalog

    Article views (13738) PDF downloads (126) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return