Citation: | CHENG Linyan,LI Lei,GAO Yifan,et al. The characteristics and genesis of bottom cyclic steps in the Lingshui Sag of Qiongdongnan Basin[J]. Marine Geology & Quaternary Geology,2022,42(1):37-44. DOI: 10.16562/j.cnki.0256-1492.2021041902 |
[1] |
Parker G. Interaction between basic research and applied engineering: A personal perspective [J]. Journal of Hydraulic Research, 1996, 34(3): 291-316. doi: 10.1080/00221689609498482
|
[2] |
钟广法, 朱本铎, 王嘹亮. 南海浊流地貌[J]. 科技导报, 2020, 38(18):75-82
ZHONG Guangfa, ZHU Benduo, WANG Liaoliang. Turbidity current related landforms in the South China Sea [J]. Science & Technology Review, 2020, 38(18): 75-82.
|
[3] |
Zhong G F, Cartigny M J B, Kuang Z G, et al. Cyclic steps along the South Taiwan Shoal and West Penghu submarine canyons on the northeastern continental slope of the South China Sea [J]. GSA Bulletin, 2015, 127(5-6): 804-824. doi: 10.1130/B31003.1
|
[4] |
许小勇, 吕福亮, 王大伟, 等. 周期性阶坎的特征及其对深水沉积研究的意义[J]. 海相油气地质, 2018, 23(4):1-14 doi: 10.3969/j.issn.1672-9854.2018.04.001
XU Xiaoyong, LÜ Fuliang, WANG Dawei, et al. Cyclic steps and significance to deep water sedimentation [J]. Marine Origin Petroleum Geology, 2018, 23(4): 1-14. doi: 10.3969/j.issn.1672-9854.2018.04.001
|
[5] |
高红芳, 钟和贤, 孙美静, 等. 南海海盆东南部大型深水浊积扇体系及其成因的构造控制[J]. 中国地质, 2020, 47(5):1395-1406
GAO Hongfang, ZHONG Hexian, SUN Meijing, et al. The large deep-water turbidity fan system in southeastern South China Sea Basin: Formation and tectonic constraint [J]. Geology in China, 2020, 47(5): 1395-1406.
|
[6] |
Wynn R B, Piper D J W, Gee M J R. Generation and migration of coarse-grained sediment waves in turbidity current channels and channel-lobe transition zones [J]. Marine Geology, 2002, 192(1-3): 59-78. doi: 10.1016/S0025-3227(02)00549-2
|
[7] |
曾小明, 潘燕, 于佳, 等. 陵水凹陷北坡低密度浊流海底扇沉积特征[J]. 科学技术与工程, 2015, 15(33):48-53, 78 doi: 10.3969/j.issn.1671-1815.2015.33.008
ZENG Xiaoming, PAN Yan, YU Jia, et al. Low-density turbidity submarine fan sedimentary characteristics in north slope of Lingshui sag [J]. Science Technology and Engineering, 2015, 15(33): 48-53, 78. doi: 10.3969/j.issn.1671-1815.2015.33.008
|
[8] |
何家雄, 陈胜红, 马文宏, 等. 南海北部大陆边缘盆地深水油气成藏条件早期预测与评价[J]. 天然气地球科学, 2008, 19(6):780-789 doi: 10.11764/j.issn.1672-1926.2008.06.780
HE Jiaxiong, CHEN Shenghong, MA Wenhong, et al. Early forecast and evaluation on petroleum accumulation conditions in deep basin in northern continental margin of the South China Sea [J]. Natural Gas Geoscience, 2008, 19(6): 780-789. doi: 10.11764/j.issn.1672-1926.2008.06.780
|
[9] |
吴时国, 秦志亮, 王大伟, 等. 南海北部陆坡块体搬运沉积体系的地震响应与成因机制[J]. 地球物理学报, 2011, 54(12):3184-3195 doi: 10.3969/j.issn.0001-5733.2011.12.018
WU Shiguo, QIN Zhiliang, WANG Dawei, et al. Seismic characteristics and triggering mechanism analysis of mass transport deposits in the northern continental slope of the South China Sea [J]. Chinese Journal of Geophysics, 2011, 54(12): 3184-3195. doi: 10.3969/j.issn.0001-5733.2011.12.018
|
[10] |
Fildani A, Hubbard S M, Covault J A, et al. Erosion at inception of deep-sea channels [J]. Marine and Petroleum Geology, 2013, 41: 48-61. doi: 10.1016/j.marpetgeo.2012.03.006
|
[11] |
Heiniö P, Davies R J. Trails of depressions and sediment waves along submarine channels on the continental margin of Espirito Santo Basin, Brazil [J]. Geological Society of America Bulletin, 2009, 121(5-6): 698-711. doi: 10.1130/B26190.1
|
[12] |
Cartigny M J B, Postma G, van den Berg J H, et al. A comparative study of sediment waves and cyclic steps based on geometries, internal structures and numerical modeling [J]. Marine Geology, 2011, 280(1-4): 40-56. doi: 10.1016/j.margeo.2010.11.006
|
[13] |
Fielding C R. Upper flow regime sheets, lenses and scour fills: extending the range of architectural elements for fluvial sediment bodies [J]. Sedimentary Geology, 2006, 190(1-4): 227-240. doi: 10.1016/j.sedgeo.2006.05.009
|
[14] |
Kostic S. Modeling of submarine cyclic steps: Controls on their formation, migration, and architecture [J]. Geosphere, 2011, 7(2): 294-304. doi: 10.1130/GES00601.1
|
[15] |
Gong C L, Chen L Q, West L. Asymmetrical, inversely graded, upstream-migrating cyclic steps in marine settings: Late Miocene-early Pliocene Fish Creek-Vallecito Basin, southern California [J]. Sedimentary Geology, 2017, 360: 35-46. doi: 10.1016/j.sedgeo.2017.09.002
|
[16] |
Li L, Gong C L. Gradual transition from net erosional to net depositional cyclic steps along the submarine distributary channel Thalweg in the Rio Muni Basin: A joint 3-D seismic and numerical approach [J]. Journal of Geophysical Research: Earth Surface, 2018, 123(9): 2087-2106. doi: 10.1029/2017JF004513
|
[17] |
Lamb M P, Parsons J D, Mullenbach B L, et al. Evidence for superelevation, channel incision, and formation of cyclic steps by turbidity currents in Eel Canyon, California [J]. GSA Bulletin, 2008, 120(3-4): 463-475. doi: 10.1130/B26184.1
|
[18] |
谈明轩, 朱筱敏, 刘伟, 等. 旋回阶梯底形的动力地貌及其相关沉积物发育特征[J]. 地质论评, 2017, 63(6):1512-1522
TAN Mingxuan, ZHU Xiaomin, LIU Wei, et al. The morphodynamics of cyclic steps and sedimentary characteristics of associated deposits [J]. Geological Review, 2017, 63(6): 1512-1522.
|
[19] |
王大伟, 孙悦, 司少文, 等. 海底周期阶坎研究进展与挑战[J]. 地球科学进展, 2020, 35(9):890-901
WANG Dawei, SUN Yue, SI Shaowen, et al. Research progress and challenges of submarine cyclic steps [J]. Advances in Earth Science, 2020, 35(9): 890-901.
|
[20] |
肖彬. 深水水道沉积体系及成因机制研究[D]. 长江大学博士学位论文, 2014.
XIAO Bin. Sedimentary system and formation mechanism of deep-water channel complex[D]. Doctor Dissertation of Yangtze University, 2014.
|
[21] |
王大伟, 白宏新, 吴时国. 浊流及其相关的深水底形研究进展[J]. 地球科学进展, 2018, 33(1):52-65 doi: 10.11867/j.issn.1001-8166.2018.01.0052
WANG Dawei, BAI Hongxin, WU Shiguo. The research progress of turbidity currents and related deep-water bedforms [J]. Advances in Earth Science, 2018, 33(1): 52-65. doi: 10.11867/j.issn.1001-8166.2018.01.0052
|
[22] |
朱筱敏. 沉积岩石学[M]. 4版. 北京: 石油工业出版社, 2008.
ZHU Xiaomin. Sedimentary Petrology[M]. 4th ed. Beijing: Petroleum Industry Press, 2008.
|
[23] |
操应长, 杨田, 王艳忠, 等. 超临界沉积物重力流形成演化及特征[J]. 石油学报, 2017, 38(6):607-621 doi: 10.7623/syxb201706001
CAO Yingchang, YANG Tian, WANG Yanzhong, et al. Formation, evolution and sedimentary characteristics of supercritical sediment gravity-flow [J]. Acta Petrolei Sinica, 2017, 38(6): 607-621. doi: 10.7623/syxb201706001
|
[24] |
Kostic S, Parker G. The response of turbidity currents to a canyon-fan transition: internal hydraulic jumps and depositional signatures [J]. Journal of Hydraulic Research, 2006, 44(5): 631-653. doi: 10.1080/00221686.2006.9521713
|
[25] |
张兴阳, 何幼斌, 罗顺社, 等. 内波单独作用形成的深水沉积物波[J]. 古地理学报, 2002, 4(1):83-89 doi: 10.3969/j.issn.1671-1505.2002.01.010
ZHANG Xingyang, HE Youbin, LUO Shunshe, et al. Deep-water sediment waves formed by internal waves [J]. Journal of Palaeogeography, 2002, 4(1): 83-89. doi: 10.3969/j.issn.1671-1505.2002.01.010
|
[26] |
钟广法, 李前裕, 郝沪军, 等. 深水沉积物波及其在南海研究之现状[J]. 地球科学进展, 2007, 22(9):907-913 doi: 10.3321/j.issn:1001-8166.2007.09.004
ZHONG Guangfa, LI Qianyu, HAO Hujun, et al. Current status of deep-water sediment wave studies and the South China Sea perspectives [J]. Advances in Earth Science, 2007, 22(9): 907-913. doi: 10.3321/j.issn:1001-8166.2007.09.004
|
[27] |
Spinewine B, Sequeiros O E, Garcia M H, et al. Experiments on wedge-shaped deep sea sedimentary deposits in minibasins and/or on channel levees emplaced by turbidity currents. Part II. Morphodynamic evolution of the wedge and of the associated bedforms [J]. Journal of Sedimentary Research, 2009, 79(8): 608-628. doi: 10.2110/jsr.2009.065
|
[28] |
王海荣, 王英民, 邱燕, 等. 南海北部大陆边缘深水环境的沉积物波[J]. 自然科学进展, 2007, 17(9):1235-1243 doi: 10.3321/j.issn:1002-008x.2007.09.012
WANG Hairong, WANG Yingmin, QIU Yan, et al. Sediment waves in the deep water environment of the northern continental margin of the South China Sea [J]. Progress in Natural Science, 2007, 17(9): 1235-1243. doi: 10.3321/j.issn:1002-008x.2007.09.012
|
[29] |
Middleton G V, Hampton M A. Part I. Sediment gravity flows: mechanics of flow and deposition [J]. Turbidites & Deep Water Sedimentation, 1973.
|
[30] |
胡日军. 南海北部外陆架区海底沙波动态分析[D]. 中国海洋大学硕士学位论文, 2006.
HU Rijun. Dynamical analysis of seafloor sandwaves in the outer continental shelf of the northern South China Sea[D]. Master Dissertation of Ocean University of China, 2006.
|
[31] |
张洪运. 南海北部陆架坡折附近的海底沙波的形态特征、活动规律和成因机制[D]. 中国科学院大学(中国科学院海洋研究所)博士学位论文, 2019.
ZHANG Hongyun. Sand waves near the shelf break of northern South China Sea: morphology, mobility and mechanism[D]. Doctor Dissertation of University of Chinese Academy of Sciences (Institute of Oceanology, Chinese Academy of Sciences), 2019.
|
[32] |
Symons W O, Sumner E J, Talling P J, et al. Large-scale sediment waves and scours on the modern seafloor and their implications for the prevalence of supercritical flows [J]. Marine Geology, 2016, 371: 130-148. doi: 10.1016/j.margeo.2015.11.009
|
[33] |
李爽, 李伟, 詹文欢. 南海东北部陆缘浊流活动的地貌记录及其形成机制分析[J]. 热带海洋学报, 2021, 40(1):111-121
LI Shuang, LI Wei, ZHAN Wenhuan. Geomorphological records of turbidity current activity in the northeastern margin of the South China Sea and analysis of triggering mechanism [J]. Journal of Tropical Oceanography, 2021, 40(1): 111-121.
|
[34] |
鲁勇. 多坡道的浊流流动及沉积的实验研究[D]. 安徽工业大学硕士学位论文, 2019.
LU Yong. Experimental study on the flow and deposition of turbidity currents with multiple slope transitions[D]. Master Dissertation of Anhui University of Technology, 2019.
|
[35] |
丁巍伟, 李家彪, 韩喜球, 等. 南海东北部海底沉积物波的形态、粒度特征及物源、成因分析[J]. 海洋学报, 2010, 32(2):96-105
DING Weiwei, LI Jiabiao, HAN Xiqiu, et al. Geomorphology, grain-size charicteristics, matter source and forming mechanism of sediment waves on the ocean bottom of the northeast South China Sea [J]. Acta Oceanologica Sinica, 2010, 32(2): 96-105.
|
[36] |
Fildani A, Normark W R, Kostic S, et al. Channel formation by flow stripping: Large-scale scour features along the Monterey East Channel and their relation to sediment waves [J]. Sedimentology, 2006, 53(6): 1265-1287. doi: 10.1111/j.1365-3091.2006.00812.x
|
[37] |
Jalili Ghazizadeh M, Fallahi H, Jabbari E. Characteristics of water surface profile over rectangular side weir for supercritical flows [J]. Journal of Irrigation and Drainage Engineering, 2021, 147(5): 04021011. doi: 10.1061/(ASCE)IR.1943-4774.0001551
|