Citation: | XIN Youzhi, SUN Zhilei, WANG Hongmei, CHEN Ye, XU Cuiling, GENG Wei, CAO Hong, ZHANG Xilin, ZHANG Xianrong, LI Xin, YAN Dawei, WU Nengyou. Research progress and prospects of metal-dependent anaerobic methane oxidation in marine sediments[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 58-66. DOI: 10.16562/j.cnki.0256-1492.2020122801 |
[1] |
Moran M A. The global ocean microbiome [J]. Science, 2015, 350(6266): aac8455. doi: 10.1126/science.aac8455
|
[2] |
D’Hondt S, Pockalny R, Fulfer V M, et al. Subseafloor life and its biogeochemical impacts [J]. Nature Communication, 2019, 10(1): 3519. doi: 10.1038/s41467-019-11450-z
|
[3] |
Parkes R J, Cragg B A, Bale S J, et al. Deep bacterial biosphere in Pacific Ocean sediments [J]. Nature, 1994, 371(6496): 410-413. doi: 10.1038/371410a0
|
[4] |
孙治雷, 魏合龙, 王利波, 等. 海底冷泉系统的碳循环问题及探测[J]. 应用海洋学学报, 2016, 35(3):442-450 doi: 10.3969/J.ISSN.2095-4972.2016.03.017
SUN Zhilei, WEI Helong, WANG Libo, et al. Focus issues of carbon cycle and detecting technologies in seafloor cold seepages [J]. Journal of Applied Oceanography, 2016, 35(3): 442-450. doi: 10.3969/J.ISSN.2095-4972.2016.03.017
|
[5] |
Hutchins D A, Fu F X. Microorganisms and ocean global change [J]. Nature Microbiology, 2017, 2: 17058. doi: 10.1038/nmicrobiol.2017.58
|
[6] |
Iversen N, Jørgensen B B. Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark) [J]. Limnology and Oceanography, 1985, 30(5): 944-955. doi: 10.4319/lo.1985.30.5.0944
|
[7] |
Timmers PHA, Welte CU, Koehorst JJ, et al. Reverse methanogenesis and respiration in methanotrophic archaea [J]. Archaea, 2017, 2017: 1654237.
|
[8] |
Norði K Á, Thamdrup B. Nitrate-dependent anaerobic methane oxidation in a freshwater sediment [J]. Geochimica et Cosmochimica Acta, 2014, 132: 141-150. doi: 10.1016/j.gca.2014.01.032
|
[9] |
Shen L D, Hu B L, Liu S, et al. Anaerobic methane oxidation coupled to nitrite reduction can be a potential methane sink in coastal environments [J]. Applied Microbiology and Biotechnology, 2016, 100(16): 7171-7180. doi: 10.1007/s00253-016-7627-0
|
[10] |
Zehnder A J B, Brock T D. Anaerobic methane oxidation: occurrence and ecology [J]. Applied and Environmental Microbiology, 1980, 39(1): 194-204. doi: 10.1128/AEM.39.1.194-204.1980
|
[11] |
Bau M, Dulski P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa [J]. Precambrian Research, 1996, 79(1-2): 37-55. doi: 10.1016/0301-9268(95)00087-9
|
[12] |
He Z F, Zhang Q Y, Feng Y D, et al. Microbiological and environmental significance of metal-dependent anaerobic oxidation of methane [J]. Science of the Total Environment, 2018, 610-611: 759-768. doi: 10.1016/j.scitotenv.2017.08.140
|
[13] |
Kvenvolden K A, Rogers B W. Gaia’s breath—global methane exhalations [J]. Marine and Petroleum Geology, 2005, 22(4): 579-590. doi: 10.1016/j.marpetgeo.2004.08.004
|
[14] |
Hoehler T M, Alperin M J, Albert D B, et al. Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium [J]. Global Biogeochemical Cycles, 1994, 8(4): 451-463. doi: 10.1029/94GB01800
|
[15] |
Hinrichs K U, Hayes J M, Sylva S P, et al. Methane-consuming archaebacteria in marine sediments [J]. Nature, 1999, 398(6730): 802-805. doi: 10.1038/19751
|
[16] |
Knittel K, Lösekann T, Boetius A, et al. Diversity and distribution of methanotrophic archaea at cold seeps [J]. Applied and Environmental Microbiology, 2005, 71(1): 467-479. doi: 10.1128/AEM.71.1.467-479.2005
|
[17] |
Brazelton W J, Schrenk M O, Kelley D S, et al. Methane- and sulfur-metabolizing microbial communities dominate the lost city hydrothermal field ecosystem [J]. Applied and Environmental Microbiology, 2006, 72(9): 6257-6270. doi: 10.1128/AEM.00574-06
|
[18] |
D'Hondt S, Rutherford S, Spivack A J. Metabolic activity of subsurface life in deep-sea sediments [J]. Science, 2002, 295(5562): 2067-2070. doi: 10.1126/science.1064878
|
[19] |
Bowles M W, Samarkin V A, Bowles K M, et al. Weak coupling between sulfate reduction and the anaerobic oxidation of methane in methane-rich seafloor sediments during ex situ incubation [J]. Geochimica et Cosmochimica Acta, 2011, 75(2): 500-519. doi: 10.1016/j.gca.2010.09.043
|
[20] |
Wankel S D, Adams M M, Johnston D T, et al. Anaerobic methane oxidation in metalliferous hydrothermal sediments: influence on carbon flux and decoupling from sulfate reduction [J]. Environmental Microbiology, 2012, 14(10): 2726-2740. doi: 10.1111/j.1462-2920.2012.02825.x
|
[21] |
Sivan O, Adler M, Pearson A, et al. Geochemical evidence for iron-mediated anaerobic oxidation of methane [J]. Limnology and Oceanography, 2011, 56(4): 1536-1544. doi: 10.4319/lo.2011.56.4.1536
|
[22] |
Ettwig K F, Butler M K, Le Paslier D, et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria [J]. Nature, 2010, 464(7288): 543-548. doi: 10.1038/nature08883
|
[23] |
Crowe S A, Katsev S, Leslie K, et al. The methane cycle in ferruginous Lake Matano [J]. Geobiology, 2011, 9(1): 61-78. doi: 10.1111/j.1472-4669.2010.00257.x
|
[24] |
Norði K Á, Thamdrup B, Schubert C J. Anaerobic oxidation of methane in an iron-rich Danish freshwater lake sediment [J]. Limnology and Oceanography, 2013, 58(2): 546-554. doi: 10.4319/lo.2013.58.2.0546
|
[25] |
Riedinger N, Formolo M J, Lyons T W, et al. An inorganic geochemical argument for coupled anaerobic oxidation of methane and iron reduction in marine sediments [J]. Geobiology, 2014, 12(2): 172-181. doi: 10.1111/gbi.12077
|
[26] |
Raghoebarsing A A, Pol A, Van De Pas-Schoonen K, et al. A microbial consortium couples anaerobic methane oxidation to denitrification [J]. Nature, 2006, 440(7086): 918-921. doi: 10.1038/nature04617
|
[27] |
Bar-Or I, Elvert M, Eckert W, et al. Iron-coupled anaerobic oxidation of methane performed by a mixed bacterial-archaeal community based on poorly reactive minerals [J]. Environmental Science & Technology, 2017, 51(21): 12293-12301.
|
[28] |
Knittel K, Boetius A. Anaerobic oxidation of methane: progress with an unknown process [J]. Annual Review of Microbiology, 2009, 63: 311-334. doi: 10.1146/annurev.micro.61.080706.093130
|
[29] |
Haroon M F, Hu S H, Shi Y, et al. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage [J]. Nature, 2013, 500(7464): 567-570. doi: 10.1038/nature12375
|
[30] |
Hu S H, Zeng R J, Burow L C, et al. Enrichment of denitrifying anaerobic methane oxidizing microorganisms [J]. Environmental Microbiology Reports, 2009, 1(5): 377-384. doi: 10.1111/j.1758-2229.2009.00083.x
|
[31] |
Ettwig K F, Zhu B L, Speth D, et al. Archaea catalyze iron-dependent anaerobic oxidation of methane [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(45): 12792-12796. doi: 10.1073/pnas.1609534113
|
[32] |
Cai C, Leu A O, Xie G J, et al. A methanotrophic archaeon couples anaerobic oxidation of methane to Fe (III) reduction [J]. The ISME Journal, 2018, 12(8): 1929-1939. doi: 10.1038/s41396-018-0109-x
|
[33] |
Weber H S, Habicht K S, Thamdrup B. Anaerobic methanotrophic archaea of the ANME-2d cluster are active in a low-sulfate, iron-rich freshwater sediment [J]. Frontiers in Microbiology, 2017, 8: 619.
|
[34] |
Niu M Y, Fan X B, Zhuang G C, et al. Methane-metabolizing microbial communities in sediments of the Haima cold seep area, northwest slope of the South China Sea [J]. FEMS Microbiology Ecology, 2017, 93(9): fix101.
|
[35] |
Beal E J, House C H, Orphan V J. Manganese- and iron-dependent marine methane oxidation [J]. Science, 2009, 325(5937): 184-187. doi: 10.1126/science.1169984
|
[36] |
House C H, Beal E J, Orphan V J. The apparent involvement of ANMEs in mineral dependent methane oxidation, as an analog for possible martian methanotrophy [J]. Life, 2011, 1(1): 19-33. doi: 10.3390/life1010019
|
[37] |
Oni O, Miyatake T, Kasten S, et al. Distinct microbial populations are tightly linked to the profile of dissolved iron in the methanic sediments of the Helgoland mud area, North Sea [J]. Frontiers in Microbiology, 2015, 6: 365.
|
[38] |
Aromokeye D A, Kulkarni A C, Elvert M, et al. Rates and microbial players of iron-driven anaerobic oxidation of methane in methanic marine sediments [J]. Frontiers in Microbiology, 2020, 10: 3041. doi: 10.3389/fmicb.2019.03041
|
[39] |
Scheller S, Yu H, Chadwick G L, et al. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction [J]. Science, 2016, 351(6274): 703-707. doi: 10.1126/science.aad7154
|
[40] |
Chang Y H, Cheng T W, Lai W J, et al. Microbial methane cycling in a terrestrial mud volcano in eastern Taiwan [J]. Environmental Microbiology, 2012, 14(4): 895-908. doi: 10.1111/j.1462-2920.2011.02658.x
|
[41] |
Kato S, Hirai M, Ohkuma M, et al. Microbial metabolisms in an abyssal ferromanganese crust from the Takuyo-Daigo seamount as revealed by metagenomics [J]. PLoS One, 2019, 14(11): e0224888. doi: 10.1371/journal.pone.0224888
|
[42] |
Lipp J S, Morono Y, Inagaki F, et al. Significant contribution of Archaea to extant biomass in marine subsurface sediments [J]. Nature, 2008, 454(7207): 991-994. doi: 10.1038/nature07174
|
[43] |
D’Hondt S, Jørgensen B B, Miller D J, et al. Distributions of microbial activities in deep subseafloor sediments [J]. Science, 2004, 306(5705): 2216-2221. doi: 10.1126/science.1101155
|
[44] |
Vargas M, Kashefi K, Blunt-Harris E, et al. Microbiological evidence for Fe (III) reduction on early Earth [J]. Nature, 1998, 395(6697): 65-67. doi: 10.1038/25720
|
[45] |
Peng X T, Guo Z X, Chen S, et al. Formation of carbonate pipes in the northern Okinawa Trough linked to strong sulfate exhaustion and iron supply [J]. Geochimica et Cosmochimica Acta, 2017, 205: 1-13. doi: 10.1016/j.gca.2017.02.010
|
[46] |
Sun Z L, Wei H L, Zhang X H, et al. A unique Fe-rich carbonate chimney associated with cold seeps in the Northern Okinawa Trough, East China Sea [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2015, 95: 37-53. doi: 10.1016/j.dsr.2014.10.005
|
[47] |
Xie R, Wu D D, Liu J, et al. Geochemical evidence of metal-driven anaerobic oxidation of methane in the Shenhu area, the South China Sea [J]. International Journal of Environmental Research and Public Health, 2019, 16(19): 3559. doi: 10.3390/ijerph16193559
|
[48] |
Liang L W, Wang Y Z, Sivan O, et al. Metal-dependent anaerobic methane oxidation in marine sediment: insights from marine settings and other systems [J]. Science China Life Sciences, 2019, 62(10): 1287-1295. doi: 10.1007/s11427-018-9554-5
|
[49] |
Canfield D E. Reactive iron in marine sediments [J]. Geochimica et Cosmochimica Acta, 1989, 53(3): 619-632. doi: 10.1016/0016-7037(89)90005-7
|
[50] |
Canfield D E, Raiswell R, Bottrell S H. The reactivity of sedimentary iron minerals toward sulfide [J]. American Journal of Science, 1992, 292(9): 659-683. doi: 10.2475/ajs.292.9.659
|
[51] |
Vigderovich H, Liang L W, Herut B, et al. Evidence for microbial iron reduction in the methanogenic sediments of the oligotrophic SE Mediterranean continental shelf [J]. Biogeosciences Discuss, 2019, 16: 1-25. doi: 10.5194/bg-16-1-2019
|
[52] |
Leu A O, Cai C, McIlroy S J, et al. Anaerobic methane oxidation coupled to manganese reduction by members of the Methanoperedenaceae [J]. The ISME Journal, 2020, 14(4): 1030-1041. doi: 10.1038/s41396-020-0590-x
|
[53] |
Amos R T, Bekins B A, Cozzarelli I M, et al. Evidence for iron-mediated anaerobic methane oxidation in a crude oil-contaminated aquifer [J]. Geobiology, 2012, 10(6): 506-517. doi: 10.1111/j.1472-4669.2012.00341.x
|
[54] |
Fu L, Li S W, Ding Z W, et al. Iron reduction in the DAMO/Shewanella oneidensis MR-1 coculture system and the fate of Fe (II) [J]. Water Research, 2016, 88: 808-815. doi: 10.1016/j.watres.2015.11.011
|
[55] |
McGlynn S E, Chadwick G L, Kempes C P, et al. Single cell activity reveals direct electron transfer in methanotrophic consortia [J]. Nature, 2015, 526(7574): 531-535. doi: 10.1038/nature15512
|
[56] |
Kletzin A, Heimerl T, Flechsler J, et al. Cytochromes c in archaea: distribution, maturation, cell architecture, and the special case of Ignicoccus hospitalis [J]. Frontiers in Microbiology, 2015, 6: 439.
|
[57] |
Roland F A E, Borges A V, Darchambeau F, et al. The possible occurrence of iron-dependent anaerobic methane oxidation in an Archean Ocean analogue [J]. Scientific Reports, 2021, 11(1): 1597. doi: 10.1038/s41598-021-81210-x
|
[58] |
Sivan O, Antler G, Turchyn A V, et al. Iron oxides stimulate sulfate-driven anaerobic methane oxidation in seeps [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(40): E4139-E4147. doi: 10.1073/pnas.1412269111
|
[59] |
Egger M, Hagens M, Sapart C J, et al. Iron oxide reduction in methane-rich deep Baltic Sea sediments [J]. Geochimica et Cosmochimica Acta, 2017, 207: 256-276. doi: 10.1016/j.gca.2017.03.019
|
[60] |
Egger M, Rasigraf O, Sapart C J, et al. Iron-mediated anaerobic oxidation of methane in brackish coastal sediments [J]. Environmental Science & Technology, 2015, 49(1): 277-283.
|
[61] |
Luo M, Torres M E, Hong W L, et al. Impact of iron release by volcanic ash alteration on carbon cycling in sediments of the northern Hikurangi margin [J]. Earth and Planetary Science Letters, 2020, 541: 116288. doi: 10.1016/j.jpgl.2020.116288
|
[62] |
Tagliabue A, Bopp L, Dutay J C, et al. Hydrothermal contribution to the oceanic dissolved iron inventory [J]. Nature Geoscience, 2010, 3(4): 252-256. doi: 10.1038/ngeo818
|
[63] |
McCollom T M, Shock E L. Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems [J]. Geochimica et Cosmochimica Acta, 1997, 61(20): 4375-4391. doi: 10.1016/S0016-7037(97)00241-X
|
[64] |
Sun Z L, Wu N Y, Cao H, et al. Hydrothermal metal supplies enhance the benthic methane filter in oceans: An example from the Okinawa Trough [J]. Chemical Geology, 2019, 525: 190-209. doi: 10.1016/j.chemgeo.2019.07.025
|
[65] |
吴能友, 孙治雷, 卢建国, 等. 冲绳海槽海底冷泉-热液系统相互作用[J]. 海洋地质与第四纪地质, 2019, 39(5):23-35
WU Nengyou, SUN Zhilei, LU Jianguo, et al. Interaction between seafloor cold seeps and adjacent hydrothermal activities in the Okinawa Trough [J]. Marine Geology & Quaternary Geology, 2019, 39(5): 23-35.
|
[66] |
McCollom T M. Geochemical constraints on primary productivity in submarine hydrothermal vent plumes [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2000, 47(1): 85-101. doi: 10.1016/S0967-0637(99)00048-5
|
[67] |
Ruff S E, Bidle J F, Teske A P, et al. Global dispersion and local diversification of the methane seep microbiome [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(13): 4015-4020. doi: 10.1073/pnas.1421865112
|
[68] |
Hubert C, Loy A, Nickel M, et al. A constant flux of diverse thermophilic bacteria into the cold Arctic seabed [J]. Science, 2009, 325(5947): 1541-1544. doi: 10.1126/science.1174012
|
[69] |
Schauer R, Bienhold C, Ramette A, et al. Bacterial diversity and biogeography in deep-sea surface sediments of the South Atlantic Ocean [J]. The ISME Journal, 2010, 4(2): 159-170. doi: 10.1038/ismej.2009.106
|
[1] | WANG Youkun, ZHOU Zhiyuan, LIN Jian, ZHANG Fan. Subduction plate boundary thrust system and dynamic characteristics in the Western Pacific[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 173-180. DOI: 10.16562/j.cnki.0256-1492.2023082502 |
[2] | SUN Hanjie, Beaufort Luc, AN Baizheng, LI Tiegang, CHANG Fengming, NAN Qingyun, HUANG Cui. Variations in the length and weight of Noelaerhabdaceae coccolith in the Late Quaternary tropical Western Pacific and their influencing factors[J]. Marine Geology & Quaternary Geology, 2023, 43(4): 38-47. DOI: 10.16562/j.cnki.0256-1492.2023071602 |
[3] | ZENG Zhigang, ZHANG Yuxiang, CHEN Zuxing, LI Xiaohui, QI Haiyan, WANG Xiaoyuan, CHEN Shuai, YIN Xuebo. Seafloor hydrothermal system and its magmatic setting in the western Pacific back-arc basins[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 12-24. DOI: 10.16562/j.cnki.0256-1492.2021070101 |
[4] | WANG Lixing, YAO Huiqiang, LI Zhenggang, LIU Liqiang, HAN Bing, PENG Tianyue. Compilation of tectonic map and Nd isotopic mapping for basalts in the seamount area of Western Pacific Ocean[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 180-191. DOI: 10.16562/j.cnki.0256-1492.2020110202 |
[5] | Zhang Guowei, Li Sanzhong. West Pacific and North Indian Oceans and Their Ocean-continent Connection Zones: Evolution and Debates[J]. Marine Geology & Quaternary Geology, 2017, 37(4): 1-17. DOI: 10.16562/j.cnki.2056-1492.2017.04.001 |
[6] | SHI Jinhua, ZHONG Yuan, CHEN Lihui, ZHANG Guoliang. ISOTOPIC CHARACTERISTICS OF INTRAPLATE BASALTS IN WEST PACIFIC[J]. Marine Geology & Quaternary Geology, 2017, 37(1): 15-22. DOI: 10.16562/j.cnki.0256-1492.2017.01.002 |
[7] | SONG Yongdong, MA Xiaochuan, ZHANG Guangxu, LIU Xiansan, LUAN Zhendong, DONG Dongdong, YAN Jun. HEAT FLOW IN-SITU MEASUREMENT AT YAP TRENCH OF THE WESTERN PACIFIC[J]. Marine Geology & Quaternary Geology, 2016, 36(4): 51-56. DOI: 10.16562/j.cnki.0256-1492.2016.04.006 |
[8] | LONG Xiaojun, ZHAO Guangtao, YANG Shengxiong, LENG Chuanxu, QI Qi, CUI Shanggong, HAO Yanan. CHEMICAL COMPOSITION AND PALEOENVIRONMENTAL RECORD OF THE CO-RICH CRUST FROM MAGELLAN SEAMOUNT IN WESTERN PACIFIC[J]. Marine Geology & Quaternary Geology, 2015, 35(5): 47-55. DOI: 10.16562/j.cnki.0256-1492.2015.05.006 |
[9] | YUAN Xuecheng. OCEAN-CONTINENT COLLISION IN THE WEST PACIFIC[J]. Marine Geology & Quaternary Geology, 2014, 34(6): 41-48. DOI: 10.3724/SP.J.1140.2014.06041 |
[10] | ZHAI Bin, LI Tiegang, XIONG Zhifang. PALEOENVIRONMENTAL CHANGES DURING LAST GLACIAL STAGE INFERRED FROM DIATOM RECORDS OF THE DIATOM MAT DEPOSITS FROM TROPICAL PACIFIC[J]. Marine Geology & Quaternary Geology, 2014, 34(2): 89-93. DOI: 10.3724/SP.J.1140.2014.02089 |
1. |
吴潇平,赵广涛,徐翠玲,来志庆. 东南太平洋秘鲁海盆DEA区浅层埋藏型铁锰结核的矿物学和地球化学特征及成因类型. 中国海洋大学学报(自然科学版). 2023(02): 94-106 .
![]() | |
2. |
丁雪,胡邦琦,赵京涛,王飞飞,黄威,李攀峰,刘佳,郭建卫,崔汝勇. 九州-帕劳海脊南段及邻近海域表层沉积物元素地球化学特征及其地质意义. 海洋地质与第四纪地质. 2023(01): 61-70 .
![]() | |
3. |
杨叶飘,韩宗珠,来志庆,龙时迈,顾伟,窦连想. 西盘古海盆锰结核的元素地球化学特征及生长机制. 海洋地质前沿. 2023(09): 35-45 .
![]() | |
4. |
丁雪,刘佳,杨慧良,赵京涛,黄威,李攀峰,宋维宇,郭建卫,虞义勇,崔汝勇,胡邦琦. 九州-帕劳海脊南段铁锰结壳物质组成特征及成因机制. 海洋地质与第四纪地质. 2023(04): 105-115 .
![]() | |
5. |
黄威,胡邦琦,宋维宇,赵京涛,路晶芳,孟祥君,江云水,崔汝勇,丁雪. 九州-帕劳海脊南部13°20′N海山铁锰结壳关键金属富集规律及制约因素. 海洋地质与第四纪地质. 2022(05): 137-148 .
![]() | |
6. |
宋维宇,李超,孟祥君,黄威,赵京涛,陆凯,徐磊,胡邦琦,虞义勇,孙建伟,李阳,周吉祥,胡刚,原晓军. 九州-帕劳海脊南段共生多金属结核与富钴结壳地球化学特征及其资源意义. 海洋地质与第四纪地质. 2022(05): 149-157 .
![]() | |
7. |
季虹. 浅谈第四系“姜结石、铁锰结核”形成与分布的关系. 中国金属通报. 2021(11): 112-113 .
![]() |