LING Zilong, ZHAO Lihong, PENG Yihui, WU Zhaocai, QU Yancheng. Inversion of the lithosphere effective elastic thickness in the central Western Pacific with moving window admittance technique[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 138-146. DOI: 10.16562/j.cnki.0256-1492.2020112002
Citation: LING Zilong, ZHAO Lihong, PENG Yihui, WU Zhaocai, QU Yancheng. Inversion of the lithosphere effective elastic thickness in the central Western Pacific with moving window admittance technique[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 138-146. DOI: 10.16562/j.cnki.0256-1492.2020112002

Inversion of the lithosphere effective elastic thickness in the central Western Pacific with moving window admittance technique

More Information
  • Received Date: November 19, 2020
  • Revised Date: January 25, 2021
  • Available Online: February 28, 2021
  • The Central Western Pacific is a key area for study of the tectonic evolution of a trench-arc-basin system. The geological features and tectonic evolution of the region have raised great attention from geologists. In this paper, the lithospheric effective elastic thickness (Te) is used as a parameter for understanding the tectonic-magmatic processes of the region and the Moving Window Admittance Technique is adopted as the major tool to calculate the Te for the study region, which considers both the surface and internal loads in a flexure model. The calculated results show that the Te values in the Central Western Pacific vary from 0~50 km, and the variation is closely related to major tectonic boundaries, and agrees well with tectonic provinces of the study area. In general, the Pacific Plate is characterized by high Te up to 25~30 km. Te values are relatively low in the submarine volcanic area (15~20 km). The noticeable reduction of Te is observed on the subducting plate from the outer rise to the trench axis of the Mariana Trench and the Philippine Trench, suggesting that the lithosphere is weakened from the outer rise to trench. The lithospheric strength in the western part of the Parece Vela Basin is weaker than that in the eastern part, possibly related to the asymmetric spreading of the basin. The lithosphere of the Caroline Plate is characterized by relatively uniform low Te values. The lithosphere in the Eauripik Rise, Caroline Ridge and Sorol Trough vary around a Te of 3 km, resulted from strong volcanism.
  • [1]
    刘新华. 西太平洋地区的海洋安全形势与中国的地区性海权[J]. 太平洋学报, 2011, 19(2):83-92. [LIU Xinhua. Maritime security situation in the Western Pacific region and China’s regional sea power [J]. Pacific Journal, 2011, 19(2): 83-92. doi: 10.3969/j.issn.1004-8049.2011.02.010
    [2]
    张训华, 尚鲁宁. 冲绳海槽地壳结构与性质研究进展和新认识[J]. 中国海洋大学学报, 2014, 44(6):72-80. [ZHANG Xunhua, SHANG Luning. Study on Crustal Structure and Nature of the Okinawa Trough [J]. Periodical of Ocean University of China, 2014, 44(6): 72-80.
    [3]
    张正一, 范建柯, 白永良, 等. 中国海—西太平洋地区典型剖面的重-磁-震联合反演研[J]. 地球物理学报, 2018, 061(007):2871-2891. [ZHANG Zhengyi, FAN Jianke, BAI Yongliang, et al. Joint inversion of gravity-magnetic-seismic data of a typical profile in the China Sea-Western Pacific area [J]. Chinese Journal of Geophysics, 2018, 061(007): 2871-2891.
    [4]
    Zhang G L, Zhang J, Wang S, et al. Geochemical and chronological constraints on the mantle plume origin of the Caroline Plateau [J]. Chemical Geology, 2020: 119566.
    [5]
    Forsyth D W. Subsurface loading and estimates of the flexural rigidity of continental lithosphere [J]. Journal of Geophysical Research Solid Earth, 1985, 90(B14).
    [6]
    Watts A B, Burov E B. Lithospheric strength and its relationship to the elastic and seismogenic layer thickness [J]. Earth and Planetary Science Letters, 2003, 213(1-2): 113-131. doi: 10.1016/S0012-821X(03)00289-9
    [7]
    Lowry A R, Smith R B. Strength and rheology of the western U. S. Cordillera [J]. Journal of Geophysical Research Solid Earth, 1995, 100(B9): 17947-17963. doi: 10.1029/95JB00747
    [8]
    Burov E B, Diament M. The effective elastic thickness (Te) of continental lithosphere: What does it really mean? [J]. Journal of Geophysical Research Solid Earth, 1995, 100(B3). doi: 10.1029/94jb02770
    [9]
    Brown C D, Phillips R J. Crust-mantle decoupling by flexure of continental lithosphere [J]. Journal of Geophysical Research Solid Earth, 2000, 105(B6): 13221-13237. doi: 10.1029/2000JB900069
    [10]
    Tassara A, Swain C, Hackney R, et al. Elastic thickness structure of South America estimated using wavelets and satellite-derived gravity data [J]. Earth and Planetary Science Letters, 2007, 253(1-2): 17-36. doi: 10.1016/j.jpgl.2006.10.008
    [11]
    Pérez-Gussinyé M, Lowry A R, Watts A B. Effective elastic thickness of South America and its implications for intracontinental deformation [J]. Geochemistry Geophysics Geosystems, 2007, 8(5). doi: 10.1029/2006GC001511
    [12]
    付永涛, 李安春, 秦蕴珊. 大洋和大陆边缘岩石圈有效弹性厚度的研究意义[J]. 海洋地质与第四纪地质, 2002(03):71-77. [FU Yongtao, LI Anchun, QIN Yunshan. Effective elastic thickness of the oceanic and continental marginal lithospheres [J]. Marine Geology and Quaternary Geology, 2002(03): 71-77.
    [13]
    Altis S. Origin and tectonic evolution of the Caroline Ridge and the Sorol Trough, western tropical Pacific, from admittance and a tectonic modeling analysis [J]. Tectonophysics, 1999, 313(3): 271-292. doi: 10.1016/S0040-1951(99)00204-8
    [14]
    Kalnins L M, Watts A B. Spatial variation in effective elastic thickness in the Western Pacific Ocean and their implications for Mesozoic volcanism [J]. Earth and Planetary Science Letters, 2009, 286(1-2): 89-100. doi: 10.1016/j.jpgl.2009.06.018
    [15]
    Zhang F, Lin J, Zhan W. Variations in oceanic plate bending along the Mariana trench [J]. Earth and Planetary Science Letters, 2014, 401: 206-214. doi: 10.1016/j.jpgl.2014.05.032
    [16]
    胡敏章, 李建成, 李辉, 等. 西北太平洋岩石圈有效弹性厚度及其构造意义[J]. 地球物理学报, 2015, 58(2):542-555. [HU Minzhang, LI Jiancheng, LI Hui, et al. The lithosphere effective elastic thickness and its tectonic implications in the Northwestern Pacific [J]. Chinese Journal of Geophysics, 2015, 58(2): 542-555. doi: 10.6038/cjg20150217
    [17]
    杨安, 付永涛, 李安春. 卡罗琳板块及其附近地区的岩石圈有效弹性厚度[J]. 地球物理学报, 2016, 59(9):3280-3290. [YANG An, FU Yongtao, LI Anchun. The effective elastic thickness of the Caroline plate and its adjacent areas [J]. Chinese Journal of Geophysics, 2016, 59(9): 3280-3290. doi: 10.6038/cjg20160913
    [18]
    Watts A B, Brink U S T, Buhl P, et al. A multichannel seismic study of lithospheric flexure across the Hawaiian-Emperor seamount chain [J]. Nature, 1985, 315(6015): 105-111. doi: 10.1038/315105a0
    [19]
    Watts A B, Sandwell D T, Smith W H F, et al. Global gravity, bathymetry, and the distribution of submarine volcanism through space and time [J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B8). doi: 10.1029/2005JB004083
    [20]
    Pérez-Gussinyé M, Lowry A R, Watts A B, et al. On the recovery of effective elastic thickness using spectral methods: Examples from synthetic data and from the Fennoscandian Shield [J]. Journal of Geophysical Research: Solid Earth, 2004: 109. doi: 10.1029/2003JB002788
    [21]
    Pérez-Gussinyé M, Watts A. The long-term strength of Europe and its implications for plate-forming processes [J]. Nature, 2005, 436(7049): 381-384. doi: 10.1038/nature03854
    [22]
    Yang A, Fu Y T. Estimates of effective elastic thickness at subduction zones [J]. Journal of Geodynamics, 2018, 117: 75-87. doi: 10.1016/j.jog.2018.04.007
    [23]
    Lallemand, Serge. Philippine Sea Plate inception, evolution, and consumption with special emphasis on the early stages of Izu-Bonin-Mariana subduction [J]. Progress in Earth & Planetary Science, 2016, 3(1): 15.
    [24]
    Ishizuka O, Tani K, Reagan M K, et al. The timescales of subduction initiation and subsequent evolution of an oceanic island arc [J]. Earth and Planetary Science Letters, 2011, 306(3-4): 229-240. doi: 10.1016/j.jpgl.2011.04.006
    [25]
    Mrozowski C L, Lewis S D, Hayes D E. Complexities in the tectonic evolution of the West Philippine Basin [J]. Tectonophysics, 1982, 82(1-2): 1-24. doi: 10.1016/0040-1951(82)90085-3
    [26]
    Thomas W C, Hilde, Lee C. Origin and evolution of the West Philippine Basin: A new interpretation [J]. Tectonophysics, 1984, 102(1-4): 85-104. doi: 10.1016/0040-1951(84)90009-X
    [27]
    Weissel J K. Is there a Caroline plate? [J]. Earth and Planetary Science Letters, 1978, 41(2): 143-158. doi: 10.1016/0012-821X(78)90004-3
    [28]
    Gaina C, Müller D. Cenozoic tectonic and depth/age evolution of the Indonesian gateway and associated back-arc basins [J]. Earth Science Reviews, 2007, 83(3-4): 177-203. doi: 10.1016/j.earscirev.2007.04.004
    [29]
    Fujiwara T, Tamura C, Nishizawa A, et al. Morphology and tectonics of the Yap Trench [J]. Marine Geophysical Researches, 2000, 21(1-2): 69-86.
    [30]
    Ohara Y, Fujioka K, Ishizuka O, et al. Peridotites and volcanics from the Yap arc system: implications for tectonics of the southern Philippine Sea Plate [J]. Chemical Geology, 2002, 189(1): 35-53.
    [31]
    Mccabe R, Uyeda S. Hypothetical Model for the Bending of the Mariana Arc[M]// The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2. American Geophysical Union (AGU), 1983.
    [32]
    刘洋, 吴自银, 赵荻能, 等. MF多源测深数据融合方法及大洋水深模型构建[J]. 测绘学报, 2019, 48(9):1171-1181. [LIU Yang, WU Ziyin, ZHAO Dineng, et al. The MF method for multi-source bathymetric data fusion and ocean bathymetric model construction [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(9): 1171-1181. doi: 10.11947/j.AGCS.2019.20180495
    [33]
    Pavlis N K, Holmes S A, Kenyon S C, et al. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008) [J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B4). doi: 10.1002/jgrb.50167
    [34]
    张精明, 闫建强, 王福民. EGM2008地球重力场模型精度分析与评价[J]. 石油地球物理勘探, 2010, 45(0z1):230-233. [ZHANG Jingming, YAN Jianqiang, WANG Fumin. Accuracy analysis and evaluation of EMG2008 earth gravity field model [J]. Oil Geophysical Prospecting, 2010, 45(0z1): 230-233.
    [35]
    Laske G, Masters G, Ma Z. Update on CRUST1.0—a 1-degree global model of Earth’s crust[M]. Geophysical research Abstracts, 15 (Abstract EGU2013-2658). 2013.
    [36]
    Turcote D L, Schubert G. Geodynamics[M]. Cambridge: Cambridge University Pres, 2002.
    [37]
    Audet P, Bürgmann R. Dominant role of tectonic inheritance in supercontinent cycles[J]. 2011, 4(3): 184-187.
    [38]
    Pérez-Gussinyé M, Swain C J, Kirby J F, et al. Spatial variations of the effective elastic thickness, Te, using multitaper spectral estimation and wavelet methods: Examples from synthetic data and application to South America [J]. Geochemistry Geophysics Geosystems, 2013, 10(4). doi: 10.1029/2008GC002229
    [39]
    Pérez-Gussinyé M, Metois M, Fernández M, et al. Effective elastic thickness of Africa and its relationship to other proxies for lithospheric structure and surface tectonics [J]. Earth and Planetary Science Letters, 2009, 287(1-2): 152-167. doi: 10.1016/j.jpgl.2009.08.004
    [40]
    Kirby J F, Swain C J. A reassessment of spectral T e estimation in continental interiors: The case of North America [J]. Journal of Geophysical Research Solid Earth, 2009, 114(B8). doi: 10.1029/2009JB006356
    [41]
    Shi X, Kirby J, Yu C, et al. Spatial variations in the effective elastic thickness of the lithosphere in Southeast Asia [J]. Gondwana Research, 2017, 42: 49-62. doi: 10.1016/j.gr.2016.10.005
    [42]
    Burov E B, Watts A B. The long-term strength of continental lithosphere: "Jelly Sandwich" or "Crème Brûlée"? [J]. GSA Today, 2006, 16(1). doi: 10.1130/1052-5173(2006)0162.0.CO;2
    [43]
    Hunter J, Watts, et al. Gravity anomalies, flexure and mantle rheology seaward of circum-Pacific trenches [J]. Geophysical Journal International, 2016, 207(1): 288-316. doi: 10.1093/gji/ggw275
    [44]
    Hussong D M. Tectonic processes and the history of the Mariana Arc: A synthesis of the results of deep-sea drilling project Leg 60 [J]. Initial Reports of the Deep Sea Drilling Project, 1982.
    [45]
    Stern R J, Fouch M J, Klemperer S L. An overview of the Izu-Bonin-Mariana subduction factory [J]. Inside of Subduction Factory, 2003, 138: 175-222.
    [46]
    Chamot-Rooke N. Magnetic anomalies in the Shikoku Basin: a new interpretation [J]. Earth and Planetary Science Letters, 1987, 83(1): 214-228.
    [47]
    Blackman D K, Forsyth D W. Isostatic compensation of tectonic features of the Mid-Atlantic Ridge: 25–27°30′S [J]. Journal of Geophysical Research, 1991, 96(B7): 11741. doi: 10.1029/91JB00602
  • Cited by

    Periodical cited type(9)

    1. Shu-yu Wu,Jun Liu,Jian-wen Chen,Qi-liang Sun,Yin-guo Zhang,Jie Liang,Yong-cai Feng. Carboniferous-Early Permian heterogeneous distribution of porous carbonate reservoirs in the Central Uplift of the South Yellow Sea Basin and its hydrocarbon potential analysis. China Geology. 2025(01): 58-76 .
    2. 张建民,王志才,付俊东,王冬雷,夏暖,王凯,许洪泰,王雷. 连云港市主要断裂活动性研究. 海洋地质与第四纪地质. 2025(02): 98-109 . 本站查看
    3. 袁勇,陈建文,骆迪,李清,梁杰,蓝天宇,王建强,曹珂,赵化淋. 南黄海盆地烟台坳陷新生界二氧化碳封存地质条件与封存前景. 海洋地质前沿. 2025(03): 35-47 .
    4. 陈建文,杨长清,张莉,钟广见,王建强,吴飘,梁杰,张银国,蓝天宇,薛路. 中国海域前新生代地层分布及其油气勘查方向. 海洋地质与第四纪地质. 2022(01): 1-25 . 本站查看
    5. 李志强,杨波,韩自军,黄振,吴庆勋. 南黄海中-新生代裂谷盆地构造-热演化:对成盆机制和烃源岩热演化的指示. 地球科学. 2022(05): 1652-1668 .
    6. 王惠初,相振群,任云伟,康健丽,初航,王智,滕菲,佟鑫. 扬子北缘还是华北东南缘:胶东新元古代花岗片麻岩构造归属新议. 地质学报. 2022(09): 3012-3033 .
    7. 梁杰,许明,陈建文,张银国,王建强,雷宝华,袁勇,吴淑玉,李慧君. 印支运动在南黄海盆地的响应及其对油气地质条件的影响. 地质通报. 2021(Z1): 252-259 .
    8. 张玉玺,陈建文,张银国. 下扬子-南黄海地区下三叠统“错时相”沉积及成因. 海洋地质前沿. 2021(04): 68-76 .
    9. 陈建文,张异彪,陈华,刘俊,何玉华,施剑,李斌,袁勇,梁杰,张银国,雷宝华,王建强,吴淑玉,吴志强,闫桂京,陈春峰,肖国林. 南黄海盆地海相中-古生界地震探测技术攻关历程及效果. 海洋地质前沿. 2021(04): 1-17 .

    Other cited types(3)

Catalog

    Article views (1600) PDF downloads (28) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return