WANG Lixing, YAO Huiqiang, LI Zhenggang, LIU Liqiang, HAN Bing, PENG Tianyue. Compilation of tectonic map and Nd isotopic mapping for basalts in the seamount area of Western Pacific Ocean[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 180-191. DOI: 10.16562/j.cnki.0256-1492.2020110202
Citation: WANG Lixing, YAO Huiqiang, LI Zhenggang, LIU Liqiang, HAN Bing, PENG Tianyue. Compilation of tectonic map and Nd isotopic mapping for basalts in the seamount area of Western Pacific Ocean[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 180-191. DOI: 10.16562/j.cnki.0256-1492.2020110202

Compilation of tectonic map and Nd isotopic mapping for basalts in the seamount area of Western Pacific Ocean

More Information
  • Received Date: November 01, 2020
  • Revised Date: December 09, 2020
  • Available Online: February 28, 2021
  • The Tectonic Map of the Western Pacific Seamount Area (1∶5 000 000) is compiled based on the topographic and geological data of the COMRA cruises over past years and the latest geophysical and geochemical data. The tectonic map of the Western Pacific seamount area consists of one main map and three auxiliary maps. The main map or the tectonic map of mapping area includes 3 first order plates, 22 second order blocks and 12 third-order blocks, while the three auxiliary maps includes the geological structure map of the seamount area in Western Pacific Ocean, the bouguer gravity anomaly map of seamount area in the Western Pacific Ocean and the contour map of εNd(t) value in seamount area of Western Pacific Ocean. The guiding idea and method adopted by the map compilation, the data source, the content of the map and the division basis of tectonic units are introduced and described in this paper. Based on the εNd(t) data of the basalts in the Western Pacific region, nine Nd isotopic anomaly areas are delineated. The coupling relationship between the Nd distribution pattern and geological processes and its significance to tectonic division of the area are further discussed.
  • [1]
    Miles P, Pubellier M, Collot J. Structural Map of the Western Pacific Ocean at 1: 20 000 000 scale[Z]. CCGM-CGMW 2016.
    [2]
    吴时国, 范建柯, 董冬冬. 论菲律宾海板块大地构造分区[J]. 地质科学, 2013, 48(3):677-692. [WU Shiguo, FAN Jianke, DONG Dongdong. Discussion on the tectonic division of the Philippine Sea Plate [J]. Chinese Journal of Geology, 2013, 48(3): 677-692. doi: 10.3969/j.issn.0563-5020.2013.03.008
    [3]
    温珍河, 张训华, 郝天珧, 等. 我国海洋地学编图现状、计划与主要进展[J]. 地球物理学报, 2014, 57(12):3907-3919. [WEN Zhenhe, ZHANG Xunhua, HAO Tianyao, et al. Progress in compilation of geoscience map series for China seas and adjacent regions [J]. Chinese Journal of Geophysics, 2014, 57(12): 3907-3919. doi: 10.6038/cjg20141205
    [4]
    夏成龙, 郑彦鹏, 董冬冬, 等. 菲律宾海盆磁条带特征及61 Ma以来的海底扩张过程重建[J]. 海洋地质与第四纪地质, 2017, 37(1):30-40. [XIA Chenglong, ZHENG Yanpeng, DONG Dongdong, et al. Characteristics of magnetic lineations and reconstruction of seafloor spreading processes of the Philippine sea basin since 61 Ma [J]. Marine Geology & Quaternary Geology, 2017, 37(1): 30-40.
    [5]
    张正一, 范建柯, 白永良, 等. 中国海—西太平洋地区典型剖面的重-磁-震联合反演研究[J]. 地球物理学报, 2018, 61(7):2871-2891. [ZHANG Zhengyi, FAN Jianke, BAI Yongliang, et al. Joint inversion of gravity-magnetic-seismic data of a typical profile in the China Sea-Western Pacific area [J]. Chinese Journal of Geophysics, 2018, 61(7): 2871-2891. doi: 10.6038/cjg2018L0301
    [6]
    Bonvalot S, Balmino G, Briais A, et al. World Gravity Map[Z]. BGI-CGMW-CNES-IRD, 2012.
    [7]
    Batiza R. Trace-element characteristics of Leg 61 basalts[R]. Initial Report of the Deep Sea Drilling Project, 1981, 61: 689-695.
    [8]
    Castillo P R. Geochemistry of Cretaceous volcaniclastic sediments in the Nauru and East Mariana basins provides insights into the mantle sources of giant oceanic plateaus [J]. Geological Society, London, Special Publications, 2004, 229(1): 353-368. doi: 10.1144/GSL.SP.2004.229.01.20
    [9]
    Castillo P R, Carlson R W, Batiza R. Origin of Nauru Basin igneous complex: Sr, Nd and Pb isotope and REE constraints [J]. Earth and Planetary Science Letters, 1991, 103(1-4): 200-213. doi: 10.1016/0012-821X(91)90161-A
    [10]
    Castillo P, Batiza R, Stern R J. Petrology and geochemistry of Nauru basin igneous complex: large-volume, off-ridge eruptions of MORB-like basalt during the Cretaceous[R]. Initial Report of the Deep Sea Drilling Project, 1986: 555-576.
    [11]
    Castillo P R, Floyd P A, France-Lanord C. Isotope geochemistry of leg 129 basalts: implications for the origin of the widespread cretaceous volcanic event in the pacific[C]//Proceedings of the Ocean Drilling Program, Scientific Results. College Station, TX, 1992, 129: 405-413.
    [12]
    Castillo P R, Pringle M S, Carlson R W. East mariana basin tholeiites: cretaceous intraplate basalts or rift basalts related to the Ontong Java plume? [J]. Earth and Planetary Science Letters, 1994, 123(1-3): 139-154. doi: 10.1016/0012-821X(94)90263-1
    [13]
    Davis A S, Pringle M S, Pickthorn L B G, et al. Petrology and age of alkalic lava from the Ratak Chain of the Marshall Islands [J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B5): 5757-5774. doi: 10.1029/JB094iB05p05757
    [14]
    Floyd P A, Castillo P R. Geochemistry and petrogenesis of Jurassic ocean crust basalts, site 801[C]//Proceedings of the Ocean Drilling Program, Scientific Results. College Station, TX, 1992, 129: 361-388.
    [15]
    Floyd P A, Winchester J A, Castillo P R. Geochemistry and petrography of Cretaceous sills and lava flows, sites 800 and 802[C]//Proceedings of the Ocean Drilling Program, Scientific Results. College Station, TX, 1992, 129: 345-359.
    [16]
    Jackson M G, Price A A, Blichert-Toft J, et al. Geochemistry of lavas from the Caroline hotspot, Micronesia: Evidence for primitive and recycled components in the mantle sources of lavas with moderately elevated 3He/4He [J]. Chemical Geology, 2017, 455: 385-400. doi: 10.1016/j.chemgeo.2016.10.038
    [17]
    Ishizuka O, Yuasa M, Taylor R N, et al. Two contrasting magmatic types coexist after the cessation of back-arc spreading [J]. Chemical Geology, 2009, 266(3-4): 274-296. doi: 10.1016/j.chemgeo.2009.06.014
    [18]
    Ishizuka O, Yuasa M, Tamura Y, et al. Migrating shoshonitic magmatism tracks Izu–Bonin–Mariana intra-oceanic arc rift propagation [J]. Earth and Planetary Science Letters, 2010, 294(1-2): 111-122. doi: 10.1016/j.jpgl.2010.03.016
    [19]
    Kelley K A, Plank T, Ludden J, et al. Composition of altered oceanic crust at ODP Sites 801 and 1149 [J]. Geochemistry, Geophysics, Geosystems, 2003, 4(6): 8910.
    [20]
    Koppers A A P, Staudigel H, Pringle M S, et al. Short-lived and discontinuous intraplate volcanism in the South Pacific: Hot spots or extensional volcanism? [J]. Geochemistry, Geophysics, Geosystems, 2003, 4(10): 1089.
    [21]
    Koppers A A P, Staudigel H, Wijbrans J R, et al. The Magellan seamount trail: implications for Cretaceous hotspot volcanism and absolute Pacific plate motion [J]. Earth and Planetary Science Letters, 1998, 163(1-4): 53-68. doi: 10.1016/S0012-821X(98)00175-7
    [22]
    Lee J I, Hur S D, Park B K, et al. Geochemistry and K-Ar Age of Alkali Basalts from Weno Island, Caroline Islands, Western Pacific [J]. Ocean & Polar Research, 2001, 23(1): 23-34.
    [23]
    Mahoney J. J. An isotopic survey of pacific oceanic plateaus: implications for their nature and origin[M]//Keating B H, Fryer P, Batiza R, et al. Seamounts, Islands, and Atolls. Washington DC: AGU, 1987: 207-220.
    [24]
    Meijer A, Anthony E, Reagan M. Petrology of volcanic rocks from the fore-arc sites[R]. Initial Report of the Deep Sea Drilling Project, 1981, 60: 709-729.
    [25]
    Michael P J. Implications for magmatic processes at Ontong Java plateau from volatile and major element contents of Cretaceous basalt glasses [J]. Geochemistry, Geophysics, Geosystems, 2000, 1(12): 1008.
    [26]
    Ohara Y, Fujioka K, Ishizuka O, et al. Peridotites and volcanics from the Yap arc system: implications for tectonics of the southern Philippine Sea Plate [J]. Chemical Geology, 2002, 189(1-2): 35-53. doi: 10.1016/S0009-2541(02)00062-1
    [27]
    Pearce J A, Kempton P D, Nowell G M, et al. Hf-Nd element and isotope perspective on the nature and provenance of mantle and subduction components in Western Pacific Arc-Basin systems [J]. Journal of Petrology, 1999, 40(11): 1579-1611. doi: 10.1093/petroj/40.11.1579
    [28]
    Staudigel H, Park K H, Pringle M, et al. The longevity of the South Pacific isotopic and thermal anomaly [J]. Earth and Planetary Science Letters, 1991, 102(1): 24-44. doi: 10.1016/0012-821X(91)90015-A
    [29]
    Straub S M, Woodhead J D, Arculus R J. Temporal evolution of the Mariana Arc: Mantle wedge and subducted slab controls revealed with a tephra perspective [J]. Journal of Petrology, 2015, 56(2): 409-439. doi: 10.1093/petrology/egv005
    [30]
    Tokuyama H, Batiza R. Chemical composition of igneous rocks and origin of the sill and pillow-basalt complex of Nauru Basin, Southwest Pacific[R]. Initial Report of the Deep Sea Drilling Project, 1981, 61: 673-687.
    [31]
    Larson R L, Yves Lancelot, Andrew Fisher, et al. Proceedings of the Ocean Drilling Program, Scientific Results[R]. College Station, TX, United States: Texas A & M University, 1990, 129: 551-569.
    [32]
    Yamazaki T, Seama N, Okino K, et al. Spreading process of the northern Mariana Trough: Rifting-spreading transition at 22°N [J]. Geochemistry, Geophysics, Geosystems, 2003, 4(9): 1075.
    [33]
    Cande S C, Kent D V. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic [J]. Journal of Geophysical Research, 1995, 100(B4): 6093-6095. doi: 10.1029/94JB03098
    [34]
    Ogg J G. Geomagnetic polarity time scale[M]//The Geologic Time Scale. Amsterdam: Elsevier, 2012: 85-113.
    [35]
    Пущаровский Ю М, 李寿田. 太平洋大地构造(续一)[J]. 海洋地质译丛, 1995(2):18-36. [LI Shoutian, Пущаровский Ю М. Geotectonic development in the Pacific and its surrounding areas (1) [J]. Translation of Marine Geology, 1995(2): 18-36.
    [36]
    Reisberg L, Rouxel O, Ludden J, et al. Re–Os results from ODP Site 801: Evidence for extensive Re uptake during alteration of oceanic crust [J]. Chemical Geology, 2008, 248(3-4): 256-271. doi: 10.1016/j.chemgeo.2007.07.013
    [37]
    黄奇瑜, 余梦明. 边缘海的形成机制[M]//大洋钻探五十年. 上海: 同济大学出版社, 2018: 147-157.

    HUANG Qiyu, YU Mengming. Formation mechanism of marginal sea[M]//Fifty Years of Ocean Drilling. Shanghai: Tongji University Press, 2018: 147-157.
    [38]
    Müller R D, Seton M, Zahirovic S, et al. Ocean basin evolution and global-scale plate reorganization events since Pangea breakup [J]. Annual Review of Earth and Planetary Sciences, 2016, 44: 107-138. doi: 10.1146/annurev-earth-060115-012211
    [39]
    Expedition 350 Scientists. Izu-Bonin-Mariana rear arc: the missing half of the subduction factory[R]. International Ocean Discovery Program Expedition 350 Preliminary Report, 2014.
    [40]
    Hirano N, Ogawa Y, Saito K. Long-lived early Cretaceous seamount volcanism in the Mariana Trench, Western Pacific Ocean [J]. Marine Geology, 2002, 189(3-4): 371-379. doi: 10.1016/S0025-3227(02)00445-0
    [41]
    Koppers A A P, Staudigel H, Duncan R A. High-resolution 40Ar/39Ar dating of the oldest oceanic basement basalts in the western Pacific basin [J]. Geochemistry, Geophysics, Geosystems, 2003, 4(11): 8914.
    [42]
    Clouard V, Bonneville A. Ages of seamounts, islands, and plateaus on the Pacific plate[Z]. Geological Society of America Special Paper, 2005, 388: 71-90.
    [43]
    Zhang G L, Zhang J, Wang S, et al. Geochemical and chronological constraints on the mantle plume origin of the Caroline Plateau [J]. Chemical Geology, 2020, 540: 119566. doi: 10.1016/j.chemgeo.2020.119566
    [44]
    刘光鼎. 中国大陆构造格架的动力学演化[J]. 地学前缘, 2007, 14(3):39-46. [LIU Guangding. Geodynamical evolution and tectonic framework of China [J]. Earth Science Frontiers, 2007, 14(3): 39-46. doi: 10.3321/j.issn:1005-2321.2007.03.003
    [45]
    张训华, 孟祥君, 韩波. 块体与块体构造学说[J]. 海洋地质与第四纪地质, 2009, 29(5):59-64. [ZHANG Xunhua, MENG Xiangjun, HAN Bo. Block and block tectonics [J]. Marine Geology & Quaternary Geology, 2009, 29(5): 59-64.
    [46]
    Takahashi N, Kodaira S, Klemperer S L, et al. Crustal structure and evolution of the Mariana intra-oceanic island arc [J]. Geology, 2007, 35(3): 203-206. doi: 10.1130/G23212A.1
    [47]
    Fujiwara T, Tamaki K, Fujimoto H, et al. Morphological studies of the Ayu Trough, Philippine Sea – Caroline Plate Boundary [J]. Geophysical Research Letters, 1995, 22(2): 109-112. doi: 10.1029/94GL02719
    [48]
    Ranken B, Cardwell R K, Karig D E. Kinematics of the Philippine Sea Plate [J]. Tectonics, 1984, 3(5): 555-575. doi: 10.1029/TC003i005p00555
    [49]
    Heezen B C, Pimm A C. Underway Observations, Leg 6[R]. Initial Reports of the Deep Sea Drilling Project, Volume VI. Washington (U. S. Government Printing Office), 1971: 691-708.
    [50]
    Weissel J K, Anderson R N. Is there a Caroline plate? [J]. Earth and Planetary Science Letters, 1978, 41(2): 143-158. doi: 10.1016/0012-821X(78)90004-3
    [51]
    Gaina C, Müller D. Cenozoic tectonic and depth/age evolution of the Indonesian gateway and associated back-arc basins [J]. Earth-Science Reviews, 2007, 83(3-4): 177-203. doi: 10.1016/j.earscirev.2007.04.004
    [52]
    Hegarty K A, Weissel J K. Complexities in the development of the Caroline plate region, western equatorial Pacific[M]//Nairn A E M, Stehli F G, Uyeda S. The Ocean Basins and Margins. Boston, MA: Springer, 1988: 277-301.
    [53]
    Tregoning P, Gorbatov A. Evidence for active subduction at the New Guinea Trench [J]. Geophysical Research Letters, 2004, 31(13): L13608.
    [54]
    Stadler T J, Tominaga M. Intraplate volcanism of the western Pacific: New insights from geological and geophysical observations in the Pigafetta Basin [J]. Geochemistry, Geophysics, Geosystems, 2015, 16(9): 3015-3033. doi: 10.1002/2015GC005873
    [55]
    Kroenke L, Scott R, et al. Initial Reports of the Deep Sea Drilling Project[R]. DSDP, 59: Washington (U. S. Govt. Printing Office), 1980.
    [56]
    Chen J F, Jahn B M. Crustal evolution of southeastern China: Nd and Sr isotopic evidence [J]. Tectonophysics, 1998, 284(1-2): 101-133. doi: 10.1016/S0040-1951(97)00186-8
    [57]
    杜斌, 王长明, 贺昕宇, 等. 锆石Hf和全岩Nd同位素填图研究进展: 以三江特提斯造山带为例[J]. 岩石学报, 2016, 32(8):2555-2570. [DU Bin, WANG Changming, HE Xinyu, et al. Advances in research of bulk-rock Nd and zircon Hf isotopic mappings: Case study of the Sanjiang Tethyan Orogen [J]. Acta Petrologica Sinica, 2016, 32(8): 2555-2570.
    [58]
    侯增谦, 王涛. 同位素填图与深部物质探测(Ⅱ): 揭示地壳三维架构与区域成矿规律[J]. 地学前缘, 2018, 25(6):20-41. [HOU Zengqian, WANG Tao. Isotopic mapping and deep material probing (Ⅱ): imaging crustal architecture and its control on mineral systems [J]. Earth Science Frontiers, 2018, 25(6): 20-41.
    [59]
    Ribeiro J M, Ishizuka O, Lee C T A, et al. Evolution and maturation of the nascent Mariana arc [J]. Earth and Planetary Science Letters, 2020, 530: 115912. doi: 10.1016/j.jpgl.2019.115912
    [60]
    Zindler A, Hart S. Chemical geodynamics [J]. Annual Review of Earth and Planetary Sciences, 1986, 14(1): 493-571. doi: 10.1146/annurev.ea.14.050186.002425
    [61]
    Konter J G, Hanan B B, Blichert-Toft J, et al. One hundred million years of mantle geochemical history suggest the retiring of mantle plumes is premature [J]. Earth and Planetary Science Letters, 2008, 275(3-4): 285-295. doi: 10.1016/j.jpgl.2008.08.023
    [62]
    Smith A D. A plate model for Jurassic to Recent intraplate volcanism in the Pacific Ocean basin[M]//Foulger G R, Jurdy D M. Plates, Plumes, and Planetary Processes. Geological Society of America Special Paper 430, 2007: 471-495.

Catalog

    Article views (1783) PDF downloads (68) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return