ZHANG Yu, FANG Nianqiao. Source characteristics of basalts in Sanshui Basin and the early tectonic evolution stage of the South China Sea[J]. Marine Geology & Quaternary Geology, 2021, 41(3): 95-113. DOI: 10.16562/j.cnki.0256-1492.2020092902
Citation: ZHANG Yu, FANG Nianqiao. Source characteristics of basalts in Sanshui Basin and the early tectonic evolution stage of the South China Sea[J]. Marine Geology & Quaternary Geology, 2021, 41(3): 95-113. DOI: 10.16562/j.cnki.0256-1492.2020092902

Source characteristics of basalts in Sanshui Basin and the early tectonic evolution stage of the South China Sea

More Information
  • Received Date: September 28, 2020
  • Revised Date: December 22, 2020
  • Available Online: February 21, 2021
  • It is an important issue in the study of the origin of the South China Sea (SCS) whether the SCS evolved in an intracontinental rift stage before its opening up. The Sanshui Basin is located on the northern margin of the SCS. The Cenozoic eruption of the bimodal volcanic suggest that the basin was a continental rift. The major and trace elements of the basalts indicate that the basalts in Sanshui Basin can be divided into sub-alkaline and alkaline basalts series. Both of them show obvious Nb and Ta positive anomalies. Compared with the continental crust, they have lower Th/Sc, La/Nb and U/Al×1000. 40Ar-39Ar age and previous chronology results suggests that the eruption of basaltic magma was intense in 61~54 Ma, while the eruption of sub-alkaline basalt (60 Ma) is earlier than alkaline basalt (56 Ma). Based on the mantle melting column model, the temperature and pressure of the subalkaline magma source range from 1 517℃ (3.03 GPa) to 1 471℃ (2.25 GPa), in a depth of 101~76 km, while the alkaline magma source range from 1 555℃ (3.33 GPa) to 1 506℃ (2.48 GPa) in a depth of 110~84 km. According to the source of magmatism and rock assemblage, it is concluded that the Sanshui Basin was a Paleocene continental rift. Comparing the temporal distribution and source magmatic activity in the spreading period between the Sanshui Basin and the South China Sea, it is inferred that there is a long time interval between the magmatic activity of the Sanshui Basin and the spreading of SCS, and the deep process is quite different. There is no direct relationship between magmatism in the Sanshui Basin and the spreading of SCS.
  • [1]
    Tapponnier P, Peltzer G, Le Dain A Y, et al. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine [J]. Geology, 1982, 10(12): 611-616. doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2
    [2]
    Mai H A, Chan Y L, Yeh M W, et al. Tectonic implications of mesozoic magmatism to initiation of cenozoic basin development within the passive south China Sea margin [J]. International Journal of Earth Sciences, 2018, 107(3): 1153-1174. doi: 10.1007/s00531-017-1537-y
    [3]
    Sun W D. Initiation and evolution of the South China Sea: an overview [J]. Acta Geochimica, 2016, 35(3): 215-225. doi: 10.1007/s11631-016-0110-x
    [4]
    Holloway N H. North palawan block, philippines - its relation to asian mainland and role in evolution of South China Sea [J]. AAPG Bulletin, 1982, 66(9): 1355-1383.
    [5]
    Wu J, Suppe J. Proto-South China Sea plate tectonics using subducted slab constraints from tomography [J]. Journal of Earth Science, 2018, 29(6): 1304-1318. doi: 10.1007/s12583-017-0813-x
    [6]
    Xu Y G, Wei J X, Qiu H N, et al. Opening and evolution of the South China Sea constrained by studies on volcanic rocks: preliminary results and a research design [J]. Chinese Science Bulletin, 2012, 57(24): 3150-3164. doi: 10.1007/s11434-011-4921-1
    [7]
    Chen L, Hu J W, Yang D H, et al. Kinematic models for the opening of the South China Sea: an upwelling divergent flow origin [J]. Journal of Geodynamics, 2017, 107: 20-33. doi: 10.1016/j.jog.2017.03.002
    [8]
    林间, 李家彪, 徐义刚, 等. 南海大洋钻探及海洋地质与地球物理前沿研究新突破[J]. 海洋学报, 2019, 41(10):125-140

    LIN Jian, LI Jiabiao, XU Yigang, et al. Ocean drilling and major advances in marine geological and geophysical research of the South China Sea [J]. Acta Oceanologica Sinica, 2019, 41(10): 125-140.
    [9]
    Sun Z, Lin J, Qiu N, et al. The role of magmatism in the thinning and breakup of the south China sea continental margin: special topic: the South China Sea ocean drilling [J]. National Science Review, 2019, 6(5): 871-876. doi: 10.1093/nsr/nwz116
    [10]
    Ebinger C J, Yemane T, Woldegabriel G, et al. Late eocene - recent volcanism and faulting in the Southern Main Ethiopian rift [J]. Journal of the Geological Society, 1993, 150(1): 99-108. doi: 10.1144/gsjgs.150.1.0099
    [11]
    Christiansen R L, Foulger G R, Evans J R. Upper-mantle origin of the yellowstone hotspot [J]. GSA Bulletin, 2002, 114(10): 1245-1256. doi: 10.1130/0016-7606(2002)114<1245:UMOOTY>2.0.CO;2
    [12]
    Putirka K D, Perfit M, Ryerson F J, et al. Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling [J]. Chemical Geology, 2007, 241(3-4): 177-206. doi: 10.1016/j.chemgeo.2007.01.014
    [13]
    阎贫, 刘海龄. 南海及其周缘中新生代火山活动时空特征与南海的形成模式[J]. 热带海洋学报, 2005, 24(2):33-41 doi: 10.3969/j.issn.1009-5470.2005.02.005

    YAN Pin, LIU Hailing. Temporal and spatial distributions of meso-enozoic igneous rocks over south China Sea [J]. Journal of Tropical Oceanography, 2005, 24(2): 33-41. doi: 10.3969/j.issn.1009-5470.2005.02.005
    [14]
    Chung S L, Cheng H, Jahn B M, et al. Major and trace element, and Sr-Nd Isotope constraints on the origin of paleogene volcanism in South China Prior to the South China Sea opening [J]. Lithos, 1997, 40(2-4): 203-220. doi: 10.1016/S0024-4937(97)00028-5
    [15]
    董月霞, 肖龙, 周海民, 等. 广东三水盆地双峰式火山岩: 空间展布、岩石学特征及其盆地动力学意义[J]. 大地构造与成矿学, 2006, 30(1):82-92 doi: 10.3969/j.issn.1001-1552.2006.01.010

    DONG Yuexia, XIAO Long, ZHOU Haimin, et al. Spatial distribution and petrological characteristics of the bimodal volcanic rocks from Sanshui Basin, Guangdong Province: implication for basin dynamics [J]. Geotectonica et Metallogenia, 2006, 30(1): 82-92. doi: 10.3969/j.issn.1001-1552.2006.01.010
    [16]
    肖龙, 周海民, 董月霞, 等. 广东三水盆地火山岩: 地球化学特征及成因-兼论火山岩性质的时空演化和南海形成的深部过程[J]. 大地构造与成矿学, 2006, 30(1):72-81 doi: 10.3969/j.issn.1001-1552.2006.01.009

    XIAO Long, ZHOU Haimin, DONG Yuexia, et al. Geochemistry and petrogenesis of cenozoic volcanic rocks from Sanshui basin: implications for spatial and temporal variation of rock types and constraints on the formation of South China Sea [J]. Geotectonica et Metallogenia, 2006, 30(1): 72-81. doi: 10.3969/j.issn.1001-1552.2006.01.009
    [17]
    袁晓博. 三水盆地新生代岩浆记录与南海早期演化[D]. 中国地质大学(北京)博士学位论文, 2019.

    YUAN Xiaobo. The record of cenozoic magmatism in Sanshui basin and its relationship with the early tectonic evolution stage of the South China Sea[D]. Doctor Dissertation of Chian University of Geoscience (Beijing), 2019.
    [18]
    袁晓博, 方念乔. 三水盆地中渐新世火山记录的新建与南海扩张[J]. 地质通报, 2019, 38(4):689-695

    YUAN Xiaobo, FANG Nianqiao. The new volcanics record in sanshui basin and its relationship with the spreading of the South China Sea [J]. Geological Bulletin of China, 2019, 38(4): 689-695.
    [19]
    张维, 方念乔. 广东三水盆地始新世火山岩地球化学特征[J]. 地球科学—中国地质大学学报, 2014, 39(1):37-44 doi: 10.3799/dqkx.2014.004

    ZHANG Wei, FANG Nianqiao. Geochemistry characteristics of eocene volcanic rocks in Sanshui basin, Guangdong [J]. Earth Science—Journal of China University of Geosciences, 2014, 39(1): 37-44. doi: 10.3799/dqkx.2014.004
    [20]
    杨蜀颖. 南海玳瑁海山与相邻陆域玄武岩的地球化学特征及其构造意义[D]. 中国地质大学(北京)博士学位论文, 2015.

    YANG Shuying. Geochemical characteristics of basalts from the daimao seamount in the South China Sea (SCS) and from the SCS's neighboring lands: implications for the regional tectonic evolution[D]. Doctor Dissertation of Chian University of Geoscience (Beijing), 2015.
    [21]
    朱炳泉, 王慧芬, 陈毓蔚, 等. 新生代华夏岩石圈减薄与东亚边缘海盆构造演化的年代学与地球化学制约[J]. 地球化学, 2002, 31(3):213-221 doi: 10.3321/j.issn:0379-1726.2002.03.001

    ZHU Bingquan, WANG Huigfen, CHEN Yuwei, et al. Geochronological and geochemical constraint on the cenozoic extension of cathaysian lithosphere and tectonic evolution of the Border Sea Basins in East Asia [J]. Geochimica, 2002, 31(3): 213-221. doi: 10.3321/j.issn:0379-1726.2002.03.001
    [22]
    唐忠驭. 广东三水盆地白垩纪—早第三纪裂谷型火山作用[J]. 广东地质, 1994, 9(1):49-57

    TANG Zhongyu. Cretaceous-eogene rift valley-type volcanism in Sanshui Basin, Guangdong [J]. Guangdong Geology, 1994, 9(1): 49-57.
    [23]
    Ackerman L, Ulrych J, Řanda Z, et al. Geochemical characteristics and petrogenesis of phonolites and trachytic rocks from the ceske stredohori volcanic complex, the Ohre Rift, Bohemian Massif [J]. Lithos, 2015, 224-225: 256-271. doi: 10.1016/j.lithos.2015.03.014
    [24]
    Yoder H S. Citation-Classic Origin of basalt magmas - an experimental-study of natural and synthetic rock systems [J]. Current Contents, 1986(39): 14-20.
    [25]
    Shand S J. The problem of the alkaline rocks [J]. Proceedings of the Geological Society of South Africa, 1922, 25: 19-33.
    [26]
    Middlemost E A K. Naming materials in the magma/igneous rock system [J]. Earth-Science Reviews, 1994, 37(3-4): 215-24. doi: 10.1016/0012-8252(94)90029-9
    [27]
    焦守涛, 张旗, 葛粲, 等. 碱性岩及碱性与亚碱性岩系列的界线: 基于全球火山岩数据的探讨[J]. 地质通报, 2019, 38(12):1955-1962

    JIAO Shoutao, ZHANG Qi, GE Can, et al. Alkaline rock and the distinction between alkaline and sub-alkaline: a discussion on data of global volcanic rocks [J]. Geological Bulletin of China, 2019, 38(12): 1955-1962.
    [28]
    McDonough W F, Sun S S, Ringwood A E, et al. Potassium, rubidium, and cesium in the earth and moon and the evolution of the mantle of the earth [J]. Geochimica et Cosmochimica Acta, 1992, 56(3): 1001-1112. doi: 10.1016/0016-7037(92)90043-I
    [29]
    Gaschnig R M, Rudnick R L, McDonough W F, et al. Compositional evolution of the upper continental crust through time, as constrained by ancient glacial diamictites [J]. Geochimica et Cosmochimica Acta, 2016, 186: 316-43. doi: 10.1016/j.gca.2016.03.020
    [30]
    Yu X, Liu Z F. Non-mantle-plume process caused the initial spreading of the South China Sea [J]. Scientific Reports, 2020, 10(1): 10. doi: 10.1038/s41598-019-56089-4
    [31]
    Frey F A, Green D H, Roy S D. Integrated models of basalt petrogenesis: a study of quartz tholeiites to olivine melilitites from south Eastern Australia utilizing geochemical and experimental petrological data [J]. Journal of Petrology, 1978, 19(3): 463-513. doi: 10.1093/petrology/19.3.463
    [32]
    Langmuir C H, Klein E M, Plank T. Petrological systematics of mid-ocean ridge basalts: constraints on melt generation beneath ocean ridges[M]//Morgan J P, Blackman D K, Sinton J M. Mantle Flow and Melt Generation at Mid-Ocean Ridges. Washington, D. C. : Geophysical Monograph Series, 1992: 183-280.
    [33]
    梁涛, 罗照华, 李德东, 等. 托云盆地新生代幔源岩浆源区起止深度的限定[J]. 岩石学报, 2008, 24(12):2820-2838

    LIANG Tao, LUO Zhaohua, LI Dedong, et al. Source location identification of cenozoic mantle-derived magma in Tuyon Basin [J]. Acta Petrologica Sinica, 2008, 24(12): 2820-2838.
    [34]
    Wang K, Plank T, Walker J D, et al. A mantle melting profile across the basin and range, SW USA [J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B1): ECV 5-1-ECV 5-21. doi: 10.1029/2001JB000209
    [35]
    Cheng L L, Liang T, Zeng L, et al. Mantle melting column software named Calmantle 1.0 and the preliminary discussion on the thickness variation of the Tengchong Cenozoic lithosphere [J]. Earth Science Frontiers, 2012, 19(4): 126-134.
    [36]
    Jones C H, Wernicke B P, Farmer G L, et al. Variations across and along a major continental rift: an interdisciplinary study of the basin and Range province, Western USA [J]. Tectonophysics, 1992, 213(1-2): 57-96. doi: 10.1016/0040-1951(92)90252-2
    [37]
    黄海波, 郭兴伟, 夏少红, 等. 华南沿海地区地壳厚度与泊松比研究[J]. 地球物理学报, 2014, 57(12):3896-3906 doi: 10.6038/cjg20141204

    HUANG Haibo, GUO Xingwei, XIA Shaohong, et al. Crustal thickness and poisson's ratio in the coastal areas of South China [J]. Chinese Journal of Geophysics, 2014, 57(12): 3896-3906. doi: 10.6038/cjg20141204
    [38]
    Kelemen P B, Shimizu N, Dunn T. Relative depletion of niobium in some arc magmas and the continental crust: partitioning of K, Nb, La And Ce during melt/rock reaction in the upper mantle [J]. Earth and Planetary Science Letters, 1993, 120(3-4): 111-134. doi: 10.1016/0012-821X(93)90234-Z
    [39]
    徐义刚, 钟孙霖. 峨眉山大火成岩省: 地幔柱活动的证据及其熔融条件[J]. 地球化学杂志, 2001, 30(1):1-9

    XU Yigang, ZHONG Sunlin. The Emeishan large Igneous province: evidence for mantle plume activity and melting conditions [J]. Geochimica, 2001, 30(1): 1-9.
    [40]
    陈盼盼. 三水盆地晚白垩世-始新世火山-沉积序列对南海北缘构造演化的响应[D]. 博士学位论文中国地质大学(北京), 2018.

    CHEN Panpan. The response of late cretaceous-eocene epoch volcanic and sedimentary sequence in sanshui basin to the tectonic evolution of the Northern margin of Southe China Sea[J]. Doctor Dissertation of Chian University of Geoscience (Beijing), 2018.
    [41]
    邹和平, 李平鲁, 饶春涛. 珠江口盆地新生代火山岩地球化学特征及其动力学意义[J]. 地球化学, 1995, 24(S1):33-45

    ZOU Heping, LI Pinglu, RAO Chuntao. Geochemistry of cenozoic volcanic rocks in zhu jiangkou basin and its geodynamic significance [J]. Geochimica, 1995, 24(S1): 33-45.
    [42]
    张斌, 王璞珺, 张功成, 等. 珠—琼盆地新生界火山岩特征及其油气地质意义[J]. 石油勘探与开发, 2013, 40(6):657-665 doi: 10.11698/PED.2013.06.03

    ZHANG Bin, WANG Pujun, ZHANG Gongcheng, et al. Cenozoic volcanic rocks in the pearl river mouth and southeast Hainan Basins of South China Sea and their implications for petroleum geology [J]. Petroleum Exploration and Development, 2013, 40(6): 657-665. doi: 10.11698/PED.2013.06.03
    [43]
    李思伟. 珠江口盆地惠州凹陷新生代火山岩: 从岩石成因到火山岩储层[D]. 吉林大学博士学位论文, 2020.

    LI Siwei. Cenozoic volcanic rocks in Huizhou Sag of the Pearl River mouth basin: from petrogenesis to volcanic reservoir[D]. Doctor Dissertation of Jilin University, 2020.
    [44]
    汪云亮, 张成江, 修淑芝. 玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别[J]. 岩石学报, 2001, 17(3):413-421 doi: 10.3969/j.issn.1000-0569.2001.03.009

    WANG Yunliang, ZHANG Chengjiang, XIU Shuzhi. Th/Hf-Ta/Hf identification of tectonic setting of basalts [J]. Acta Petrologica Sinica, 2001, 17(3): 413-421. doi: 10.3969/j.issn.1000-0569.2001.03.009
    [45]
    Fitton J G, Saunders A D, Norry M J, et al. Thermal and Chemical Structure of the Iceland Plume [J]. Earth and Planetary Science Letters, 1997, 153(3-4): 197-208. doi: 10.1016/S0012-821X(97)00170-2
    [46]
    Bevins R E, Kokelaar B P, Dunkley P N. Petrology and geochemistry of lower to middle ordovician igneous rocks in wales: a volcanic arc to marginal basin transition [J]. Proceedings of the Geologists’ Association, 1984, 95(4): 337-347. doi: 10.1016/S0016-7878(84)80064-4
    [47]
    Weaver B L. The origin of ocean island basalt end-member compositions: trace element and isotopic constraints [J]. Earth and Planetary Science Letters, 1991, 104(2-4): 381-391. doi: 10.1016/0012-821X(91)90217-6
    [48]
    Hart S R, Hauri E H, Oschmann L A, et al. Mantle plumes and entrainment: isotopic evidence [J]. Science, 1992, 256(5056): 517-520. doi: 10.1126/science.256.5056.517
    [49]
    阙晓铭, 李元森, 陈会霞, 等. 深部地幔在白云凹陷的岩浆记录: 基于BY7火山岩的地球化学研究[J]. 华南地质与矿产, 2013, 29(2):105-115

    QUE Xiaoming, LI Yuansen, CHEN Huixia, et al. Geochemistry research on the deep mantle activity in baiyun sag during the cenozoic from the volcanic rocks of well By7 [J]. Geology and Mineral Resources of South China, 2013, 29(2): 105-115.
    [50]
    Zhang G L, Sun W D, Seward G. Mantle source and magmatic evolution of the dying spreading ridge in the South China Sea [J]. Geochemistry, Geophysics, Geosystems, 2018, 19(11): 4385-4399. doi: 10.1029/2018GC007570
    [51]
    Zou H B, Fan Q C. U-Th isotopes in Hainan basalts: Implications for sub-asthenospheric origin of EM2 mantle endmember and the dynamics of melting beneath Hainan Island [J]. Lithos, 2010, 116(1-2): 145-152. doi: 10.1016/j.lithos.2010.01.010
    [52]
    Lee C T A, Luffi P, Plank T, et al. Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas [J]. Earth and Planetary Science Letters, 2009, 279(1-2): 20-33. doi: 10.1016/j.jpgl.2008.12.020
    [53]
    Katz R F, Spiegelman M, Langmuir C H. A new parameterization of hydrous mantle melting [J]. Geochemistry, Geophysics, Geosystems, 2003, 4(9): 1073.
  • Related Articles

    [1]DONG Zhen, LIANG Jin, CAO Zhimin, HE Huizhong, CHEN Liang, LU Rong. MORB trace element geochemistry in the eastern of southwest indian ridge and its indication for the composition of mantle source[J]. Marine Geology & Quaternary Geology, 2024, 44(4): 99-107. DOI: 10.16562/j.cnki.0256-1492.2021121501
    [2]HU Jiasen, ZHANG Guoliang. High-temperature and high-pressure experiments reveal the melting behavior of serpentinites in subduction zone and the genesis of high-Mg magmas[J]. Marine Geology & Quaternary Geology, 2024, 44(2): 157-170. DOI: 10.16562/j.cnki.0256-1492.2023091102
    [3]ZHAO Sixu, ZENG Zhigang. Petrogeochemical characteristics of mantle sources of volcanic rocks in the southern and middle Mariana Trough[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 73-84. DOI: 10.16562/j.cnki.0256-1492.2022112101
    [4]ZHAO Han, ZHANG Guoliang, ZHANG Ji, WANG Shuai. Magma genesis and evolution of source composition during the weakening of Caroline mantle plume activity[J]. Marine Geology & Quaternary Geology, 2022, 42(4): 122-134. DOI: 10.16562/j.cnki.0256-1492.2022012202
    [5]XU Shikun, YE Jiaren, YANG Baolin, ZHAO Niubin. Optimization of TOC well logging prediction models and their application to source rock evaluation in the Shanan Sag of Bohai Sea[J]. Marine Geology & Quaternary Geology, 2020, 40(5): 182-191. DOI: 10.16562/j.cnki.0256-1492.2019092901
    [6]XIU Chun, HUO Suxia, ZHOU Mengjia, ZHANG Xu, XING Jian, XU Meina. Geochemical characteristics and source of organic carbon and nitrogen in the column sediments from the Ross Sea, Antarctica[J]. Marine Geology & Quaternary Geology, 2019, 39(1): 83-90. DOI: 10.16562/j.cnki.0256-1492.2017070201
    [7]LI Canping, GOU Limin, YOU Jiachun, OU Chuling. STUDY ON NUMERICAL MODELS ABOUT BUBBLE PLUMES IN THE COLD SEEPAGE ACTIVE REGION[J]. Marine Geology & Quaternary Geology, 2017, 37(5): 141-150. DOI: 10.16562/j.cnki.0256-1492.2017.05.014
    [8]HU Limin, SHI Xuefa, LIU Yanguang, BAI Yazhi, DONG Linsen, HUANG Yuanhui. GEOCHEMICAL CHARACTERISTICS AND BURIAL RECORDS OF ORGANIC CARBON IN THE COLUMN SEDIMENTS FROM WESTERN BERING SEA[J]. Marine Geology & Quaternary Geology, 2015, 35(3): 37-47. DOI: 10.3724/SP.J.1140.2015.03037
    [9]WU Weiqiang, HE Jiaxiong, ZHU Youhai, HUANG Xia, GONG Xiaofeng. ORIGIN, MIGRATION AND ACCUMULATION OF CO2 IN SANSHUI BASIN AT NORTHERN SOUTH CHINA SEA CONTINENTAL MARGIN AND MAIN CONTROLLING FACTORS[J]. Marine Geology & Quaternary Geology, 2012, 32(5): 89-96. DOI: 10.3724/SP.J.1140.2012.05089
    [10]YAN Quan-shu, SHI Xue-fa. MANTLE PLUME(HOTSPOT)-RIDGE INTERACTION[J]. Marine Geology & Quaternary Geology, 2006, 26(5): 131-138.

Catalog

    Article views (1630) PDF downloads (41) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return