QIN Yachao, GAO Fei, SU Dapeng, ZHU Xiaoqing, XIE Liujuan. Late spring thermocline and chemoclines in the area off the Rizhao–Lianyungang coast, western South Yellow Sea[J]. Marine Geology & Quaternary Geology, 2021, 41(3): 22-32. DOI: 10.16562/j.cnki.0256-1492.2020080301
Citation: QIN Yachao, GAO Fei, SU Dapeng, ZHU Xiaoqing, XIE Liujuan. Late spring thermocline and chemoclines in the area off the Rizhao–Lianyungang coast, western South Yellow Sea[J]. Marine Geology & Quaternary Geology, 2021, 41(3): 22-32. DOI: 10.16562/j.cnki.0256-1492.2020080301

Late spring thermocline and chemoclines in the area off the Rizhao–Lianyungang coast, western South Yellow Sea

More Information
  • Received Date: August 02, 2020
  • Revised Date: October 12, 2020
  • Available Online: January 24, 2021
  • Conductivity–temperature–depth (CTD) measurement and continuous current observation with an Acoustic Doppler Current Profiler (ADCP) were synchronously conducted in May, 2016, at five hydrographic stations off the Rizhao–Lianyungang coast, western South Yellow Sea. The intraday evolution of thermocline and chemoclines is analyzed and the relation of the periodical changes in temperature and salinity of the deep water with tidal currents is discussed. Results show that the thermocline and chemoclines of dissolved oxygen (DO) and pH have formed as early as in May. The thickness of thermocline usually varies between 2~4 m. It mostly dwells in the depth range from 4~7 m to 7~10 m. The maximum gradient reaches 0.80 °C/m. DO and pH chemoclines dwell at the depths of 10~14 m, which are deeper than the thermocline. To some degree, the chemoclines of DO and pH occur synchronously at the same depths and have no relations to the thermocline. Above the chemocline DO fluctuates markedly and maintains at a high level or even oversaturated in daytime. Its peak concentrations do not occur in the surface layer (0~2 m) but in the sub-surface layer (2~14 m). Below the chemocline it invariably remains about 4 mg·L−1 and slowly drops downward. The pH chemocline is characterized by vertical rapid jump, including downward positive and negative jumps with a maximum strength of 0.03~0.04 pH units. In the neap tides thermocline is stable with a large gradient, whereas in the spring tides the gradient and sustainability is reduced apparently. These results suggest that the enhancement of tidal currents undermines the sustainability of thermocline. The periodical changes in temperature and salinity of deep waters are consistent with that of the tidal level, indicating the consequence of advection driven by tidal currents.
  • [1]
    苏纪兰, 袁业立. 中国近海水文[M]. 北京: 海洋出版社, 2005: 14-23.

    SU Jilan, YUAN Yeli. Offshore Hydrology in China[M]. Beijing: China Ocean Press, 2005: 14-23.
    [2]
    Park S, Chu P C, Lee J H. Interannual-to-interdecadal variability of the Yellow Sea Cold Water Mass in 1967-2008: characteristics and seasonal forcings [J]. Journal of Marine Systems, 2011, 87(3-4): 177-193. doi: 10.1016/j.jmarsys.2011.03.012
    [3]
    Zhang S W, Wang Q Y, Lü Y, et al. Observation of the seasonal evolution of the Yellow Sea Cold Water Mass in 1996-1998 [J]. Continental Shelf Research, 2008, 28(3): 442-457. doi: 10.1016/j.csr.2007.10.002
    [4]
    孙湘平. 中国近海区域海洋[M]. 北京: 海洋出版社, 2006: 201-228, 276-280.

    SUN Xiangping. Regional Oceanography of China Seas[M]. Beijing: China Ocean Press, 2006: 201-228, 276-280.
    [5]
    万邦君, 郭炳火, 陈则实. 黄海热结构的三层模式[J]. 海洋学报, 1990, 12(2):137-148

    WAN Bangjun, GUO Binghuo, CHEN Zeshi. A three-layer model of the thermal structure in the Yellow Sea [J]. Acta Oceanologica Sinica, 1990, 12(2): 137-148.
    [6]
    杨殿荣, 匡国瑞, 张玉琳, 等. 黄、东海夏季温跃层的诊断研究[J]. 海洋学报, 1990, 12(1):14-23

    YANG Dianrong, KUANG Guorui, ZHANG Yulin, et al. Diagnosis of the summer thermocline in the Yellow and East China Seas [J]. Acta Oceanologica Sinica, 1990, 12(1): 14-23.
    [7]
    赵保仁. 渤、黄海及东海北部强温跃层的基本特征及形成机制的研究[J]. 海洋学报, 1989, 11(4):401-410

    ZHAO Baoren. Basic characteristics and formation mechanism of the strong thermocline in the Bohai, Yellow, and northern East China Seas [J]. Acta Oceanologica Sinica, 1989, 11(4): 401-410.
    [8]
    Yuan Y L, Li H Q. On the circulation structure and formation mechanism of the Cold Water Mass of the Yellow Sea (I): zero-order solution and circulation structure [J]. Science in China (Series B), 1993, 36(12): 1518-1528.
    [9]
    乔方利, 马建, 夏长水, 等. 波浪和潮流混合对黄海、东海夏季温度垂直结构的影响研究[J]. 自然科学进展, 2004, 14(12):1434-1441 doi: 10.3321/j.issn:1002-008X.2004.12.010

    QIAO Fangli, MA Jian, XIA Changshui, et al. The impacts of tidal and wave mixing on the vertical structure of summer temperature in the Yellow and East China Seas [J]. Progress in Natural Science, 2004, 14(12): 1434-1441. doi: 10.3321/j.issn:1002-008X.2004.12.010
    [10]
    Ma J, Qiao F L, Xia C S, et al. Tidal effects on temperature front in the Yellow Sea [J]. Chinese Journal of Oceanology and Limnology, 2004, 22(3): 314-321. doi: 10.1007/BF02842565
    [11]
    Yang Y Z, Qiao F L, Xia C S, et al. Wave-induced mixing in the Yellow Sea [J]. Chinese Journal of Oceanology and Limnology, 2004, 22(3): 322-326. doi: 10.1007/BF02842566
    [12]
    Xie L P, Wang B D, Pu X M, et al. Hydrochemical properties and chemocline of the Sansha Yongle Blue Hole in the South China Sea [J]. Science of the Total Environment, 2019, 649: 1281-1292. doi: 10.1016/j.scitotenv.2018.08.333
    [13]
    Hendriks I E, Olsen Y S, Ramajo L, et al. Photosynthetic activity buffers ocean acidification in seagrass meadows [J]. Biogeosciences, 2014, 11(2): 333-346. doi: 10.5194/bg-11-333-2014
    [14]
    Frieder C A, Nam S H, Martz T R, et al. High temporal and spatial variability of dissolved oxygen and pH in a nearshore California kelp forest [J]. Biogeosciences, 2012, 9(3): 3917-3930. doi: 10.5194/bgd-9-3917-2012
    [15]
    Saba G K, Wright-Fairbanks E, Miles T N, et al. Developing a profiling glider pH sensor for high resolution coastal ocean acidification monitoring[C]//OCEANS 2018 MTS/IEEE Charleston. Charleston, SC, USA: IEEE, 1-8.
    [16]
    张志欣, 郭景松, 乔方利, 等. 苏北沿岸水的去向与淡水来源估算[J]. 海洋与湖沼, 2016, 47(3):527-532

    ZHANG Zhixin, GUO Jingsong, QIAO Fangli, et al. Whereabouts and freshwater origination of the Subei coastal water [J]. Oceanologia et Limnologia Sinica, 2016, 47(3): 527-532.
    [17]
    秦亚超. 南黄海西部日照至连云港海域表层沉积物粒度特征及其指示意义[J]. 第四纪研究, 2017, 37(6):1412-1428 doi: 10.11928/j.issn.1001-7410.2017.06.23

    QIN Yachao. Grain-size characteristics of bottom sediments and its implications offshore between Rizhao and Lianyungang in the western South Yellow Sea [J]. Quaternary Sciences, 2017, 37(6): 1412-1428. doi: 10.11928/j.issn.1001-7410.2017.06.23
    [18]
    Sorkin A, Sorkin V, Leizerson I. Salt fingers in double-diffusive systems [J]. Physica A: Statistical Mechanics and its Applications, 2002, 303(1-2): 13-26. doi: 10.1016/S0378-4371(01)00396-X
    [19]
    USGS. DOTABLES[EB/OL]. (2019-12-19). https://www.usgs.gov/software/dotables.2019.
    [20]
    Meng Q J, Li P L, Zhai F G, et al. The vertical mixing induced by winds and tides over the Yellow Sea in summer: a numerical study in 2012 [J]. Ocean Dynamics, 2020, 70(7): 847-861. doi: 10.1007/s10236-020-01368-2
  • Related Articles

    [1]LIU Bingjin, HUANG Enqing, TIAN Jun. Precession forcing of the Holocene moisture transfer between tropical western Pacific and Indian Ocean[J]. Marine Geology & Quaternary Geology, 2023, 43(4): 56-70. DOI: 10.16562/j.cnki.0256-1492.2023042001
    [2]SHI Tianyu, ZHANG Yangyang, ZHAI Qiumin, LI Hongbin, LIU Chang, ZHOU Xuewen, CHEN Peng, CHEN Liang. Characteristics of weathering of the loess-paleosol sequences in the Late Glacial Period to Middle Holocene in Linfen Basin and implication for climatic significance[J]. Marine Geology & Quaternary Geology, 2023, 43(2): 181-191. DOI: 10.16562/j.cnki.0256-1492.2022070501
    [3]WANG Bo, WANG Niuniu, WANG Zhiyuan, ZHANG Xingze, YANG Liwen, CHEN Qu, LI Fengquan. Unparallel MIS13 climate evolution between western and eastern Chinese Loess Plateau[J]. Marine Geology & Quaternary Geology, 2020, 40(3): 185-192. DOI: 10.16562/j.cnki.0256-1492.2019120501
    [4]HE Juan, LI Li, WANG Hui, ZHAO Meixun. LATE QUATERNARY COCCOLITH PRODUCTIVITY IN THE NORTHERN SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2012, 32(4): 9-16. DOI: 10.3724/SP.J.1140.2012.04009
    [5]SHI Peihong, YANG Taibao, XU Shanyang, TIAN Qingchun. MAGNETIC SUSCEPTIBILTY VARIATIONS AND INFLUENCE FACTORS AT JINGYUAN LOESS SECTION, NORTHWESTERN CHINA[J]. Marine Geology & Quaternary Geology, 2010, 30(4): 193-200. DOI: 10.3724/SP.J.1140.2010.04193
    [6]YU Huagui, ZHU Yizhi, CHENG Peng, LIU Yonghao, WANG Shengli, XIAN Feng, CHEN Qingmin, LIU Zhao, ZHOU Weijian. PYROLYSIS-COMBUSTION METHOD USED TO DO 14C DATING OF HOLOCENE LOESS SEQUENCE AT LICUN PROFILE[J]. Marine Geology & Quaternary Geology, 2009, 29(1): 73-78. DOI: 10.3724/SP.J.1140.2009.01073
    [7]JIA Yao-feng, HUANG Chun-chang, PANG Jiang-li, MAO Long-jiang, GE Ben-wei. OSL DATING FOR HOLOCENE LOESS-PALEOSOL PROFILE AND ITS RECORDED SOIL EROSION EVENTS IN THE EASTERN WEIHE RIVER BASIN[J]. Marine Geology & Quaternary Geology, 2008, 28(3): 73-83.
    [8]WANG Yong, PAN Bao-tian, GUAN Qing-yu, WANG Jian-li. MAGNETIC SUSCEPTIBILITY VARIATION IN SEMI-ARID REGION OF NORTHWESTERN CHINA[J]. Marine Geology & Quaternary Geology, 2008, 28(1): 111-114.
    [9]CHENG Peng, ZHOU Wei-jian, YU Hua-gui, ZENG Yi. ADVANCES IN RADIOCARBON DATING RESEARCHES IN THE LOESS-PALEOSOL SEQUENCES[J]. Marine Geology & Quaternary Geology, 2007, 27(2): 85-89.
    [10]WANG Pin-xian. ASTRONOMICAL “PENDULUM” FOR GEOLOGICAL CLOCK[J]. Marine Geology & Quaternary Geology, 2006, 26(1): 1-7.

Catalog

    Article views (2035) PDF downloads (43) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return