BAI Yongliang, YANG Huiliang, ZHANG Diya, RONG Yilin, DONG Dongdong, WU Shiguo. Crustal thickness variations of the Izu-Bonin-Mariana Arc and their implications for arc magmatism[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 158-165. DOI: 10.16562/j.cnki.0256-1492.2020073001
Citation: BAI Yongliang, YANG Huiliang, ZHANG Diya, RONG Yilin, DONG Dongdong, WU Shiguo. Crustal thickness variations of the Izu-Bonin-Mariana Arc and their implications for arc magmatism[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 158-165. DOI: 10.16562/j.cnki.0256-1492.2020073001

Crustal thickness variations of the Izu-Bonin-Mariana Arc and their implications for arc magmatism

More Information
  • Received Date: July 29, 2020
  • Revised Date: September 12, 2020
  • Available Online: February 28, 2021
  • Numerical simulations suggest that plateau/ridge subduction and back-arc spreading would influence magmatism and island-arc crustal growth subduction-zone. In this paper, we take the Izu-Bonin-Mariana (IBM) subduction zone paper as a case to test the above observation. Moho depth variations are estimated based on Inversed gravity anomaly by satellite altimetry and density modelling for different layers, and the trend of the Moho inversion result can well match the seismic interpretations. Crustal thickness variations are mapped based on gravity-inversed Moho, open-source topography and bathymetry as well as sediment thickness. The island-arc crustal volume variations along strike indicate that (1) the subduction of the Ogasawara Plateau and the Dutton Ridge necked and thickened the arc crust, and they also increased the arc crust volume, (2) the opening of the Marian Trough reduced substantially the island-arc crustal growth.
  • [1]
    Albarède F. The growth of continental crust [J]. Tectonophysics, 1998, 296(1-2): 1-14. doi: 10.1016/S0040-1951(98)00133-4
    [2]
    Reymer A, Schubert G. Phanerozoic addition rates to the continental crust and crustal growth [J]. Tectonics, 1984, 3(1): 63-77. doi: 10.1029/TC003i001p00063
    [3]
    Taylor S R. The origin and growth of continents [J]. Tectonophysics, 1967, 4(1): 17-34. doi: 10.1016/0040-1951(67)90056-X
    [4]
    Suyehiro K, Takahashi N, Ariie Y, et al. Continental crust, crustal underplating, and low-Q upper mantle beneath an oceanic island arc [J]. Science, 1996, 272(5260): 390-392. doi: 10.1126/science.272.5260.390
    [5]
    Tatsumi Y. Migration of fluid phases and genesis of basalt magmas in subduction zones [J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B4): 4697-4707.
    [6]
    Schmidt M W, Poli S. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation [J]. Earth and Planetary Science Letters, 1998, 163(1-4): 361-379. doi: 10.1016/S0012-821X(98)00142-3
    [7]
    Van Keken P E, Hacker B R, Syracuse E M, et al. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide [J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B1): B01401.
    [8]
    Grove T L, Till C B, Lev E, et al. Kinematic variables and water transport control the formation and location of arc volcanoes [J]. Nature, 2009, 459(7247): 694-697. doi: 10.1038/nature08044
    [9]
    郑永飞, 陈仁旭, 徐峥, 等. 俯冲带中的水迁移[J]. 中国科学: 地球科学, 2016, 59(4):651-682. [ZHENG Yongfei, CHEN Renxu, XU Zheng, et al. The transport of water in subduction zones [J]. Science China Earth Sciences, 2016, 59(4): 651-682. doi: 10.1007/s11430-015-5258-4
    [10]
    Perrin A, Goes S, Prytulak J, et al. Mantle wedge temperatures and their potential relation to volcanic arc location [J]. Earth and Planetary Science Letters, 2018, 501: 67-77. doi: 10.1016/j.jpgl.2018.08.011
    [11]
    Turner S J, Langmuir C H, Katz R F, et al. Parental arc magma compositions dominantly controlled by mantle-wedge thermal structure [J]. Nature Geoscience, 2016, 9(10): 772-776. doi: 10.1038/ngeo2788
    [12]
    Peacock S M. Thermal and petrologic structure of subduction zones[M]//Bebout G E, Scholl D W, Kirby S H, et al. Subduction: Top to Bottom. Washington, D.C.: Geophysical Monograph Series, 1996.
    [13]
    Magni V. The effects of back-arc spreading on arc magmatism [J]. Earth and Planetary Science Letters, 2019, 519: 141-151. doi: 10.1016/j.jpgl.2019.05.009
    [14]
    Mason W G, Moresi L, Betts P G, et al. Three-dimensional numerical models of the influence of a buoyant oceanic plateau on subduction zones [J]. Tectonophysics, 2010, 483(1-2): 71-79. doi: 10.1016/j.tecto.2009.08.021
    [15]
    Wallace L M, McCaffrey R, Beavan J, et al. Rapid microplate rotations and backarc rifting at the transition between collision and subduction [J]. Geology, 2005, 33(11): 857-860. doi: 10.1130/G21834.1
    [16]
    Harmon N, Blackman D K. Effects of plate boundary geometry and kinematics on mantle melting beneath the back-arc spreading centers along the Lau Basin [J]. Earth and Planetary Science Letters, 2010, 298(3-4): 334-346. doi: 10.1016/j.jpgl.2010.08.004
    [17]
    Sandwell D T, Müller R D, Smith W H F, et al. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure [J]. Science, 2014, 346(6205): 65-67. doi: 10.1126/science.1258213
    [18]
    Bai Y L, Li M, Wu S G, et al. Upper mantle density modelling for large-scale Moho gravity inversion: case study on the Atlantic Ocean [J]. Geophysical Journal International, 2019, 216(3): 2134-2147. doi: 10.1093/gji/ggz003
    [19]
    Bai Y L, Gui Z, Li M, et al. Crustal thickness over the NW Pacific and its tectonic implications [J]. Journal of Asian Earth Sciences, 2019, 185: 104050. doi: 10.1016/j.jseaes.2019.104050
    [20]
    Wang T T, Lin J, Tucholke B, et al. Crustal thickness anomalies in the North Atlantic Ocean basin from gravity analysis [J]. Geochemistry, Geophysics, Geosystems, 2011, 12(3): Q0AE02.
    [21]
    Stern R J, Bloomer S H. Subduction zone infancy: Examples from the Eocene Izu-Bonin-Mariana and Jurassic California arcs [J]. GSA Bulletin, 1992, 104(12): 1621-1636. doi: 10.1130/0016-7606(1992)104<1621:SZIEFT>2.3.CO;2
    [22]
    Sdrolias M, Roest W R, Müller R D. An expression of Philippine Sea plate rotation: the Parece Vela and Shikoku Basins [J]. Tectonophysics, 2004, 394(1-2): 69-86. doi: 10.1016/j.tecto.2004.07.061
    [23]
    Okino K, Ohara Y, Kasuga S, et al. The Philippine Sea: New survey results reveal the structure and the history of the marginal basins [J]. Geophysical Research Letters, 1999, 26(15): 2287-2290. doi: 10.1029/1999GL900537
    [24]
    Ishizuka O, Hickey-Vargas R, Arculus R J, et al. Age of Izu–Bonin–Mariana arc basement [J]. Earth and Planetary Science Letters, 2018, 481: 80-90. doi: 10.1016/j.jpgl.2017.10.023
    [25]
    Arculus R J, Ishizuka O, Bogus K A, et al. A record of spontaneous subduction initiation in the Izu-Bonin-Mariana arc [J]. Nature Geoscience, 2015, 8(9): 728-733. doi: 10.1038/ngeo2515
    [26]
    Reagan M K, Pearce J A, Petronotis K, et al. Subduction initiation and ophiolite crust: new insights from IODP drilling [J]. International Geology Review, 2017, 59(11): 1439-1450. doi: 10.1080/00206814.2016.1276482
    [27]
    吴时国, 范建柯, 董冬冬. 论菲律宾海板块大地构造分区[J]. 地质科学, 2013, 48(3):677-692. [WU Shiguo, FAN Jianke, DONG Dongdong. Discussion on the tectonic division of the Philippine Sea Plate [J]. Chinese Journal of Geology, 2013, 48(3): 677-692. doi: 10.3969/j.issn.0563-5020.2013.03.008
    [28]
    Hickey-Vargas R. Basalt and tonalite from the Amami Plateau, northern West Philippine Basin: New Early Cretaceous ages and geochemical results, and their petrologic and tectonic implications [J]. Island Arc, 2005, 14(4): 653-665. doi: 10.1111/j.1440-1738.2005.00474.x
    [29]
    Amante C, Eakins B W. ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis[DB/OL]. National Geophysical Data Center, NOAA, 2009. http://apdrc.soest.hawaii.edu/datadoc/etopo1.php.
    [30]
    Müller R D, Sdrolias M, Gaina C, et al. Age, spreading rates, and spreading asymmetry of the world's ocean crust [J]. Geochemistry, Geophysics, Geosystems, 2008, 9(4): Q04006.
    [31]
    Clouard V, Bonneville A. Ages of seamounts, islands, and plateau on the pacific plate[M]//Foulger G R, Natland J H, Presnall D C, et al. Plates, Plumes and Paradigms. Washington, DC: Geological Society of America, 2005.
    [32]
    Miller M S, Kennett B L N, Toy V G. Spatial and temporal evolution of the subducting Pacific plate structure along the western Pacific margin [J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B2): B02401.
    [33]
    Straume E O, Gaina C, Medvedev S, et al. Globsed: updated total sediment thickness in the world's oceans [J]. Geochemistry, Geophysics, Geosystems, 2019, 20(4): 1756-1772. doi: 10.1029/2018GC008115
    [34]
    Tenzer R, Pavel N, Vladislav G. The bathymetric stripping corrections to gravity field quantities for a depth-dependent model of seawater density [J]. Marine Geodesy, 2012, 35(2): 198-220. doi: 10.1080/01490419.2012.670592
    [35]
    Sawyer D S. Total tectonic subsidence: A parameter for distinguishing crust type at the U.S. atlantic continental margin [J]. Journal of Geophysical Research: Solid Earth, 1985, 90(B9): 7751-7769. doi: 10.1029/JB090iB09p07751
    [36]
    Takahashi N, Kodaira S, Klemperer S L, et al. Crustal structure and evolution of the Mariana intra-oceanic island arc [J]. Geology, 2007, 35(3): 203-206. doi: 10.1130/G23212A.1
    [37]
    Chappell A R, Kusznir N J. Three-dimensional gravity inversion for Moho depth at rifted continental margins incorporating a lithosphere thermal gravity anomaly correction [J]. Geophysical Journal International, 2008, 174(1): 1-13. doi: 10.1111/j.1365-246X.2008.03803.x
    [38]
    Bai Y L, Williams S E, Müller R D, et al. Mapping crustal thickness using marine gravity data: Methods and uncertainties [J]. Geophysics, 2014, 79(2): G27-G36. doi: 10.1190/geo2013-0270.1
    [39]
    Bai Y L, Dong D D, Kirby J F, et al. The effect of dynamic topography and gravity on lithospheric effective elastic thickness estimation: a case study [J]. Geophysical Journal International, 2018, 214(1): 623-634. doi: 10.1093/gji/ggy162
    [40]
    Isaak D G, Anderson O L, Goto T, et al. Elasticity of single-crystal forsterite measured to 1700 K [J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B5): 5895-5906. doi: 10.1029/JB094iB05p05895
    [41]
    Forte A M, Woodward R L, Dziewonski A M. Joint inversions of seismic and geodynamic data for models of three—dimensional mantle heterogeneity [J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B11): 21857-21877. doi: 10.1029/94JB01467
    [42]
    Schaeffer A J, Lebedev S. Global shear speed structure of the upper mantle and transition zone [J]. Geophysical Journal International, 2013, 194(1): 417-449. doi: 10.1093/gji/ggt095
    [43]
    Parker R L. The rapid calculation of potential anomalies [J]. Geophysical Journal of the Royal Astronomical Society, 1973, 31(4): 447-455. doi: 10.1111/j.1365-246X.1973.tb06513.x
    [44]
    Takahashi N, Kodaira S, Tatsumi Y, et al. Structural variations of arc crusts and rifted margins in the southern Izu-Ogasawara arc-back arc system [J]. Geochemistry, Geophysics, Geosystems, 2009, 10(9): Q09X08.
    [45]
    Nishizawa A, Kaneda K, Oikawa M. Crust and uppermost mantle structure of the Kyushu-Palau Ridge, remnant arc on the Philippine Sea plate [J]. Earth, Planets and Space, 2016, 68: 30. doi: 10.1186/s40623-016-0407-3
  • Related Articles

    [1]DONG Dongdong, ZHANG Zhengyi, FAN Jianke, LI Cuilin, ZHANG Guangxu, YANG Liu. Tectonic evolution and drilling proposal of the subduction system of the Caroline Ridge − An oceanic plateau in the Western Pacific[J]. Marine Geology & Quaternary Geology, 2022, 42(5): 178-186. DOI: 10.16562/j.cnki.0256-1492.2022062905
    [2]ZENG Zhigang, ZHANG Yuxiang, CHEN Zuxing, LI Xiaohui, QI Haiyan, WANG Xiaoyuan, CHEN Shuai, YIN Xuebo. Seafloor hydrothermal system and its magmatic setting in the western Pacific back-arc basins[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 12-24. DOI: 10.16562/j.cnki.0256-1492.2021070101
    [3]LI Xiaohui, YANG Huixin, ZENG Zhigang. Advances in melt inclusion studies in back-arc basin volcanic rocks in Western Pacific[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 166-179. DOI: 10.16562/j.cnki.0256-1492.2020072601
    [4]GONG Wei, JIANG Xiaodian, XING Junhui, LI Deyong, XU Chong. Subduction dynamics of the New-Guinea-Solomon arc system: Constraints from the subduction initiation of the plate[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 115-130. DOI: 10.16562/j.cnki.0256-1492.2019062801
    [5]DING Weiwei, LI Jiabiao. Seismic detection of deep structure for Southern Kyueshu-Palau Ridge and its possible implications for subduction initiation[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 98-103. DOI: 10.16562/j.cnki.0256-1492.2019071601
    [6]LI Chunfeng, LI Gang, LI Zilong, LIU Wenxiao, ZHANG Lulu, LU Zhezhe, CHEN Xuegang, YAO Zewei. Study of the Caroline plate: Initial subduction, initial spreading and fluid-solid interaction[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 87-97. DOI: 10.16562/j.cnki.0256-1492.2019031501
    [7]ZHAN Wenhuan, LI Jian, TANG Qinqin. SUBDUCTION OF THE PALEO-SPREADING-RIDGE IN EASTERN SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2017, 37(6): 1-11. DOI: 10.16562/j.cnki.0256-1492.2017.06.001
    [8]LI Jian, ZHAN Wenhuan, ZHU Junjiang, JIANG Liantin, FENG Yingci. STATIC COULOMB STRESS ANALYSIS FOR EARTHQUAKES IN THE SPREADING RIDGE OF THE SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2016, 36(5): 63-73. DOI: 10.16562/j.cnki.0256-1492.2016.05.007
    [9]HE Zhengjun, WEN Zhixin, WANG Zhaoming, YANG Xiaofa, LIU Xiaobing, GUO Chunen. FORMATION MECHANISM AND TECTONIC EVOLUTION OF BACK-ARC BASINS IN THE OKHOTSK SEA[J]. Marine Geology & Quaternary Geology, 2016, 36(4): 93-102. DOI: 10.16562/j.cnki.0256-1492.2016.04.011
    [10]CAO Hong, CAO Zhimin. REVIEW OF SUBMARINE HYDROTHERMAL ACTIVITIES IN SOUTHWEST INDIAN RIDGE[J]. Marine Geology & Quaternary Geology, 2011, 31(1): 67-75. DOI: 10.3724/SP.J.1140.2011.01067
  • Cited by

    Periodical cited type(1)

    1. 张文昭, 白永良, 田佳浩, 董冬冬, 吴时国, 刘远鹏. 岛弧地壳增生速率随主控因素的变化规律. 地球物理学报. 2025(08)

    Other cited types(1)

Catalog

    WU Shiguo

    1. On this Site
    2. On Google Scholar
    3. On PubMed
    Article views (1823) PDF downloads (46) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return