Citation: | DONG Hao, DAI Liming, LI Sanzhong, HU Zeming. Dynamic connection between Archean magma vents and Dome-and-Keel Structures[J]. Marine Geology & Quaternary Geology, 2020, 40(4): 116-126. DOI: 10.16562/j.cnki.0256-1492.2020050301 |
[1] |
Debaille V, Brandon A D, O’Neill C, et al. Early martian mantle overturn inferred from isotopic composition of nakhlite meteorites [J]. Nature Geoscience, 2009, 2(8): 548-552. doi: 10.1038/ngeo579
|
[2] |
Dhuime B, Hawkesworth C J, Cawood P A, et al. A change in the geodynamics of continental growth 3 billion years ago [J]. Science, 2012, 335(6074): 1334-1336. doi: 10.1126/science.1216066
|
[3] |
李三忠, 王光增, 索艳慧, 等. 板块驱动力: 问题本源与本质[J]. 大地构造与成矿学, 2019, 43(4):605-643. [LI Sanzhong, WANG Guangzeng, SUO Yanhui, et al. Driving force of plate tectonics: Origin and nature [J]. Geotectonica et Metallogenia, 2019, 43(4): 605-643.
|
[4] |
刘大瞻, 刘跃文. 三道溜河地区太古宙岩浆一构造事件[J]. 吉林地质, 1994, 13(3):46-54. [LIU Dazhan, LIU Yuewen. The archean magma tectonic event of the sandaoliuhe area [J]. Jilin Geology, 1994, 13(3): 46-54.
|
[5] |
赵国春, 孙敏, Wilde S A. 华北克拉通基底构造单元特征及早元古代拼合[J]. 中国科学 D辑: 地球科学, 2002, 32(7):538-549. [ZHAO Guochun, SUN Min, Wilde S A. Characteristics of Proterozoic tectonic units of the basement of the North China Craton and Proterozoic amalgamation [J]. Science in China Series D: Earth Sciences, 2002, 32(7): 538-549.
|
[6] |
翟明国. 华北克拉通的形成以及早期板块构造[J]. 地质学报, 2012, 86(9):1335-1349. [ZHAI Mingguo. Evolution of the North China craton and early Plate Tectonics [J]. Acta Geologica Sinica, 2012, 86(9): 1335-1349. doi: 10.3969/j.issn.0001-5717.2012.09.002
|
[7] |
吴鸣谦, 左梦璐, 张德会, 等. TTG岩套的成因及其形成环境[J]. 地质论评, 2014, 60(3):503-514. [WU Mingqian, ZUO Menglu, ZHANG Dehui, et al. Genesis and diagenetic environment of TTG suite [J]. Geological Review, 2014, 60(3): 503-514.
|
[8] |
李三忠, 戴黎明, 张臻, 等. 前寒武纪地球动力学(Ⅳ): 前板块体制[J]. 地学前沿, 2015, 22(6):46-64. [LI Sanzhong, DAI Liming, ZHANG Zhen, et al. Precambrian geodynamics (Ⅳ): pre-plate regime [J]. Earth Science Frontiers, 2015, 22(6): 46-64.
|
[9] |
万渝生, 董春艳, 任鹏, 等. 华北克拉通太古宙TTG岩石的时空分布、组成特征及形成演化: 综述[J]. 岩石学报, 2017, 33(5):1405-1419. [WAN Yusheng, DONG Chunyan, REN Peng, et al. Spatial and temporal distribution, compositional characteristics and formation and evolution of Archean TTG rocks in the North China Craton: a synthesis [J]. Acta Petrologica Sinica, 2017, 33(5): 1405-1419.
|
[10] |
Kaur P, Chaudhri N, Eliyas N. Origin of trondhjemite and albitite at the expense of A-type granite, Aravalli orogen, India: evidence from new metasomatic replacement fronts [J]. Geoscience Frontiers, 2019, 10(5): 1891-1913. doi: 10.1016/j.gsf.2018.09.019
|
[11] |
Johnson T, Brown M, VanTongeren J. Sink or swim? The fate of Archean primary crust and the generation of TTG magmas[C]//EGU General Assembly 2013. Vienna, Austria: EGU, 2013: 2112.
|
[12] |
Lana C, Tohver E, Cawood P. Quantifying rates of dome-and-keel formation in the Barberton granitoid-greenstone belt, South Africa [J]. Precambrian Research, 2010, 177(1-2): 199-211. doi: 10.1016/j.precamres.2009.12.001
|
[13] |
Li S Z, Zhao G C, Santosh M, et al. Paleoproterozoic structural evolution of the southern segment of the Jiao-Liao-Ji Belt, North China Craton [J]. Precambrian Research, 2012, 200-203: 59-73. doi: 10.1016/j.precamres.2012.01.007
|
[14] |
Gerya T. Precambrian geodynamics: concepts and models [J]. Gondwana Research, 2014, 25(2): 442-463. doi: 10.1016/j.gr.2012.11.008
|
[15] |
王伟, 翟明国, Santosh M. 鲁西太古宙表壳岩的成因及其对地壳演化的制约[J]. 中国科学: 地球科学, 2016, 59(8):1583-1596. [WANG Wei, ZHAI Mingguo, Santosh M. The genesis of Archean supracrustal rocks in the western Shandong Province of North China Craton: Constraints on regional crustal evolution [J]. Science China Earth Sciences, 2016, 59(8): 1583-1596. doi: 10.1007/s11430-016-5300-1
|
[16] |
韩宁, 江思宏, 白大明, 等. 西澳大利亚伊尔岗克拉通铁矿床研究进展[J]. 地质通报, 2015, 34(6):1086-1099. [HAN Ning, JIANG Sihong, BAI Daming, et al. The progress in the study of the iron ore deposits in Yilgarn Craton, Western Australia [J]. Geological Bulletin of China, 2015, 34(6): 1086-1099. doi: 10.3969/j.issn.1671-2552.2015.06.009
|
[17] |
彭俊, 袁杨森, 司建涛, 等. 坦桑尼亚维多利亚湖绿岩带变质火山岩地球化学特征及成岩机制[J]. 矿场勘查, 2018, 9(3):485-494. [PENG Jun, YUAN Yangsen, SI Jiantao, et al. Geochemical characteristics and petrogenesis of the metavolcanics rocks in Victoria Lake greenstone belt, Tanzania [J]. Mineral Exploration, 2018, 9(3): 485-494.
|
[18] |
翟明国. 华北克拉通构造演化[J]. 地质力学学报, 2019, 25(5):722-725. [ZHAI Mingguo. Tectonic evolution of the North China Craton [J]. Journal of Geomechanics, 2019, 25(5): 722-725. doi: 10.12090/j.issn.1006-6616.2019.25.05.063
|
[19] |
张连昌, 翟明国, 万渝生, 等. 华北克拉通前寒武纪BIF铁矿研究: 进展与问题[J]. 岩石学报, 2012, 28(11):3431-3445. [ZHANG Lianchang, ZHAI Mingguo, WAN Yusheng, et al. Study of the Precambrian BIF-iron deposits in the North China Craton: progresses and questions [J]. Acta Petrologica Sinica, 2012, 28(11): 3431-3445.
|
[20] |
南景博, 黄华, 王长乐, 等. 内蒙古固阳绿岩带条带状铁建造地球化学特征与沉积环境讨论[J]. 中国地质, 2017, 44(2):331-345. [NAN Jingbo, HUANG Hua, WANG Changle, et al. Geochemistry and depositional setting of Banded Iron Formations in Guyang greenstone belt, Inner Mongolia [J]. Geology in China, 2017, 44(2): 331-345.
|
[21] |
彭自栋, 张连昌, 王长乐, 等. 新太古代清原绿岩带下甸子BIF铁矿地质特征及含黄铁矿条带BIF的成因探讨[J]. 岩石学报, 2018, 34(2):398-426. [PENG Zidong, ZHANG Lianchang, WANG Changle, et al. Geological features and genesis of the Neoarchean pyritebearing Xiadianzi BIF, Qingyuan greenstone belt [J]. Acta Petrologica Sinica, 2018, 34(2): 398-426.
|
[22] |
张连昌, 彭自栋, 翟明国, 等. 华北克拉通北缘新太古代清原绿岩带BIF与VMS共生矿床的构造背景及成因联系[J]. 地球科学, 2020, 45(1):1-16. [ZHANG Lianchang, PENG Zidong, ZHAI Mingguo, et al. Tectonic setting and genetic relationship between BIF and VMS-in the Qingyuan Neoarchean greenstone belt, Northern North China Craton [J]. Earth Science, 2020, 45(1): 1-16.
|
[23] |
Joly A, Miller J, McCuaig T C. Archean polyphase deformation in the Lake Johnston Greenstone Belt area: implications for the understanding of ore systems of the Yilgarn Craton [J]. Precambrian Research, 2010, 177(1-2): 181-198. doi: 10.1016/j.precamres.2009.11.010
|
[24] |
罗迪柯, 陈靖, 姚仲友, 等. 南美洲圭亚那地盾北部绿岩带地质特征、典型金矿床及金成矿作用[J]. 地学通报, 2017, 36(12):2197-2207. [LUO Dike, CHEN Jing, YAO Zhongyou, et al. Geological features of greenstone belt, typical gold deposits and gold mineralization in northern Guiana shield, South America [J]. Geological Bulletin of China, 2017, 36(12): 2197-2207.
|
[25] |
孙武国, 廉涛, 刘冰. 中非共和国Bambari绿岩带地质特征及找矿意义[J]. 地质与资源, 2016, 25(2):208-212. [SUN Wuguo, LIAN Tao, LIU Bing. Geological characteristics and prospecting significance of the Bambari greenstone belt in the Central African Republic [J]. Geology and Resources, 2016, 25(2): 208-212. doi: 10.3969/j.issn.1671-1947.2016.02.021
|
[26] |
王建光, 彭俊, 袁杨森, 等. 坦桑尼亚西北部苏库马绿岩带含金石英脉成矿特征[J]. 世界地质, 2016, 35(4):982-992. [WANG Jianguang, PENG Jun, YUAN Yangsen, et al. Mineralization characteristics of gold-bearing quartz veins in Sukumaland greenstone belt of northwestern Tanzania [J]. Global Geology, 2016, 35(4): 982-992. doi: 10.3969/j.issn.1004-5589.2016.04.007
|
[27] |
张德成. 坦桑尼亚绿岩带型金矿[J]. 华北国土资源, 2016(3):60-61. [ZHANG Decheng. Greenstone belt type gold deposit in Tanzania [J]. Huabei Land and Resources, 2016(3): 60-61. doi: 10.3969/j.issn.1672-7487.2016.03.029
|
[28] |
张克川, 义爱文, 杨继兵, 等. 坦桑尼亚芒果金矿成矿地质特征及金赋存状态研究[J]. 矿产勘查, 2018, 9(4):761-765. [ZHANG Kechuan, YI Aiwen, YANG Jibing, et al. Study on geological characteristics and gold occurrence of Manangu gold mine in Tanzania [J]. Mineral Exploration, 2018, 9(4): 761-765. doi: 10.3969/j.issn.1674-7801.2018.04.039
|
[29] |
李俊生, 白德胜, 卫建征, 等. 坦桑尼亚马拉绿岩带金矿床地质特征[J]. 矿产勘查, 2018, 9(5):977-984. [LI Junsheng, BAI Desheng, WEI Jianzheng, et al. Characteristics of gold deposits in Mara greenstone belt, Tanzania [J]. Mineral Exploration, 2018, 9(5): 977-984. doi: 10.3969/j.issn.1674-7801.2018.05.023
|
[30] |
宋建潮, 王恩德, 贾三石, 等. 辽北-吉南地区太古宙矿产形成特点分析[J]. 地质调查与研究, 2008, 31(2):125-129. [SONG Jianchao, WANG Ende, JIA Sanshi, et al. Archean characteristics of mineral formation in the region of Northern Liaoning Province and Southern Jilin Province [J]. Geological Survey and Research, 2008, 31(2): 125-129. doi: 10.3969/j.issn.1672-4135.2008.02.007
|
[31] |
Moore W B, Webb A A G. Heat-pipe earth [J]. Nature, 2013, 501(7468): 501-505. doi: 10.1038/nature12473
|
[32] |
Moore W B, Simon J I, Webb A A G. Heat-pipe planets [J]. Earth and Planetary Science Letters, 2017, 474: 13-19. doi: 10.1016/j.jpgl.2017.06.015
|
[33] |
Henson P A, Blewett R S, Roy I G, et al. 4D architecture and tectonic evolution of the Laverton region, eastern Yilgarn Craton, Western Australia [J]. Precambrian Research, 2010, 183(2): 338-355. doi: 10.1016/j.precamres.2010.08.003
|
[34] |
Thébaud N, Rey P F. Archean gravity-driven tectonics on hot and flooded continents: controls on long-lived mineralised hydrothermal systems away from continental margins [J]. Precambrian Research, 2013, 229: 93-104. doi: 10.1016/j.precamres.2012.03.001
|
[35] |
Lin S F, Parks J, Heaman L M, et al. Diapirism and sagduction as a mechanism for deposition and burial of "Timiskaming-type" sedimentary sequences, Superior Province: evidence from detrital zircon geochronology and implications for the Borden Lake conglomerate in the exposed middle to lower crust in the Kapuskasing uplift [J]. Precambrian Research, 2013, 238: 148-157. doi: 10.1016/j.precamres.2013.09.012
|
[36] |
Fischer R, Gerya T. Early earth plume-lid tectonics: a high-resolution 3D numerical modelling approach [J]. Journal of Geodynamics, 2016, 100: 198-214. doi: 10.1016/j.jog.2016.03.004
|
[37] |
Sizova E, Gerya T, Brown M, et al. What drives metamorphism in early Archean greenstone belts? Insights from numerical modeling [J]. Tectonophysics, 2018, 746: 587-601. doi: 10.1016/j.tecto.2017.07.020
|
[38] |
Sizova E, Gerya T, Stüwe K, et al. Generation of felsic crust in the Archean: a geodynamic modeling perspective [J]. Precambrian Research, 2015, 271: 198-224. doi: 10.1016/j.precamres.2015.10.005
|
[39] |
Gerya T V, Yuen D A. Characteristics-based marker-in-cell method with conservative finite-differences schemes for modeling geological flows with strongly variable transport properties [J]. Physics of the Earth and Planetary Interiors, 2003, 140(4): 293-318. doi: 10.1016/j.pepi.2003.09.006
|
[40] |
Li Z H, Xu Z Q, Gerya T, et al. Collision of continental corner from 3-D numerical modeling [J]. Earth and Planetary Science Letters, 2013, 380: 98-111. doi: 10.1016/j.jpgl.2013.08.034
|
[41] |
Liao J, Gerya T. Influence of lithospheric mantle stratification on craton extension: insight from two-dimensional thermo-mechanical modeling [J]. Tectonophysics, 2014, 631: 50-64. doi: 10.1016/j.tecto.2014.01.020
|
[42] |
Li Z H. A review on the numerical geodynamic modeling of continental subduction, collision and exhumation [J]. Science China Earth Sciences, 2014, 57(1): 47-69. doi: 10.1007/s11430-013-4696-0
|
[43] |
刘泽, 戴黎明, 李三忠, 等. 东海陆架盆地南部中生代成盆过程的数值模拟[J]. 海洋地质与第四纪地质, 2017, 37(4):167-180. [LIU Ze, DAI Liming, LI Sanzhong, et al. Numerical simulation of mesozoic tectonic processes in the southern part of East China Sea continental shelf basin [J]. Marine Geology & Quaternary Geology, 2017, 37(4): 167-180.
|
[44] |
Huangfu P, Li Z H, Gerya T, et al. Multi-terrane structure controls the contrasting lithospheric evolution beneath the western and central–eastern Tibetan plateau [J]. Nature Communications, 2018, 9(1): 3780. doi: 10.1038/s41467-018-06233-x
|
[45] |
Dai L M, Li S Z, Li Z H, et al. Dynamics of exhumation and deformation of HP-UHP orogens in double subduction-collision systems: numerical modeling and implications for the Western Dabie Orogen [J]. Earth-Science Reviews, 2018, 182: 68-84. doi: 10.1016/j.earscirev.2018.05.005
|
[46] |
马芳芳, 楼达, 戴黎明, 等. 俯冲板片熔融柱的数值模拟: 上覆板块破坏及动力地形效应[J]. 海洋地质与第四纪地质, 2019, 39(5):186-196. [MA Fangfang, LOU Da, DAI Liming, et al. Numerical simulation of subduction-induced molten plume: Destruction of overriding plate and its dynamic topographic responses [J]. Marine Geology & Quaternary Geology, 2019, 39(5): 186-196.
|
[47] |
陶建丽, 楼达, 戴黎明, 等. 中国东部大陆边缘中生代晚期增生过程的数值模拟: 以那丹哈达为例[J]. 海洋地质与第四纪地质, 2019, 39(5):174-185. [TAO Jianli, LOU Da, DAI Liming, et al. Numerical simulation of Late Mesozoic accretion process along the continental margin of East China: A case study of the Nadanhada Terrane [J]. Marine Geology & Quaternary Geology, 2019, 39(5): 174-185.
|
[48] |
刘昕悦, 李伟民, 刘永江, 等. 辽东鞍山地区太古代构造样式及其数值模拟[J]. 岩石学报, 2019, 35(4):1071-1084. [LIU Xinyue, LI Weimin, LIU Yongjiang, et al. Archean tectonic pattern and its numerical simulation in Anshan area, eastern Liaoning Province [J]. Acta Petrologica Sinica, 2019, 35(4): 1071-1084.
|
[49] |
Ranalli G, Murphy D C. Rheological stratification of the lithosphere [J]. Tectonophysics, 1987, 132(4): 281-295. doi: 10.1016/0040-1951(87)90348-9
|
[50] |
Bédard J H. A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle [J]. Geochimica et Cosmochimica Acta, 2006, 70(5): 1188-1214. doi: 10.1016/j.gca.2005.11.008
|
[51] |
Taylor J, Stevens G, Armstrong R, et al. Granulite facies anatexis in the Ancient Gneiss Complex, Swaziland, at 2.73 Ga: mid-crustal metamorphic evidence for mantle heating of the Kaapvaal craton during Ventersdorp magmatism [J]. Precambrian Research, 2010, 177(1-2): 88-102. doi: 10.1016/j.precamres.2009.11.005
|
[52] |
Smithies R H, Lu Y J, Johnson T E, et al. No evidence for high-pressure melting of Earth’s crust in the Archean [J]. Nature Communications, 2019, 10(1): 5559. doi: 10.1038/s41467-019-13547-x
|
[53] |
Manikyamba C, Kerrich R, Polat A, et al. Arc picrite-potassic adakitic-shoshonitic volcanic association of the Neoarchean Sigegudda greenstone terrane, western Dharwar craton: transition from arc wedge to lithosphere melting [J]. Precambrian Research, 2012, 212-213: 207-224. doi: 10.1016/j.precamres.2012.05.006
|
[54] |
Liu F, Guo J H, Peng P, et al. Zircon U-Pb ages and geochemistry of the Huai’an TTG gneisses terrane: petrogenesis and implications for ~2.5 Ga crustal growth in the North China Craton [J]. Precambrian Research, 2012, 212-213: 225-244. doi: 10.1016/j.precamres.2012.06.006
|
[55] |
Wang Y F, Li X H, Jin W, et al. Eoarchean ultra-depleted mantle domains inferred from ca. 3.81 Ga Anshan trondhjemitic gneisses, North China Craton [J]. Precambrian Research, 2015, 263: 88-107. doi: 10.1016/j.precamres.2015.03.005
|
[56] |
Gao L, Liu S W, Hu Y L, et al. Late Neoarchean geodynamic evolution: evidence from the metavolcanic rocks of the Western Shandong Terrane, North China Craton [J]. Gondwana Research, 2020, 80: 303-320. doi: 10.1016/j.gr.2019.10.017
|
[57] |
Van Kranendonk M J, Collins W J, Hickman A, et al. Critical tests of vertical vs. horizontal tectonic models for the Archaean East Pilbara Granite-Greenstone Terrane, Pilbara Craton, Western Australia [J]. Precambrian Research, 2004, 131(3-4): 173-211. doi: 10.1016/j.precamres.2003.12.015
|
[58] |
Bouhallier H, Chardon D, Choukroune P. Strain patterns in Archaean dome-and-basin structures: the Dharwar craton (Karnataka, South India) [J]. Earth and Planetary Science Letters, 1995, 135(1-4): 57-75. doi: 10.1016/0012-821X(95)00144-2
|
1. |
刘文良,褚宏宪,法鸿洁,王洪松,鲍宽乐,李晓阳,刘京强. 基于机载LiDAR和剖面数据的海滩地形动态监测. 海洋地质前沿. 2025(01): 81-92 .
![]() |