Citation: | HE Xingliang, TAN Lijv, DUAN Xiaoyong, YIN Ping, XIE Yongqing, YANG Lei, DONG Chao, WANG Jiangtao. Carbon cycle within the sulfate-methane transition zone in the marine sediments of Hangzhou Bay[J]. Marine Geology & Quaternary Geology, 2020, 40(3): 51-60. DOI: 10.16562/j.cnki.0256-1492.2020021401 |
[1] |
Milkov A V. Global estimates of hydrate-bound gas in marine sediments: how much is really out there? [J]. Earth-Science Reviews, 2004, 66(3-4): 183-197. doi: 10.1016/j.earscirev.2003.11.002
|
[2] |
Reeburgh W S. Oceanic methane biogeochemistry [J]. Chemical Reviews, 2007, 107(2): 486-513. doi: 10.1021/cr050362v
|
[3] |
Regnier P, Dale A W, Arndt S, et al. Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: a modeling perspective [J]. Earth-Science Reviews, 2011, 106(1-2): 105-130. doi: 10.1016/j.earscirev.2011.01.002
|
[4] |
Blair N E, Aller R C. Anaerobic methane oxidation on the Amazon shelf [J]. Geochimica et Cosmochimica Acta, 1995, 59(18): 3707-3715. doi: 10.1016/0016-7037(95)00277-7
|
[5] |
Borowski W S, Paull C K, Ussler III W. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate [J]. Geology, 1996, 24(7): 655-658. doi: 10.1130/0091-7613(1996)024<0655:MPWSPI>2.3.CO;2
|
[6] |
Egger M, Riedinger N, Mogollón J M, et al. Global diffusive fluxes of methane in marine sediments [J]. Nature Geoscience, 2018, 11(6): 421-245. doi: 10.1038/s41561-018-0122-8
|
[7] |
Beulig F, Røy H, McGlynn S E, et al. Cryptic CH4 cycling in the sulfate–methane transition of marine sediments apparently mediated by ANME-1 archaea [J]. ISME J, 2018, 13(2): 250-262.
|
[8] |
Flury S, Røy H, Dale A W, et al. Controls on subsurface methane fluxes and shallow gas formation in Baltic Sea sediment (Aarhus Bay, Denmark) [J]. Geochimica et Cosmochimica Acta, 2016, 188: 297-309. doi: 10.1016/j.gca.2016.05.037
|
[9] |
Komada T, Burdige D J, Li H L, et al. Organic matter cycling across the sulfate-methane transition zone of the Santa Barbara Basin, California Borderland [J]. Geochimica et Cosmochimica Acta, 2016, 176: 259-278. doi: 10.1016/j.gca.2015.12.022
|
[10] |
Yoshinaga M Y, Holler T, Goldhammer T, et al. Carbon isotope equilibration during sulphate-limited anaerobic oxidation of methane [J]. Nature Geoscience, 2014, 7(3): 190-194. doi: 10.1038/ngeo2069
|
[11] |
Kim S, Choi K, Chung J. Reduction in carbon dioxide and production of methane by biological reaction in the electronics industry [J]. International Journal of Hydrogen Energy, 2013, 38(8): 3488-3496. doi: 10.1016/j.ijhydene.2012.12.007
|
[12] |
Lash G G. Significance of stable carbon isotope trends in carbonate concretions formed in association with anaerobic oxidation of methane (AOM), Middle and Upper Devonian shale succession, western New York State, USA [J]. Marine and Petroleum Geology, 2018, 91: 470-479. doi: 10.1016/j.marpetgeo.2018.01.032
|
[13] |
Chuang P C, Frank Y T, Wallmann K, et al. Carbon isotope exchange during Anaerobic Oxidation of Methane (AOM) in sediments of the northeastern South China Sea [J]. Geochimica et Cosmochimica Acta, 2019, 246: 138-155. doi: 10.1016/j.gca.2018.11.003
|
[14] |
Hong W L, Torres M E, Kim J H, et al. Carbon cycling within the sulfate-methane-transition-zone in marine sediments from the Ulleung Basin [J]. Biogeochemistry, 2013, 115(1-3): 129-148. doi: 10.1007/s10533-012-9824-y
|
[15] |
Ni Y Y, Dai J X, Zou C N, et al. Geochemical characteristics of biogenic gases in China [J]. International Journal of Coal Geology, 2013, 113: 76-87. doi: 10.1016/j.coal.2012.07.003
|
[16] |
柴小平, 胡宝兰, 魏娜, 等. 杭州湾及邻近海域表层沉积物重金属的分布、来源及评价[J]. 环境科学学报, 2015, 35(12):3906-3916. [CHAI Xiaoping, HU Baolan, WEI Na, et al. Distribution, sources and assessment of heavy metals in surface sediments of the Hangzhou Bay and its adjacent areas [J]. Acta Scientiae Circumstantiae, 2015, 35(12): 3906-3916.
|
[17] |
夏小明, 杨辉, 李炎, 等. 长江口-杭州湾毗连海区的现代沉积速率[J]. 沉积学报, 2004, 22(1):130-135. [XIA Xiaming, YANG Hui, LI Yan, et al. Modern sedimentation rates in the contiguous sea area of Changjiang Estuary and Hangzhou Bay [J]. Acta Sedimentologica Sinica, 2004, 22(1): 130-135. doi: 10.3969/j.issn.1000-0550.2004.01.020
|
[18] |
Xu F L, Ji Z Q, Wang K, et al. The distribution of sedimentary organic matter and implication of its transfer from Changjiang Estuary to Hangzhou Bay, China [J]. Open Journal of Marine Science, 2016, 6(1): 103-114. doi: 10.4236/ojms.2016.61010
|
[19] |
陈少平, 孙家振, 沈传波, 等. 杭州湾地区浅层气成藏条件分析[J]. 华东地质学院学报, 2003, 26(4):352-356. [CHEN Shaoping, SUN Jiazhen, SHEN Chuanbo, et al. Reservoir formation condition of shallow gas in the area of Hangzhou Bay [J]. Journal of East China Geological Institute, 2003, 26(4): 352-356.
|
[20] |
胡新强, 顾兆峰, 张训华, 等. 长江口外海域浅层气地震反射形态特征及分布[J]. 海洋地质与第四纪地质, 2016, 36(1):151-157. [HU Xinqiang, GU Zhaofeng, ZHANG Xunhua, et al. Seismic shape features and distribution of shallow gas in the sea area off the Yangtze River Estuary [J]. Marine Geology & Quaternary Geology, 2016, 36(1): 151-157.
|
[21] |
杨涛, 蒋少涌, 赖鸣远, 等. 海洋沉积物孔隙水中溶解无机碳(DIC)的碳同位素分析方法[J]. 地球学报, 2005, 26(S1):51-52. [YANG Tao, JIANG Shaoyong, LAI Mingyuan, et al. An analytical method for carbon isotopic composition of dissolved inorganic carbon (DIC) in pore waters from marine sediments [J]. Acta Geoscientica Sinica, 2005, 26(S1): 51-52.
|
[22] |
杨涛, 蒋少涌, 赖鸣远, 等. 连续流同位素质谱测定水中溶解无机碳含量和碳同位素组成的方法研究[J]. 地球化学, 2006, 35(6):675-680. [YANG Tao, JIANG Shaoyong, LAI Mingyuan, et al. Analytical method for concentration and carbon isotopic composition of dissolved inorganic carbon (DIC) by continuous flow-isotope ratio mass spectrometer [J]. Geochimica, 2006, 35(6): 675-680. doi: 10.3321/j.issn:0379-1726.2006.06.014
|
[23] |
张媛媛, 林学辉, 贺行良, 等. 离子色谱法同时测定海洋沉积物中氯和硫[J]. 分析科学学报, 2015, 31(2):249-252. [ZHANG Yuanyuan, LIN Xuehui, HE Xingliang, et al. Determination of chlorine and sulfur in marine sediment by ion chromatography [J]. Journal of Analytical Science, 2015, 31(2): 249-252.
|
[24] |
Snyder G T, Hiruta A, Matsumoto R, et al. Pore water profiles and authigenic mineralization in shallow marine sediments above the methane-charged system on Umitaka Spur, Japan Sea [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2007, 54(11-13): 1216-1239. doi: 10.1016/j.dsr2.2007.04.001
|
[25] |
贺行良, 夏宁, 刘昌岭, 等. FID/TCD并联气相色谱法测定天然气水合物的气体组成[J]. 分析测试学报, 2012, 31(2):206-210. [HE Xingliang, XIA Ning, LIU Changling, et al. Compositional analysis of gases in natural gas hydrates by GC-FID/TCD [J]. Journal of Instrumental Analysis, 2012, 31(2): 206-210. doi: 10.3969/j.issn.1004-4957.2012.02.017
|
[26] |
贺行良, 刘昌岭, 王江涛, 等. 气相色谱-同位素比值质谱法测定天然气水合物气体单体碳氢同位素[J]. 岩矿测试, 2012, 31(1):154-158. [HE Xingliang, LIU Changling, WANG Jiangtao, et al. Measurement of carbon and hydrogen isotopes of natural gas hydrate-bound gases by gas chromatography-isotope ratio mass spectrometry [J]. Rock and Mineral Analysis, 2012, 31(1): 154-158. doi: 10.3969/j.issn.0254-5357.2012.01.021
|
[27] |
Iversen N, Jørgensen B B. Diffusion coefficients of sulfate and methane in marine sediments: Influence of porosity [J]. Geochimica et Cosmochimica Acta, 1993, 57(3): 571-578. doi: 10.1016/0016-7037(93)90368-7
|
[28] |
Boudreau B P. Diagenetic Models and Their Implementation: Modelling Transport and Reactions in Aquatic Sediments[M]. Berlin: Springer, 1997.
|
[29] |
Schulz H D. Quantification of early diagenesis: dissolved constituents in pore water and signals in the solid phase[M]//Schulz H D, Zabel M. Marine Geochemistry. Berlin, Heidelberg: Springer, 2006: 73-124.
|
[30] |
Wehrmann L M, Risgaard-Petersen N, Schrum H N, et al. Coupled organic and inorganic carbon cycling in the deep subseafloor sediment of the northeastern Bering Sea Slope (IODP Exp. 323) [J]. Chemical Geology, 2011, 284(3-4): 251-261. doi: 10.1016/j.chemgeo.2011.03.002
|
[31] |
Hu C Y, Yang T F, Burr G S, et al. Biogeochemical cycles at the sulfate-methane transition zone (SMTZ) and geochemical characteristics of the pore fluids offshore southwestern Taiwan [J]. Journal of Asian Earth Sciences, 2017, 149: 172-183. doi: 10.1016/j.jseaes.2017.07.002
|
[32] |
Rees C E. A steady-state model for sulphur isotope fractionation in bacterial reduction processes [J]. Geochimica et Cosmochimica Acta, 1973, 37(5): 1141-1162. doi: 10.1016/0016-7037(73)90052-5
|
[33] |
Bayon G, Pierre C, Etoubleau J, et al. Sr/Ca and Mg/Ca ratios in Niger Delta sediments: Implications for authigenic carbonate genesis in cold seep environments [J]. Marine Geology, 2007, 241(1-4): 93-109. doi: 10.1016/j.margeo.2007.03.007
|
[34] |
Nöthen K, Kasten S. Reconstructing changes in seep activity by means of pore water and solid phase Sr/Ca and Mg/Ca ratios in pockmark sediments of the Northern Congo Fan [J]. Marine Geology, 2011, 287(1-4): 1-13. doi: 10.1016/j.margeo.2011.06.008
|
[35] |
Whiticar M J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane [J]. Chemical Geology, 1999, 161(1-3): 291-314. doi: 10.1016/S0009-2541(99)00092-3
|
[36] |
Treude T, Krause S, Maltby J, et al. Sulfate reduction and methane oxidation activity below the sulfate-methane transition zone in Alaskan Beaufort Sea continental margin sediments: Implications for deep sulfur cycling [J]. Geochimica et Cosmochimica Acta, 2014, 144: 217-237. doi: 10.1016/j.gca.2014.08.018
|
[37] |
Borowski W S, Paull C K, Ussler III W. Carbon cycling within the upper methanogenic zone of continental rise sediments; an example from the methane-rich sediments overlying the Blake Ridge gas hydrate deposits [J]. Marine Chemistry, 1997, 57(3-4): 299-311. doi: 10.1016/S0304-4203(97)00019-4
|
[38] |
Mazumdar A, Peketi A, Joao H M, et al. Pore-water chemistry of sediment cores off Mahanadi Basin, Bay of Bengal: Possible link to deep seated methane hydrate deposit [J]. Marine and Petroleum Geology, 2014, 49: 162-175. doi: 10.1016/j.marpetgeo.2013.10.011
|
[39] |
Wallace P J, Dickens G R, Paull C K, et al. Effects of core retrieval and degassing on the carbon isotope composition of methane in gas hydrate-and free gas-bearing sediments from the Blake Ridge[C]//Proceedings of the Ocean Drilling Program. Scientific Results. College Station, TX: Texas A&M University, 2000, 164: 101-112.
|
1. |
刘璇,陈敏,戚洪帅,Apitida Wasuwatcharapong,Apichai Kanchanapant,王承涛,许亚. 近9 ka以来泰国湾高分辨的生物硅记录及其古生产力意义. 海洋地质与第四纪地质. 2024(06): 121-129 .
![]() | |
2. |
吕荐阔,翟世奎,于增慧,刘晓锋,王轲. 氧化还原敏感性元素在沉积环境判别中的应用研究进展. 海洋科学. 2021(12): 108-124 .
![]() |