WEI Haotian, LIU Gang, HAN Xiaohui, ZHAO Yanyan, WU Jiaqing, YANG Jun. Geochemical records of hydrothermal fluids in corals: Evidence of rare earth elements from coral reefs in the Yongxing Island, Xisha, South China Sea[J]. Marine Geology & Quaternary Geology, 2020, 40(4): 78-95. DOI: 10.16562/j.cnki.0256-1492.2019121601
Citation: WEI Haotian, LIU Gang, HAN Xiaohui, ZHAO Yanyan, WU Jiaqing, YANG Jun. Geochemical records of hydrothermal fluids in corals: Evidence of rare earth elements from coral reefs in the Yongxing Island, Xisha, South China Sea[J]. Marine Geology & Quaternary Geology, 2020, 40(4): 78-95. DOI: 10.16562/j.cnki.0256-1492.2019121601

Geochemical records of hydrothermal fluids in corals: Evidence of rare earth elements from coral reefs in the Yongxing Island, Xisha, South China Sea

More Information
  • Received Date: December 15, 2019
  • Revised Date: February 11, 2020
  • Available Online: August 20, 2020
  • The contents, distribution pattern and elemental anomalies of rare earth elements in carbonates are the records of surrounding water. Corals are characterized by high resolution and high stability of rare earth elements and may faithfully record the geochemical characteristics of the surrounding seawater. In this paper, we analyzed the coral reefs from 142 to 84 ka collected from the Yongxing Island of the Xuande Atoll of Xisha Islands, South China Sea. Trace element contents, especially the rare earth element contents and their distribution patterns are used in this paper to determine the characteristics of the sea water, in which the coral reefs grew. Results show that, since 142 ka, most of the coral reefs in the Yongxing Island has a normal rare earth element distribution pattern of marine carbonates, characterized by LREE depletion, negative Ce anomalies and high Y/Ho ratios, indicating an environment of open shallow sea. In contrast, the coral skeletons in depth of 23 m 114 ka have similar LREE depletion, negative Ce anomalies and high Y/Ho ratios, but positive Eu anomalies. This suggests that certain amount of hydrothermal fluid has been input during the growth of corals. Based on the model calculations, it is inferred that at least 0.1% of hydrothermal fluid has been added to the open seawater during that time. The hydrothermal fluids may be related to the volcanic activities observed at Gaojianshi island or Hainan island.
  • [1]
    Kamber B S, Webb G E. The geochemistry of late Archaean microbial carbonate: implications for ocean chemistry and continental erosion history [J]. Geochimica et Cosmochimica Acta, 2001, 65(15): 2509-2525. doi: 10.1016/S0016-7037(01)00613-5
    [2]
    Bolhar R, Van Kranendonk M J, Kamber B S. A trace element study of siderite-jasper banded iron formation in the 3.45 Ga Warrawoona Group, Pilbara Craton-Formation from hydrothermal fluids and shallow seawater [J]. Precambrian Research, 2005, 137(1-2): 93-114. doi: 10.1016/j.precamres.2005.02.001
    [3]
    Bolhar R, Van Kranendonk M J. A non-marine depositional setting for the northern Fortescue Group, Pilbara Craton, inferred from trace element geochemistry of stromatolitic carbonates [J]. Precambrian Research, 2007, 155(3-4): 229-250. doi: 10.1016/j.precamres.2007.02.002
    [4]
    Jiang S Y, Zhao H X, Chen Y Q, et al. Trace and rare earth element geochemistry of phosphate nodules from the lower Cambrian black shale sequence in the Mufu Mountain of Nanjing, Jiangsu province, China [J]. Chemical Geology, 2007, 244(3-4): 584-604. doi: 10.1016/j.chemgeo.2007.07.010
    [5]
    Nothdurft L D, Webb G E, Kamber B S. Rare earth element geochemistry of Late Devonian reefal carbonates, canning basin, Western Australia: confirmation of a seawater REE proxy in ancient limestones [J]. Geochimica et Cosmochimica Acta, 2004, 68(2): 263-283. doi: 10.1016/S0016-7037(03)00422-8
    [6]
    Jiang W, Yu K F, Fan T L, et al. Coral reef carbonate record of the Pliocene-Pleistocene climate transition from an atoll in the South China Sea [J]. Marine Geology, 2019, 411: 88-97. doi: 10.1016/j.margeo.2019.02.006
    [7]
    赵美霞, 余克服, 张乔民. 珊瑚礁区的生物多样性及其生态功能[J]. 生态学报, 2006, 26(1):186-194. [ZHAO Meixia, YU Kefu, ZHANG Qiaomin. Review on coral reefs biodiversity and ecological function [J]. Acta Ecologica Sinica, 2006, 26(1): 186-194. doi: 10.3321/j.issn:1000-0933.2006.01.025
    [8]
    Fallon S J, White J C, McCulloch M T. <italic>Porites</italic> corals as recorders of mining and environmental impacts: misima Island, Papua New Guinea [J]. Geochimica et Cosmochimica Acta, 2002, 66(1): 45-62. doi: 10.1016/S0016-7037(01)00715-3
    [9]
    Webster J M, Braga J C, Humblet M, et al. Response of the Great Barrier Reef to sea-level and environmental changes over the past 30, 000 years [J]. Nature Geoscience, 2018, 11(6): 426-432. doi: 10.1038/s41561-018-0127-3
    [10]
    余克服. 南海珊瑚礁及其对全新世环境变化的记录与响应[J]. 中国科学: 地球科学, 2012, 55(8):1217-1229. [YU Kefu. Coral reefs in the South China Sea: their response to and records on past environmental changes [J]. Science China Earth Sciences, 2012, 55(8): 1217-1229. doi: 10.1007/s11430-012-4449-5
    [11]
    Kasper-Zubillaga J J, Armstrong-Altrin J S, Rosales-Hoz L. Geochemical study of coral skeletons from the Puerto Morelos Reef, southeastern Mexico [J]. Estuarine, Coastal and Shelf Science, 2014, 151: 78-87. doi: 10.1016/j.ecss.2014.09.023
    [12]
    Sholkovitz E, Shen G T. The incorporation of rare earth elements in modern coral [J]. Geochimica et Cosmochimica Acta, 1995, 59(13): 2749-2756. doi: 10.1016/0016-7037(95)00170-5
    [13]
    Webb G E, Nothdurft L D, Kamber B S, et al. Rare earth element geochemistry of scleractinian coral skeleton during meteoric diagenesis: a sequence through neomorphism of aragonite to calcite [J]. Sedimentology, 2009, 56(5): 1433-1463. doi: 10.1111/j.1365-3091.2008.01041.x
    [14]
    陈万利, 吴时国, 黄晓霞, 等. 西沙群岛晚第四纪碳酸盐岩淡水成岩作用——来自永兴岛SSZK1钻孔的地球化学响应证据[J]. 沉积学报, http://doi.org/10.14027/j.issn.1000-0550.2020.006.

    CHEN WanLi, WU ShiGuo, HUANG XiaoXia, et al. Geochemical signatures in the Late Quaternary meteoric diagenetic carbonate succession, Xisha Islands, South China Sea [J]. Acta Sedimentologica Sinica, http://doi.org/10.14027/j.issn.1000-0550.2020.006.
    [15]
    Zhang R X, Yang S Y. A mathematical model for determining carbon coating thickness and its application in electron probe microanalysis [J]. Microscopy and Microanalysis, 2016, 22(6): 1374-1380. doi: 10.1017/S143192761601182X
    [16]
    Zhang X, Yang S Y, Zhao H, et al. Effect of beam current and diameter on electron probe microanalysis of carbonate minerals [J]. Journal of Earth Science, 2019, 30(4): 834-842. doi: 10.1007/s12583-017-0939-x
    [17]
    廖泽波, 邵庆丰, 李春华, 等. MC-ICP-MS标样-样品交叉测试法测定石笋样品的<sup>230</sup>Th/U年龄[J]. 质谱学报, 2018, 39(3):295-309. [LIAO Zebo, SHAO Qingfeng, LI Chunhua, et al. Measurement of U/Th Isotopic Compositions in stalagmites for <sup>230</sup>Th/U geochronology using MC-ICP-MS by standard-sample bracketing method [J]. Journal of Chinese Mass Spectrometry Society, 2018, 39(3): 295-309. doi: 10.7538/zpxb.2017.0072
    [18]
    李晓, 刘娜, 吴仕玖, 等. 南海西沙群岛西科1井上新统-全新统碳酸盐岩微相分析[J]. 科技导报, 2016, 34(7):103-110. [LI Xiao, LIU Na, WU Shijiu, et al. Analysis of carbonate microfacies in Pliocene-Holocene, in Well XK-1, the Xisha Islang, South China Sea [J]. Science & Technology Review, 2016, 34(7): 103-110. doi: 10.3981/j.issn.1000-7857.2016.07.009
    [19]
    解习农, 谢玉洪, 李绪深, 等. 南海西科1井碳酸盐岩生物礁储层沉积学: 层序地层与沉积演化[M]. 武汉: 中国地质大学出版社, 2016.

    XIE Xinong, XIE Yuhong, LI Xushen, et al. Sedimentology of carbonate reef reservoirs in Well Xike-1, South China Sea: Sequence Stratigraphy and Sedimentary Evolution[M]. Wuhan: China University of Geosciences, 2016
    [20]
    Van Kranendonk M J, Webb G E, Kamber B S. Geological and trace element evidence for a marine sedimentary environment of deposition and biogenicity of 3.45 Ga stromatolitic carbonates in the Pilbara Craton, and support for a reducing Archaean ocean [J]. Geobiology, 2003, 1(2): 91-108. doi: 10.1046/j.1472-4669.2003.00014.x
    [21]
    Frimmel H E. Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator [J]. Chemical Geology, 2009, 258(3-4): 338-353. doi: 10.1016/j.chemgeo.2008.10.033
    [22]
    Lawrence M G, Greig A, Collerson K D, et al. Rare earth element and yttrium variability in South East Queensland waterways [J]. Aquatic Geochemistry, 2006, 12(1): 39-72. doi: 10.1007/s10498-005-4471-8
    [23]
    Zhao Y Y, Zheng Y F, Chen F K. Trace element and strontium isotope constraints on sedimentary environment of Ediacaran carbonates in southern Anhui, South China [J]. Chemical Geology, 2009, 265(3-4): 345-362. doi: 10.1016/j.chemgeo.2009.04.015
    [24]
    Bayon G, German C R, Burton K W, et al. Sedimentary Fe-Mn oxyhydroxides as paleoceanographic archives and the role of aeolian flux in regulating oceanic dissolved REE [J]. Earth and Planetary Science Letters, 2004, 224(3-4): 477-492. doi: 10.1016/j.jpgl.2004.05.033
    [25]
    Byrne R H, Liu X W, Schijf J. The influence of phosphate coprecipitation on rare earth distributions in natural waters [J]. Geochimica et Cosmochimica Acta, 1996, 60(17): 3341-3346. doi: 10.1016/0016-7037(96)00197-4
    [26]
    Zhao M Y, Zheng Y F. A geochemical framework for retrieving the linked depositional and diagenetic histories of marine carbonates [J]. Earth and Planetary Science Letters, 2017, 460: 213-221. doi: 10.1016/j.jpgl.2016.11.033
    [27]
    Zhao M Y, Zheng Y F. Marine carbonate records of terrigenous input into Paleotethyan seawater: Geochemical constraints from Carboniferous limestones [J]. Geochimica et Cosmochimica Acta, 2014, 141: 508-531. doi: 10.1016/j.gca.2014.07.001
    [28]
    Haley B A, Klinkhammer G P, McManus J. Rare earth elements in pore waters of marine sediments [J]. Geochimica et Cosmochimica Acta, 2004, 68(6): 1265-1279. doi: 10.1016/j.gca.2003.09.012
    [29]
    Bayon G, Birot D, Ruffine L, et al. Evidence for intense REE scavenging at cold seeps from the Niger Delta margin [J]. Earth and Planetary Science Letters, 2011, 312(3-4): 443-452. doi: 10.1016/j.jpgl.2011.10.008
    [30]
    Kidder D L, Krishnaswamy R, Mapes R H. Elemental mobility in phosphatic shales during concretion growth and implications for provenance analysis [J]. Chemical Geology, 2003, 198(3-4): 335-353. doi: 10.1016/S0009-2541(03)00036-6
    [31]
    Kamber B S, Webb G E, Gallagher M. The rare earth element signal in Archaean microbial carbonate: information on ocean redox and biogenicity [J]. Journal of the Geological Society, 2014, 171(6): 745-763. doi: 10.1144/jgs2013-110
    [32]
    Barnard L A, Macintyre I G, Pierce J W. Possible environmental index in tropical reef corals [J]. Nature, 1974, 252(5480): 219-220. doi: 10.1038/252219a0
    [33]
    Porta G D, Webb G E, McDonald I. REE patterns of microbial carbonate and cements from Sinemurian (Lower Jurassic) siliceous sponge mounds (Djebel Bou Dahar, High Atlas, Morocco) [J]. Chemical Geology, 2015, 400: 65-86. doi: 10.1016/j.chemgeo.2015.02.010
    [34]
    Mc Lennan S M, Bock B, Hemming S R, et al. The roles of provenance sedimentary processes in the geochemistry of sedimentary rocks[M]//Lentz D R. Geological Association of Canada Short Course Notes. Toronto: Geological Association of Canada, 2003.
    [35]
    Sholkovitz E R, Piepgras D J, Jacobsen S B. The pore water chemistry of rare earth elements in Buzzards Bay sediments [J]. Geochimica Et Cosmochimica Acta, 1989, 53(11): 2847-2856. doi: 10.1016/0016-7037(89)90162-2
    [36]
    Webb G E, Kamber B S. Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy [J]. Geochimica Et Cosmochimica Acta, 2000, 64(9): 1557-1565. doi: 10.1016/S0016-7037(99)00400-7
    [37]
    Banner J L, Hanson G N, Meyers W J. Rare earth element and nd isotopic variations in regionally extensive dolomites from the burlington-keokuk formation (Mississippian): implications for REE mobility during carbonate diagenesis [J]. Journal of Sedimentary Research, 1988, 58(3): 415-432.
    [38]
    Kim J H, Torres M E, Haley B A, et al. The effect of diagenesis and fluid migration on rare earth element distribution in pore fluids of the northern Cascadia accretionary margin [J]. Chemical Geology, 2012, 291: 152-165. doi: 10.1016/j.chemgeo.2011.10.010
    [39]
    Shields G, Stille P. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites [J]. Chemical Geology, 2001, 175(1-2): 29-48. doi: 10.1016/S0009-2541(00)00362-4
    [40]
    Bau M, Koschinsky A, Dulski P, et al. Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater [J]. Geochimica et Cosmochimica Acta, 1996, 60(10): 1709-1725. doi: 10.1016/0016-7037(96)00063-4
    [41]
    Shields G A, Webb G E. Has the REE composition of seawater changed over geological time? [J]. Chemical Geology, 2004, 204(1-2): 103-107. doi: 10.1016/j.chemgeo.2003.09.010
    [42]
    Bau M. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect [J]. Contributions to Mineralogy and Petrology, 1996, 123(3): 323-333. doi: 10.1007/s004100050159
    [43]
    Bau M, Dulski P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa [J]. Precambrian Research, 1996, 79(1-2): 37-55. doi: 10.1016/0301-9268(95)00087-9
    [44]
    Tanaka K, Tani Y, Takahashi Y, et al. A specific Ce oxidation process during sorption of rare earth elements on biogenic Mn oxide produced by <italic>Acremonium</italic> sp. strain KR21-2 [J]. Geochimica et Cosmochimica Acta, 2010, 74(19): 5463-5477. doi: 10.1016/j.gca.2010.07.010
    [45]
    German C R, Elderfield H. Application of the Ce anomaly as a paleoredox indicator: the ground rules [J]. Paleoceanography, 1990, 5(5): 823-833. doi: 10.1029/PA005i005p00823
    [46]
    Ling H F, Chen X, Li D, et al. Cerium anomaly variations in Ediacaran-earliest Cambrian carbonates from the Yangtze Gorges area, South China: implications for oxygenation of coeval shallow seawater [J]. Precambrian Research, 2013, 225: 110-127. doi: 10.1016/j.precamres.2011.10.011
    [47]
    Kawabe I, Kitahara Y, Naito K. Non-chondritic yttrium/holmium ratio and lanthanide tetrad effect observed in pre-Cenozoic limestones [J]. Geochemical Journal, 1991, 25(1): 31-44. doi: 10.2343/geochemj.25.31
    [48]
    Bau M, Dulski P. Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater [J]. Chemical Geology, 1999, 155(1-2): 77-90. doi: 10.1016/S0009-2541(98)00142-9
    [49]
    Alibo D S, Nozaki Y. Rare earth elements in seawater: Particle association, shale-normalization, and Ce oxidation [J]. Geochimica et Cosmochimica Acta, 1999, 63(3-4): 363-372. doi: 10.1016/S0016-7037(98)00279-8
    [50]
    Luong L D, Ryuichi S, Nguyen H, et al. Spatial variations in dissolved rare earth element concentrations in the East China Sea water column [J]. Marine Chemistry, 2018, 205: 1-15. doi: 10.1016/j.marchem.2018.07.004
    [51]
    Michard A, Albarède F, Michard G, et al. Rare-earth elements and uranium in high-temperature solutions from East Pacific Rise hydrothermal vent field (13°N) [J]. Nature, 1983, 303(5920): 795-797. doi: 10.1038/303795a0
    [52]
    German C R, Klinkhammer G P, Edmond J M, et al. Hydrothermal scavenging of rare-earth elements in the ocean [J]. Nature, 1990, 345(6275): 516-518. doi: 10.1038/345516a0
    [53]
    Chen D Z, Qing H R, Yan X, et al. Hydrothermal venting and basin evolution (Devonian, South China): constraints from rare earth element geochemistry of chert [J]. Sedimentary Geology, 2006, 183(3-4): 203-216. doi: 10.1016/j.sedgeo.2005.09.020
    [54]
    Kamber B S, Greig A, Collerson K D. A new estimate for the composition of weathered young upper continental crust from alluvial sediments, Queensland, Australia [J]. Geochimica et Cosmochimica Acta, 2005, 69(4): 1041-1058. doi: 10.1016/j.gca.2004.08.020
    [55]
    Wang Q X, Lin Z J, Chen D F. Geochemical constraints on the origin of Doushantuo cap carbonates in the Yangtze Gorges area, South China [J]. Sedimentary Geology, 2014, 304: 59-70. doi: 10.1016/j.sedgeo.2014.02.006
    [56]
    Michard A, Albarède F. The REE content of some hydrothermal fluids [J]. Chemical Geology, 1986, 55(1-2): 51-60. doi: 10.1016/0009-2541(86)90127-0
    [57]
    Alexander B W, Bau M, Andersson P, et al. Continentally-derived solutes in shallow Archean seawater: rare earth element and Nd isotope evidence in iron formation from the 2.9 Ga Pongola Supergroup, South Africa [J]. Geochimica et Cosmochimica Acta, 2008, 72(2): 378-394. doi: 10.1016/j.gca.2007.10.028
    [58]
    Robbins L J, Lalonde S V, Planavsky N J, et al. Trace elements at the intersection of marine biological and geochemical evolution [J]. Earth-Science Reviews, 2016, 163: 323-348. doi: 10.1016/j.earscirev.2016.10.013
    [59]
    Bau M, Balan S, Schmidt K, et al. Rare earth elements in mussel shells of the <italic>Mytilidae</italic> family as tracers for hidden and fossil high-temperature hydrothermal systems [J]. Earth and Planetary Science Letters, 2010, 299(3-4): 310-316. doi: 10.1016/j.jpgl.2010.09.011
    [60]
    Johannessen K C, Roost J V, Dahle H, et al. Environmental controls on biomineralization and Fe-mound formation in a low-temperature hydrothermal system at the Jan Mayen Vent Fields [J]. Geochimica et Cosmochimica Acta, 2017, 202: 101-123. doi: 10.1016/j.gca.2016.12.016
    [61]
    Ho K S, Chen J C, Juang W S. Geochronology and geochemistry of late Cenozoic basalts from the Leiqiong area, Southern China [J]. Journal of Asian Earth Sciences, 2000, 18(3): 307-324. doi: 10.1016/S1367-9120(99)00059-0
    [62]
    孙嘉诗. 南海北部及广东沿海新生代火山活动[J]. 海洋地质与第四纪地质, 1991, 11(3):45-66. [SUN Jiashi. Cenozoic volcanic activity in the Northern South China Sea and Guangdong coastal area [J]. Marine Geology & Quaternary Geology, 1991, 11(3): 45-66.
    [63]
    樊祺诚, 孙谦, 李霓, 等. 琼北火山活动分期与全新世岩浆演化[J]. 岩石学报, 2004, 20(3):533-544. [FAN Qicheng, SUN Qian, LI Ni, et al. Periods of volcanic activity and magma evolution of Holocene in North Hainan Island [J]. Acta Petrologica Sinica, 2004, 20(3): 533-544. doi: 10.3969/j.issn.1000-0569.2004.03.017
    [64]
    冯英辞, 詹文欢, 孙杰, 等. 西沙海域上新世以来火山特征及其形成机制[J]. 热带海洋学报, 2017, 36(3):73-79. [FENG Yingci, ZHAN Wenhuan, SUN Jie, et al. The formation mechanism and characteristics of volcanoes in the Xisha waters since Pliocene [J]. Journal of Tropical Oceanography, 2017, 36(3): 73-79.
    [65]
    邹和平. 试谈南海海盆地壳属性问题—由南海海盆及其邻区玄武岩的比较研究进行讨论[J]. 大地构造与成矿学, 1993, 17(4):293-303. [ZOU Heping. On the problem about the crust’s attribution of South China Sea basin-discussion from comparative study on basalts of seamounts in South China Sea basin and the neighboring areas [J]. Geotectonica et Metallogenia, 1993, 17(4): 293-303.
    [66]
    吕炳全, 王国忠, 全松青, 等. 试论西沙群岛石岛的形成[J]. 地质科学, 1986(1):82-89. [LV Bingquan, WANG Guozhong, QUAN Songqing, et al. A preliminary study of the formation of Shidao Island, Xisha Islands [J]. Chinese Journal of Geology, 1986(1): 82-89.
  • Related Articles

    [1]LI Xuejie, LIAO Zhiliang, TIAN Chengjing, ZHONG Hexian, ZHANG Jiangyong. Distribution pattern of volcanic glasses in the surficial sediments of the South China Sea and their provenance[J]. Marine Geology & Quaternary Geology, 2022, 42(3): 1-8. DOI: 10.16562/j.cnki.0256-1492.2021092801
    [2]LIU Yanan, LIU Baohua, LIU Chenguang, HUA Qingfeng, YAN Wenhua. Research on seismic background noise in the Eastern Subbasin of the South China Sea[J]. Marine Geology & Quaternary Geology, 2021, 41(2): 109-117. DOI: 10.16562/j.cnki.0256-1492.2020051501
    [3]ZHAN Wenhuan, LI Jian, TANG Qinqin. SUBDUCTION OF THE PALEO-SPREADING-RIDGE IN EASTERN SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2017, 37(6): 1-11. DOI: 10.16562/j.cnki.0256-1492.2017.06.001
    [4]XIE Anyuan, ZHONG Lifeng, YAN Wen. TIMING AND GENESIS OF CENOZOIC MAGMATISMS IN THE SOUTH CHINA SEA AND SURROUNDING AREAS[J]. Marine Geology & Quaternary Geology, 2017, 37(2): 108-118. DOI: 10.16562/j.cnki.0256-1492.2017.02.011
    [5]LI Sanzhong, SUO Yanhui, LIU Xin, DAI Liming, YU Shan, ZHAO Shujuan, MA Yun, WANG Xiaofei, CHENG Shixiu, AN Huiting, XUE Youchen, XIONG Lijuan, CAO Xianzhi, XU Liqing. BASIN DYNAMICS AND BASIN GROUPS OF THE SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2012, 32(6): 55-78. DOI: 10.3724/SP.J.1140.2012.06055
    [6]GONG Yanfen, YANG Wenbin, TAN Shudong. OIL AND GAS RESOURCES IN THE SOUTH CHINA SEA AND ITS DEVELOPMENT STRATEGY: A REVIEW[J]. Marine Geology & Quaternary Geology, 2012, 32(5): 137-147. DOI: 10.3724/SP.J.1140.2012.05137
    [7]LI Li, CHEN Yuxing, WANG Hui, HE Juan. SEA SURFACE TEMPERATURE CHANGE IN SOUTH CHINA SEA SINCE PLEISTOCENE AND ITS PALEOCLIMATIC IMPLICATIONS[J]. Marine Geology & Quaternary Geology, 2012, 32(4): 1-7. DOI: 10.3724/SP.J.1140.2012.04001
    [8]CAI Guanqiang, QIU Yan, PENG Xuechao, ZHONG Hexian. THE GEOCHEMICAL CHARACTERISTICS OF TRACE ELEMENTS AND REES IN SURFICIAL SEDIMENTS OF THE SOUTHWESTERN SOUTH CHINA SEA AND THEIR IMPLICATIONS[J]. Marine Geology & Quaternary Geology, 2010, 30(5): 53-62. DOI: 10.3724/SP.J.1140.2010.05053
    [9]LI Xue-jie, WANG Pin-xian, XU Cai-zhen, XU Yuan-ai, CHEN Fang. CLAY MINERALS DISTRIBUTION IN SURFACE SEDIMENTS IN WESTERN SOUTH CHINA SEA AND PROVENANCE[J]. Marine Geology & Quaternary Geology, 2008, 28(1): 9-16.
    [10]ZHOU Guan-hua, WEN Zhen-he, JIANG Xiao-dian, ZHAO Yong-chao, LIU Qin-huo, TIAN Guo-liang. ANALYSIS ON VISUALIZATION OF THE SUBMARINE LANDFORM OF SOUTH CHINA SEA AND ITS GEOLOGICAL MEANINGS[J]. Marine Geology & Quaternary Geology, 2006, 26(2): 139-145.
  • Cited by

    Periodical cited type(3)

    1. 王首良,李元昊,马婷钰,段祎乐. 滨里海盆地早二叠世孔谷期盐构造特征及其形成机制. 海洋地质前沿. 2024(01): 65-78 .
    2. 韩续,索艳慧,李三忠,丁雪松,宋双双,田子晗,付新建. 新近纪以来华北东部古地貌演化数值模拟及陆架海沉降控制. 古地理学报. 2024(01): 192-207 .
    3. 陈念楠,李满根,关宝文,宋志杰,段建兵,李西得,刘武生,刘颖,范鹏飞. 二连盆地塔北凹陷西部早白垩世断—坳发育特征研究. 物探与化探. 2022(05): 1149-1156 .

    Other cited types(0)

Catalog

    Article views (2323) PDF downloads (48) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return