Citation: | LI Sanzhong, SUO Yanhui, WANG Guangzeng, JIANG Zhaoxia, ZHAO Yanyan, LIU Yiming, LI Xiyao, GUO Lingli, LIU Bo, YU Shengyao, LIU Yongjiang, ZHANG Guowei. Tripole on seafloor and tripole on Earth surface: Dynamic connections[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 1-22. DOI: 10.16562/j.cnki.0256-1492.2019070901 |
[1] |
刘丰豪, 党皓文. 冰盖演变与冰期旋回[M]//中国大洋发现计划办公室, 海洋地质国家重点实验室(同济大学). 大洋钻探五十年. 上海: 同济大学出版社, 2018: 70-83.
LIU Fenghao, DANG Haowen. The evolution of the ice sheet and glacial cycle[M]// In: The office of IODP-China, State Key Laboratory of Marine Geology(eds). Fifty Years of Ocean Drilling. 2018: 70-83.
|
[2] |
黄恩清, 田军. 水文循环和季风演变[M]//中国大洋发现计划办公室, 海洋地质国家重点实验室(同济大学). 大洋钻探五十年. 上海: 同济大学出版社, 2018: 99-111.
HUANG Enqing, TIAN Jun. Hydrological Cycle and Monsoon Evolution[M]// In: eds, The office of IODP-China, State Key Laboratory of Marine Geology(eds), Fifty Years of Ocean Drilling. 2018: 99-111.
|
[3] |
Brinkhuis H, Schouten S, Collinson M E, et al. Episodic fresh surface waters in the Eocene Arctic Ocean [J]. Nature, 2006, 441(7093): 606-609. doi: 10.1038/nature04692
|
[4] |
Sluijs A, Schouten S, Pagani M, et al. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum [J]. Nature, 2006, 441(7093): 610-613. doi: 10.1038/nature04668
|
[5] |
Prueher L M, Rea D K. Volcanic triggering of late Pliocene glaciation: evidence from the flux of volcanic glass and ice-rafted debris to the North Pacific Ocean [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 173(3-4): 215-230. doi: 10.1016/S0031-0182(01)00323-6
|
[6] |
Zachos J C, Dickens G R, Zeebe R E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics [J]. Nature, 2008, 451(7176): 279-283. doi: 10.1038/nature06588
|
[7] |
许倬云. 万古江河: 中国历史文化的转折与开展[M]. 长沙: 湖南人民出版社, 2017: 1-540.
XU Zuoyun, Eternal rivers: The transition and development of Chinese history and culture[M]. Hunan People's Publishing Press, 2019: 1-540.
|
[8] |
Zhang Y G, Pagani M, Liu Z H, et al. A 40-million-year history of atmospheric CO2 [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2013, 371(2001): 20130096. doi: 10.1098/rsta.2013.0096
|
[9] |
Haug G H, Tiedemann R. Effect of the formation of the isthmus of panama on Atlantic ocean thermohaline circulation [J]. Nature, 1998, 393(6686): 673-676. doi: 10.1038/31447
|
[10] |
Montes C, Cardona A, Jaramillo C, et al. Middle Miocene closure of the central American seaway [J]. Science, 2015, 348(6231): 226-229. doi: 10.1126/science.aaa2815
|
[11] |
Cane M A, Molnar P. Closing of the Indonesian seaway as a precursor to east African aridification around 3-4 million years ago [J]. Nature, 2001, 411(6834): 157-162. doi: 10.1038/35075500
|
[12] |
Haug G H, Ganopolski A, Sigman D M, et al. North Pacific seasonality and the glaciation of North America 2.7 Million years ago [J]. Nature, 20058, 433(7028): 821-825.
|
[13] |
Wang P X. Cenozoic deformation and the history of sea-land interactions in Asia[M]//Clift P, Kuhnt W, Wang P, et al. Continent-Ocean Interactions Within East Asian Marginal Seas. Washington DC: American Geophysical Union., 2004.
|
[14] |
Woodard S C, Rosenthal Y, Miller K G, et al. Antarctic role in Northern Hemisphere glaciation [J]. Science, 2014, 346(6211): 847-851. doi: 10.1126/science.1255586
|
[15] |
Livermore R, Nankivell A, Eagles G, et al. Paleogene opening of Drake passage [J]. Earth and Planetary Science Letters, 2005, 236(1-2): 459-470. doi: 10.1016/j.jpgl.2005.03.027
|
[16] |
Kennett J P, Shackleton N J. Oxygen isotopic evidence for the development of the psychrosphere 38 Myr ago [J]. Nature, 1976, 260(5551): 513-515. doi: 10.1038/260513a0
|
[17] |
Pagani M, Zachos J C, Freeman K H, et al. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene [J]. Science, 2005, 309(5734): 600-603. doi: 10.1126/science.1110063
|
[18] |
Galeotti S, DeConto R, Naish T, et al. Antarctic ice sheet variability across the Eocene-Oligocene boundary climate transition [J]. Science, 2016, 352(6281): 76-80. doi: 10.1126/science.aab0669
|
[19] |
Bijl P K, Schouten S, Sluijs A, et al. Early Palaeogene temperature evolution of the southwest Pacific Ocean [J]. Nature, 2009, 461(7265): 776-779. doi: 10.1038/nature08399
|
[20] |
Kennett J P, Stott L D. Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene [J]. Nature, 1991, 353(6341): 225-229. doi: 10.1038/353225a0
|
[21] |
McInerney F A, Wing S L. The paleocene-eocene thermal maximum: a perturbation of carbon cycle, climate, and biosphere with implications for the future [J]. Annual Review of Earth and Planetary Sciences, 2011, 39: 489-516. doi: 10.1146/annurev-earth-040610-133431
|
[22] |
Coxall H K, Wilson P A, Pälike H, et al. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean [J]. Nature, 2005, 433(7021): 53-57. doi: 10.1038/nature03135
|
[23] |
Miller K G, Wright J D, Fairbanks R G. Unlocking the ice house: Oligocene-Miocene oxygen isotopes, eustasy, and margin erosion [J]. Journal of Geophysical Research: Solid Earth, 1991, 96(B4): 6829-6848. doi: 10.1029/90JB02015
|
[24] |
Pound M J, Haywood A M, Salzmann U, et al. Global vegetation dynamics and latitudinal temperature gradients during the Mid to Late Miocene (15.97-5.33 Ma) [J]. Earth-Science Reviews, 2012, 112(1-2): 1-22. doi: 10.1016/j.earscirev.2012.02.005
|
[25] |
Holbourn A, Kuhnt W, Schulz M, et al. Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion [J]. Nature, 2005, 438(7067): 483-487. doi: 10.1038/nature04123
|
[26] |
Tian J. Coherent variations of the obliquity components in global ice volume and ocean carbon reservoir over the past 5 Ma [J]. Science China Earth Sciences, 2013, 56(12): 2160-2172. doi: 10.1007/s11430-013-4750-y
|
[27] |
Raymo M E, Ruddiman W F. Tectonic forcing of late Cenozoic climate [J]. Nature, 1992, 359(6391): 117-122. doi: 10.1038/359117a0
|
[28] |
吴福元, 黄宝春, 叶凯, 等. 青藏高原造山带的垮塌与高原隆升[J]. 岩石学报, 2008, 24(1):1-30. [WU Fuyuan, HUANG Baochun, YE Kai, et al. Collapsed Himalayan-Tibetan orogen and the rising Tibetan plateau [J]. Acta Petrologica Sinica, 2008, 24(1): 1-30.
|
[29] |
Matthews K J, Müller R D, Sandwell D T. Oceanic microplate formation records the onset of India-Eurasia collision [J]. Earth and Planetary Science Letters, 2016, 433: 204-214. doi: 10.1016/j.jpgl.2015.10.040
|
[30] |
Ali J R, Aitchison J C. Greater India [J]. Earth-Science Reviews, 2005, 72(3-4): 169-188. doi: 10.1016/j.earscirev.2005.07.005
|
[31] |
Xiao W J, Ao S J, Yang L, et al. Anatomy of composition and nature of plate convergence: Insights for alternative thoughts for terminal India-Eurasia collision [J]. Science China Earth Sciences, 2017, 60(6): 1015-1039. doi: 10.1007/s11430-016-9043-3
|
[32] |
Hou Z Q, Cook N J. Metallogenesis of the Tibetan collisional Orogen: a review and introduction to the special issue [J]. Ore Geology Reviews, 2009, 36(1-3): 2-24. doi: 10.1016/j.oregeorev.2009.05.001
|
[33] |
Hou Z Q, Yang Z M, Lu Y J, et al. A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones [J]. Geology, 2015, 43(3): 247-250. doi: 10.1130/G36362.1
|
[34] |
Li Y L, Wang C S, Dai J G, et al. Propagation of the deformation and growth of the Tibetan–Himalayan orogen: a review [J]. Earth-Science Reviews, 2015, 143: 36-61. doi: 10.1016/j.earscirev.2015.01.001
|
[35] |
王国灿, 曹凯, 张克信, 等. 青藏高原新生代构造隆升阶段的时空格局[J]. 中国科学: 地球科学, 2011, 54(1):29-44. [WANG Guocan, CAO Kai, ZHANG Kexin, et al. Spatio-temporal framework of tectonic uplift stages of the Tibetan Plateau in Cenozoic [J]. Science China Earth Sciences, 2011, 54(1): 29-44.
|
[36] |
Li J X, Yue L P, Roberts A P, et al. Global cooling and enhanced Eocene Asian mid-latitude interior aridity [J]. Nature Communication, 2018, 9(1): 3026. doi: 10.1038/s41467-018-05415-x
|
[37] |
Sun J M, Windley B F. Onset of aridification by 34 Ma across the Eocene-Oligocene transition in Central Asia [J]. Geology, 2015, 43(11): 1015-1018. doi: 10.1130/G37165.1
|
[38] |
Guo Z T, Ruddiman W F, Hao Q Z, et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China [J]. Nature, 2002, 416(6877): 159-163. doi: 10.1038/416159a
|
[39] |
Zheng H B, Wei X C, Tada R, et al. Late Oligocene-early Miocene birth of the Taklimakan desert [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(25): 7662-7667. doi: 10.1073/pnas.1424487112
|
[40] |
Kroon D, Steens T, Troelstra S R. Onset of monsoonal related upwelling in the Western Arabian Sea as revealed by planktonic foraminifers[M]//Prell W L, Niitsuma N. Proceedings of the Ocean Drilling Program, Scientific Results. College Station, TX: Ocean Drilling Program, 1991: 257-263.
|
[41] |
Zheng H B, Clift P D, Wang P, et al. Pre-Miocene birth of the Yangtze river [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(19): 7556-7561. doi: 10.1073/pnas.1216241110
|
[42] |
Delescluse M, Montési L G J, Chamot-Rooke N. Fault reactivation and selective abandonment in the oceanic lithosphere [J]. Geophysical Research Letters, 2008, 35(16): L16312. doi: 10.1029/2008GL035066
|
[43] |
Bull J M, Scrutton R A. Fault reactivation in the central Indian Ocean and the rheology of oceanic lithosphere [J]. Nature, 1990, 344(6269): 855-858. doi: 10.1038/344855a0
|
[44] |
Bull J M, Scrutton R A. Seismic reflection images of intraplate deformation, central Indian Ocean, and their tectonic significance [J]. Journal of the Geological Society, 1992, 149(6): 955-966. doi: 10.1144/gsjgs.149.6.0955
|
[45] |
Chamot-Rooke N, Jestin F, de Voogd B. Intraplate shortening in the central Indian Ocean determined from a 2100-km-long north-south deep seismic reflection profile [J]. Geology, 1993, 21(11): 1043-1046. doi: 10.1130/0091-7613(1993)021<1043:ISITCI>2.3.CO;2
|
[46] |
Royer J Y, Sandwell D T. Evolution of the eastern Indian Ocean since the late cretaceous: constraints from Geosat altimetry [J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B10): 13755-13782. doi: 10.1029/JB094iB10p13755
|
[47] |
van Orman J, Cochran J R, Weissel J K, et al. Distribution of shortening between the Indian and Australian plates in the central Indian Ocean [J]. Earth and Planetary Science Letters, 1995, 133(1-2): 35-46. doi: 10.1016/0012-821X(95)00061-G
|
[48] |
Betzler C, Eberli G P, Lüdmann T, et al. Refinement of Miocene sea level and monsoon events from the sedimentary archive of the Maldives (Indian Ocean) [J]. Progress in Earth and Planetary Science, 2018, 5: 5. doi: 10.1186/s40645-018-0165-x
|
[49] |
Sun X J, Wang P X. How old is the Asian monsoon system?-Palaeobotanical records from China [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 222(3-4): 181-222. doi: 10.1016/j.palaeo.2005.03.005
|
[50] |
Clift P D, Wan S M, Blusztajn J. Reconstructing chemical weathering, physical erosion and monsoon intensity since 25 Ma in the northern South China Sea: a review of competing proxies [J]. Earth-Science Reviews, 2014, 130: 86-102. doi: 10.1016/j.earscirev.2014.01.002
|
[51] |
Zhang Y G, Pagani M, Liu Z H. A 12-Million-Year temperature history of the tropical Pacific Ocean [J]. Science, 2014, 344(6179): 84-87.
|
[52] |
翦知湣, 金海燕. 大洋碳循环与气候演变的热带驱动[J]. 地球科学进展, 2008, 23(3):221-227. [JIAN Zhimin, JIN Haiyan. Ocean carbon cycle and tropical forcing of climate evolution [J]. Advances in Earth Science, 2008, 23(3): 221-227. doi: 10.3321/j.issn:1001-8166.2008.03.001
|
[53] |
Young A, Flament N, Maloney K, et al. Global kinematics of tectonic plates and subduction zones since the late Paleozoic Era [J]. Geoscience Frontiers, 2019, 10(3): 989-1013. doi: 10.1016/j.gsf.2018.05.011
|
[54] |
Homrighausen S, Hoernle K, Hauff F, et al. Global distribution of the HIMU end member: Formation through Archean plume-lid tectonics [J]. Earth-Science Reviews, 2018, 182: 85-101. doi: 10.1016/j.earscirev.2018.04.009
|
[55] |
Zhang Z, Li S Z, Suo Y H, et al. Formation mechanism of the global Dupal isotope anomaly [J]. Geological Journal, 2016, 51(S1): 644-651.
|
[56] |
Becker T W, Boschi L. A comparison of tomographic and geodynamic mantle models [J]. Geochemistry, Geophysics, Geosystems, 2002, 3(1): 2001GC000168.
|
[57] |
Burke K, Torsvik T H. Derivation of large igneous provinces of the past 200 million years from long-term heterogeneities in the deep mantle [J]. Earth and Planetary Science Letters, 2004, 227(3-4): 531-538. doi: 10.1016/j.jpgl.2004.09.015
|
[58] |
Courtillot V, Davaille A, Besse J, et al. Three distinct types of hotspots in the earth’s mantle [J]. Earth and Planetary Science Letters, 2003, 205(3-4): 295-308. doi: 10.1016/S0012-821X(02)01048-8
|
[59] |
Burke K, Steinberger B, Torsvik T H, et al. Plume generation zones at the margins of large low shear velocity provinces on the core–mantle boundary [J]. Earth and Planetary Science Letters, 2008, 265(1-2): 49-60. doi: 10.1016/j.jpgl.2007.09.042
|
[60] |
Conrad C P, Steinberger B, Torsvik T H. Stability of active mantle upwelling revealed by net characteristics of plate tectonics [J]. Nature, 2013, 498(7455): 479-482. doi: 10.1038/nature12203
|
[61] |
Torsvik T H, Smethurst M A, Burke K, et al. Long term stability in deep mantle structure: evidence from the ~ 300 Ma Skagerrak-Centered Large Igneous Province (the SCLIP) [J]. Earth and Planetary Science Letters, 2008, 267(3-4): 444-452. doi: 10.1016/j.jpgl.2007.12.004
|
[62] |
Honza E, Fujioka K. Formation of arcs and backarc basins inferred from the tectonic evolution of Southeast Asia since the Late Cretaceous [J]. Tectonophysics, 2004, 384(1-4): 23-53. doi: 10.1016/j.tecto.2004.02.006
|
[63] |
Liu B, Li S Z, Suo Y H, et al. The geological nature and geodynamics of the Okinawa Trough, Western Pacific [J]. Geological Journal, 2016, 51(S1): 416-428.
|
[64] |
Seton M, Müller R D, Zahirovic S, et al. Global continental and ocean basin reconstructions since 200 Ma [J]. Earth-Science Reviews, 2012, 113(3-4): 212-270. doi: 10.1016/j.earscirev.2012.03.002
|
[65] |
Suo Y H, Li S Z, Zhao S J, et al. Continental margin basins in East Asia: tectonic implications of the meso-Cenozoic East China Sea pull-apart basins [J]. Geological Journal, 2015, 50(2): 139-156. doi: 10.1002/gj.2535
|
[66] |
Suo Y H, Li S Z, Yu S, et al. Cenozoic tectonic jumping and implications for hydrocarbon accumulation in basins in the East Asia Continental Margin [J]. Journal of Asian Earth Sciences, 2014, 88: 28-40. doi: 10.1016/j.jseaes.2014.02.019
|
[67] |
Müller R D, Sdrolias M, Gaina C, et al. Long-term sea-level fluctuations driven by ocean basin dynamics [J]. Science, 2008, 319(5868): 1357-1362. doi: 10.1126/science.1151540
|
[68] |
Replumaz A, Capitanio F A, Guillot S, et al. The coupling of Indian subduction and Asian continental tectonics [J]. Gondwana Research, 2014, 26(2): 608-626. doi: 10.1016/j.gr.2014.04.003
|
[69] |
Zahirovic S, Matthews K J, Flament N, et al. Tectonic evolution and deep mantle structure of the eastern Tethys since the latest Jurassic [J]. Earth-Science Reviews, 2016, 162: 293-337. doi: 10.1016/j.earscirev.2016.09.005
|
[70] |
Zahirovic S, Müller R D, Seton M, et al. Tectonic speed limits from plate kinematic reconstructions [J]. Earth and Planetary Science Letters, 2015, 418: 40-52. doi: 10.1016/j.jpgl.2015.02.037
|
[71] |
Gibbons A D, Zahirovic S, Müller R D, et al. A tectonic model reconciling evidence for the collisions between India, Eurasia and intra-oceanic arcs of the central-eastern Tethys [J]. Gondwana Research, 2015, 28(2): 451-492. doi: 10.1016/j.gr.2015.01.001
|
[72] |
刘一鸣, 李三忠, 于胜尧, 等. 青藏高原班公湖-怒江缝合带及周缘燕山期微地块聚合与增生造山过程[J]. 大地构造与成矿学, 2019, 43(4):824-838. [LIU Yiming, LI Sanzhong, YU Shengyao, et al. The Mesozoic collage and orogeny process of micro-blocks in Bangong-Nujiang suture zone, Tibetan Plateau [J]. Geotectonica et Metallogenia, 2019, 43(4): 824-838.
|
[73] |
周洁, 李三忠, 索艳慧, 等. 碰生型微地块的分类及其形成机制[J]. 大地构造与成矿学, 2019, 43(4):795-823. [ZHOU Jie, LI Sanzhong, SUO Yanhui, et al. Type and genetic mechanism of collision-derived micro-blocks [J]. Geotectonica et Metallogenia, 2019, 43(4): 795-823.
|
[74] |
姜素华, 张雯, 李三忠, 等. 西北太平洋洋陆过渡带新生代盆地构造演化与油气分布特征[J]. 大地构造与成矿学, 2019, 43(4):839-857. [JIANG Suhua, ZHANG Wen, LI Sanzhong, et al. Cenozoic oil-gas distribution and tectonic evolution of the basins in the northwest pacific continent-ocean connection zone [J]. Geotectonica et Metallogenia, 2019, 43(4): 839-857.
|
[75] |
Li S Z, Santosh M, Zhao G C, et al. Intracontinental deformation in a frontier of super-convergence: a perspective on the tectonic milieu of the South China Block [J]. Journal of Asian Earth Sciences, 2012, 49: 313-329. doi: 10.1016/j.jseaes.2011.07.026
|
[76] |
Li S Z, Zhao S J, Liu X, et al. Closure of the proto-Tethys ocean and early Paleozoic amalgamation of microcontinental blocks in East Asia [J]. Earth-Science Reviews, 2018, 186: 37-75. doi: 10.1016/j.earscirev.2017.01.011
|
[77] |
Anderson D L. New Theory of the Earth[M]. New York: Cambridge University Press, 2007: 1-384.
|
[78] |
刘金平, 李三忠, 索艳慧, 等. 残生微洋块: 俯冲消减系统下盘的复杂演化[J]. 大地构造与成矿学, 2019, 43(4):762-778. [LIU Jinping, LI Sanzhong, SUO Yanhui, et al. Subduction-derived oceanic micro-block: complex evolution of footwall in subduction system [J]. Geotectonica et Metallogenia, 2019, 43(4): 762-778.
|
[79] |
孟繁, 李三忠, 索艳慧, 等. 跃生型微地块: 离散型板块边界的复杂演化[J]. 大地构造与成矿学, 2019, 43(4):644-664. [MENG Fan, LI Sanzhong, SUO Yanhui, et al. Ridge jumping-derived micro-blocks: unravelling a complex evolutionary process for the divergent plate boundaries [J]. Geotectonica et Metallogenia, 2019, 43(4): 644-664.
|
[80] |
牟墩玲, 李三忠, 索艳慧, 等. 裂生微地块构造特征及成因模式: 来自西太平洋弧后扩张作用的启示[J]. 大地构造与成矿学, 2019, 43(4):665-677. [MU Dunling, LI Sanzhong, SUO Yanhui, et al. Tectonic and Geodynamic mechanism of back-arc-rifting derived micro-blocks: insights from Back-arc spreading in the West Pacific [J]. Geotectonica et Metallogenia, 2019, 43(4): 665-677.
|
[81] |
汪刚, 李三忠, 姜素华, 等. 增生型微地块的成因模式及演化[J]. 大地构造与成矿学, 2019, 43(4):745-761. [WANG Gang, LI Sanzhong, JIANG Suhua, et al. Formation mechanisms and evolution of accretion-derived micro-blocks [J]. Geotectonica et Metallogenia, 2019, 43(4): 745-761.
|
[82] |
赵林涛, 李三忠, 索艳慧, 等. 延生微地块: 洋脊增生系统的复杂过程[J]. 大地构造与成矿学, 2019, 43(4):715-729. [ZHAO Lintao, LI Sanzhong, SUO Yanhui, et al. Propagation-derived micro-blocks: Complex evolution of mid-ocean ridge accretion system [J]. Geotectonica et Metallogenia, 2019, 43(4): 715-729.
|
[83] |
甄立冰, 李三忠, 郭玲莉, 等. 延生型微板块成因机制模拟研究进展[J]. 大地构造与成矿学, 2019, 43(4):730-744. [ZHEN Libing, LI Sanzhong, GUO Lingli, et al. A review of the research progress on the genetic mechanism of the propagation-derived microplate [J]. Geotectonica et Metallogenia, 2019, 43(4): 730-744.
|
[84] |
王光增, 李三忠, 索艳慧, 等. 转换型微板块类型、成因及其大地构造启示[J]. 大地构造与成矿学, 2019, 43(4):700-715. [WANG Guangzeng, LI Sanzhong, SUO Yanhui, et al. Transform-derived microplates: classification, mechanism and tectonic significance [J]. Geotectonica et Metallogenia, 2019, 43(4): 700-715.
|
[85] |
Madrigal P, Gazel E, Flores K E, et al. Record of massive upwellings from the Pacific large low shear velocity province [J]. Nature Communication, 2016, 7: 13309. doi: 10.1038/ncomms13309
|
[86] |
李阳, 李三忠, 郭玲莉, 等. 拆离型微地块: 洋陆转换带和洋中脊变形机制[J/OL]. 大地构造与成矿学, 2019: 1-16. https://doi.org/10.16539/j.ddgzyckx.2019.04.011.
LI Yang, LI Sanzhong, GUO Lingli, et al. Detachment-derived Micro-blocks: new insights for the deformation mechanism of the ocean-continent transition and the mid-ocean ridge[J/OL]. Geotectonica et Metallogenia, 2019: 1-16. https://doi.org/10.16539/j.ddgzyckx.2019.04.011.
|
[87] |
李园洁, 李三忠, 姜兆霞, 等. 海洋磁异常及其动力学[J/OL]. 大地构造与成矿学, 2019: 1-22. https://doi.org/10.16539/j.ddgzyckx.2019.04.005.
LI Yuanjie, LI Sanzhong, JIANG Zhaoxia, et al. Marine magnetic anomalies and its dynamics[J/OL]. Geotectonica et Metallogenia, 2019: 1-22. https://doi.org/10.16539/j.ddgzyckx.2019.04.005.
|
[88] |
Gurnis M. Large-scale mantle convection and the aggregation and dispersal of supercontinents [J]. Nature, 1988, 332(6166): 695-699. doi: 10.1038/332695a0
|
[89] |
Zhong S J, Zhang N, Li Z X, et al. Supercontinent cycles, true polar wander, and very long-wavelength mantle convection [J]. Earth and Planetary Science Letters, 2007, 261(3-4): 551-564. doi: 10.1016/j.jpgl.2007.07.049
|
[90] |
Royer D L, Berner R L, Montañez I P, et al. CO2 as a primary driver of Phanerozoic climate [J]. GSA Today, 2004, 14: 4-10.
|
[91] |
Shaviv N J, Veizer J. Celestial driver of Phanerozoic climate? [J]. GSA Today, 2003, 13(7): 4-10. doi: 10.1130/1052-5173(2003)013<0004:CDOPC>2.0.CO;2
|
[92] |
Larson R L. Latest pulse of Earth: evidence for a mid-Cretaceous superplume [J]. Geology, 1991, 19(6): 547-550. doi: 10.1130/0091-7613(1991)019<0547:LPOEEF>2.3.CO;2
|
[93] |
Bice K L, Norris R D. Possible atmospheric CO2 extremes of the middle cretaceous (late Albian-Turonian) [J]. Paleoceanography, 2002, 17(4): 22-1.
|
[94] |
Selby D, Mutterlose J, Condon D J. U-Pb and Re-Os geochronology of the Aptian/Albian and Cenomanian/Turonian stage boundaries: implications for timescale calibration, osmium isotope seawater composition and Re-Os systematics in organic-rich sediments [J]. Chemical Geology, 2009, 265(3-4): 394-409. doi: 10.1016/j.chemgeo.2009.05.005
|
[95] |
Miller K G, Kominz M A, Browning J V, et al. The Phanerozoic record of global sea-level change [J]. Science, 2005, 310(5752): 1293-1298. doi: 10.1126/science.1116412
|
[96] |
Brumsack H J. The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 232(2-4): 344-361. doi: 10.1016/j.palaeo.2005.05.011
|
[97] |
Schlanger S O, Jenkyns H C. Cretaceous oceanic anoxic events: causes and consequences [J]. Geologie en Mijnbouw, 1976, 55(3-4): 179-184.
|
[98] |
Jenkyns H C. Geochemistry of oceanic anoxic events [J]. Geochemistry, Geophysics, Geosystems, 2010, 11(3): Q030004.
|
[99] |
Irving E, North F K, Couillard R. Oil, climate, and tectonics [J]. Canadian Journal of Earth Sciences, 1974, 11(1): 1-17. doi: 10.1139/e74-001
|
[100] |
Friedrich O, Norris R D, Erbacher J. Evolution of Middle to Late Cretaceous oceans-A 55 m.y. record of Earth’s temperature and carbon cycle [J]. Geology, 2012, 40(2): 107-110. doi: 10.1130/G32701.1
|
[101] |
Norris R D, Bice K L, Magno E A, et al. Jiggling the tropical thermostat in the Cretaceous hothouse [J]. Geology, 2002, 30(4): 299-302. doi: 10.1130/0091-7613(2002)030<0299:JTTTIT>2.0.CO;2
|
[102] |
Roth P H. Mesozoic palaeoceanography of the North Atlantic and Tethys oceans[M]//Summerhayes C P, Shackleton N J. North Atlantic Palaeoceanography. Geological Society, London, Special Publication, 1986, 21(1): 299-320.
|
[103] |
Voigt S, Jung C, Friedrich O, et al. Tectonically restricted deep-ocean circulation at the end of the Cretaceous greenhouse [J]. Earth and Planetary Science Letters, 2013, 369-370: 169-177. doi: 10.1016/j.jpgl.2013.03.019
|
[104] |
Bohaty S M, Zachos J C. Significant southern ocean warming event in the late middle Eocene [J]. Geology, 2003, 31(11): 1017-1020. doi: 10.1130/G19800.1
|
[105] |
Kennett J P. Cenozoic evolution of Antarctic glaciation, the circum-Antarctic Ocean, and their impact on global paleoceanography [J]. Journal of Geophysical Research, 1977, 82(27): 3843-3860. doi: 10.1029/JC082i027p03843
|
[106] |
Shipboard Scientific Party. Leg 189 summary[M]//Exon N F, Kennett J P, Malone M J, et al. Proceedings of the Ocean Drilling Program. College Station, TX: Intial Reports, 2001: 1-98.
|
[107] |
Gernigon L, Franke D, Geoffroy L, et al. Crustal fragmentation, magmatism, and the diachronous opening of the Norwegian-Greenland Sea [J]. Earth-Science Reviews, 2019. doi: 10.1016/j.earscirev.2019.04.011
|
[108] |
Veevers J J. Tectonic-climatic supercycle in the billion-year plate-tectonic eon: Permian Pangean icehouse alternates with Cretaceous dispersed-continents greenhouse [J]. Sedimentary Geology, 1990, 68(1-2): 1-16. doi: 10.1016/0037-0738(90)90116-B
|
[109] |
Veevers J J. Pangea: evolution of a supercontinent and its consequences for Earth’s paleoclimate and sedimentary environments[M]//Klein G D. Pangea: Paleoclimate, Tectonics, and Sedimentation During Accretion, Zenith, and Breakup of a Supercontinent. McLean, VA: Geological Society of America, 1994, 288: 12-23.
|
[110] |
Holmes A. The problem of geological time. Third part: the convergence of evidence [J]. Scientia, 1928, 22(43): 7.
|
[111] |
Fischer A G. The two Phanerozoic supercycles[M]//Berggren W A, van Couvering J A. Catastrophes and Earth History. Princeton, NJ: Princeton University Press, 1984: 129-150.
|
[112] |
Anderson D L. Hotspots, polar wander, Mesozoic convection and the geoid [J]. Nature, 1982, 297(5865): 391-393. doi: 10.1038/297391a0
|
[113] |
Collins W J. Slab pull, mantle convection, and Pangaean assembly and dispersal [J]. Earth and Planetary Science Letters, 2003, 205(3-4): 225-237. doi: 10.1016/S0012-821X(02)01043-9
|
[114] |
Worsley T R, Nance D, Moody J B. Global tectonics and eustasy for the past 2 billion years [J]. Marine Geology, 1984, 58(3-4): 373-400. doi: 10.1016/0025-3227(84)90209-3
|
[115] |
Humler E, Besse J. A correlation between mid-ocean-ridge basalt chemistry and distance to continents [J]. Nature, 2002, 419(6907): 607-609. doi: 10.1038/nature01052
|
[116] |
Hallam A. Phanerozoic Sea-Level Changes[M]. New York: Columbia University Press, 1992.
|
[117] |
Audley-Charles M G, Hallam A. Introduction[M]//Audley C M G, Hallam A. Gondwana and Tethys. Geological Society, London, Special Publications, 1988, 37: 1-4.
|
[118] |
Veevers J J. Pan-African is pan-Gondwanaland: oblique convergence drives rotation during 650-500 Ma assembly [J]. Geology, 2003, 31(6): 501-504. doi: 10.1130/0091-7613(2003)031<0501:PIPOCD>2.0.CO;2
|
[119] |
汪品先, 田军, 黄恩清. 全球季风与大洋钻探[J]. 中国科学: 地球科学, 2018, 48(7):960-963. [WANG Pinxian, TIAN Jun, HUANG Enqing. Global monsoon and ocean drilling
J]. Scientia Sinica Terrae, 2018, 48(7): 960-963.
|
[120] |
Wang P X, Tian J, Cheng X R, et al. Carbon reservoir changes preceded major ice-sheet expansion at the mid-Brunhes event [J]. Geology, 2003, 31(3): 239-242. doi: 10.1130/0091-7613(2003)031<0239:CRCPMI>2.0.CO;2
|
[121] |
Wang P X, Tian J, Lourens L J. Obscuring of long eccentricity cyclicity in Pleistocene oceanic carbon isotope records [J]. Earth and Planetary Science Letters, 2010, 290(3-4): 319-330. doi: 10.1016/j.jpgl.2009.12.028
|
[122] |
Broecker W S, Peteet D M, Rind D. Does the ocean-atmosphere system have more than one stable mode of operation? [J]. Nature, 1985, 315(6014): 21-26.
|
[123] |
Zeebe R E. History of seawater carbonate chemistry, atmospheric CO2, and ocean acidification [J]. Annual Review of Earth and Planetary Sciences, 2012, 40: 141-165. doi: 10.1146/annurev-earth-042711-105521
|
1. |
Shu-yu Wu,Jun Liu,Jian-wen Chen,Qi-liang Sun,Yin-guo Zhang,Jie Liang,Yong-cai Feng. Carboniferous-Early Permian heterogeneous distribution of porous carbonate reservoirs in the Central Uplift of the South Yellow Sea Basin and its hydrocarbon potential analysis. China Geology. 2025(01): 58-76 .
![]() |
|
2. |
张建民,王志才,付俊东,王冬雷,夏暖,王凯,许洪泰,王雷. 连云港市主要断裂活动性研究. 海洋地质与第四纪地质. 2025(02): 98-109 .
![]() | |
3. |
袁勇,陈建文,骆迪,李清,梁杰,蓝天宇,王建强,曹珂,赵化淋. 南黄海盆地烟台坳陷新生界二氧化碳封存地质条件与封存前景. 海洋地质前沿. 2025(03): 35-47 .
![]() | |
4. |
陈建文,杨长清,张莉,钟广见,王建强,吴飘,梁杰,张银国,蓝天宇,薛路. 中国海域前新生代地层分布及其油气勘查方向. 海洋地质与第四纪地质. 2022(01): 1-25 .
![]() | |
5. |
李志强,杨波,韩自军,黄振,吴庆勋. 南黄海中-新生代裂谷盆地构造-热演化:对成盆机制和烃源岩热演化的指示. 地球科学. 2022(05): 1652-1668 .
![]() | |
6. |
王惠初,相振群,任云伟,康健丽,初航,王智,滕菲,佟鑫. 扬子北缘还是华北东南缘:胶东新元古代花岗片麻岩构造归属新议. 地质学报. 2022(09): 3012-3033 .
![]() | |
7. |
梁杰,许明,陈建文,张银国,王建强,雷宝华,袁勇,吴淑玉,李慧君. 印支运动在南黄海盆地的响应及其对油气地质条件的影响. 地质通报. 2021(Z1): 252-259 .
![]() | |
8. |
张玉玺,陈建文,张银国. 下扬子-南黄海地区下三叠统“错时相”沉积及成因. 海洋地质前沿. 2021(04): 68-76 .
![]() | |
9. |
陈建文,张异彪,陈华,刘俊,何玉华,施剑,李斌,袁勇,梁杰,张银国,雷宝华,王建强,吴淑玉,吴志强,闫桂京,陈春峰,肖国林. 南黄海盆地海相中-古生界地震探测技术攻关历程及效果. 海洋地质前沿. 2021(04): 1-17 .
![]() |