Citation: | XU Min, DI Huizhe, ZHOU Zhiyuan, LI Haiyong, LIN Jian. Interaction between hydrosphere and lithosphere in subduction zones[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 58-70. DOI: 10.16562/j.cnki.0256-1492.2019063001 |
[1] |
毕思文. 地球系统科学发展方向与趋势[J]. 地球科学进展, 2004, 19(S1):35-40. [BI Siwen. Development direction and trend of earth system science [J]. Advance in Earth Sciences, 2004, 19(S1): 35-40.
|
[2] |
Demouchy S, Bolfan-Casanova N. Distribution and transport of hydrogen in the lithospheric mantle: a review [J]. Lithos, 2016, 240-243: 402-425. doi: 10.1016/j.lithos.2015.11.012
|
[3] |
郑永飞, 陈仁旭, 徐峥, 等. 俯冲带中的水迁移[J]. 中国科学: 地球科学, 2016, 59(4):651-682. [ZHENG Yongfei, CHEN Renxu, XU Zheng, et al. The transport of water in subduction zones [J]. Science China Earth Sciences, 2016, 59(4): 651-682. doi: 10.1007/s11430-015-5258-4
|
[4] |
Litasov K D, Ohtani E. Effect of water on the phase relations in earth’s mantle and deep water cycle[M]//Ohtani E. Advances in High-pressure Mineralogy. Boulder: Geological Society of America, 2007: 115-156.
|
[5] |
Unsworth M, Rondenay S. Mapping the distribution of fluids in the crust and lithospheric mantle utilizing geophysical methods[M]//Harlov D E, Austrheim H. Metasomatism and the Chemical Transformation of Rock. Berlin, Heidelberg: Springer, 2013: 535-598.
|
[6] |
倪怀玮, 张力, 郭璇. 水与地幔的部分熔融[J]. 中国科学: 地球科学, 2016, 59(4):720-730. [NI Huaiwei, ZHANG Li, GUO Xuan. Water and partial melting of Earth’s mantle [J]. Science China Earth Sciences, 2016, 59(4): 720-730. doi: 10.1007/s11430-015-5254-8
|
[7] |
Ranero C R, Morgan J P, McIntosh K, et al. Bending-related faulting and mantle serpentinization at the Middle America trench [J]. Nature, 2003, 425(6956): 367-373. doi: 10.1038/nature01961
|
[8] |
Ranero C R, Villaseñor A, Morgan J P, et al. Relationship between bend-faulting at trenches and intermediate-depth seismicity [J]. Geochemistry, Geophysics, Geosystems, 2005, 6(12): Q12002.
|
[9] |
Lefeldt M, Ranero C R, Grevemeyer I. Seismic evidence of tectonic control on the depth of water influx into incoming oceanic plates at subduction trenches [J]. Geochemistry, Geophysics, Geosystems, 2012, 13(5): Q05013.
|
[10] |
Grevemeyer I, Ranero C R, Flueh E R, et al. Passive and active seismological study of bending-related faulting and mantle serpentinization at the Middle America trench [J]. Earth and Planetary Science Letters, 2007, 258(3-4): 528-542. doi: 10.1016/j.jpgl.2007.04.013
|
[11] |
Key K, Constable S, Matsuno T, et al. Electromagnetic detection of plate hydration due to bending faults at the Middle America Trench [J]. Earth and Planetary Science Letters, 2012, 351-352: 45-53. doi: 10.1016/j.jpgl.2012.07.020
|
[12] |
Faccenda M. Water in the slab: a trilogy [J]. Tectonophysics, 2014, 614: 1-30. doi: 10.1016/j.tecto.2013.12.020
|
[13] |
Plank T, Langmuir C H. The chemical composition of subducting sediment and its consequences for the crust and mantle [J]. Chemical Geology, 1998, 145(3-4): 325-394. doi: 10.1016/S0009-2541(97)00150-2
|
[14] |
Tatsumi Y. The subduction factory: how it operates in the evolving earth [J]. GSA Today, 2005, 15(7): 4-10. doi: 10.1130/1052-5173(2005)015[4:TSFHIO]2.0.CO;2
|
[15] |
Comte D, Dorbath L, Pardo M, et al. A double‐layered seismic zone in Arica, northern Chile [J]. Geophysical Research Letters, 1999, 26(13): 1965-1968. doi: 10.1029/1999GL900447
|
[16] |
Arredondo K M, Billen M I. Rapid weakening of subducting plates from trench-parallel estimates of flexural rigidity [J]. Physics of the Earth and Planetary Interiors, 2012, 196-197: 1-13. doi: 10.1016/j.pepi.2012.02.007
|
[17] |
Zhou Z Y, Lin J. Elasto-plastic deformation and plate weakening due to normal faulting in the subducting plate along the Mariana Trench [J]. Tectonophysics, 2018, 734-735: 59-68. doi: 10.1016/j.tecto.2018.04.008
|
[18] |
Escartín J, Hirth G, Evans B. Strength of slightly serpentinized peridotites: Implications for the tectonics of oceanic lithosphere [J]. Geology, 2001, 29(11): 1023-1026. doi: 10.1130/0091-7613(2001)029<1023:SOSSPI>2.0.CO;2
|
[19] |
Billen M I, Gurnis M. A low viscosity wedge in subduction zones [J]. Earth and Planetary Science Letters, 2001, 193(1-2): 227-236. doi: 10.1016/S0012-821X(01)00482-4
|
[20] |
Obara K. Nonvolcanic deep tremor associated with subduction in southwest Japan [J]. Science, 2002, 296(5573): 1679-1681. doi: 10.1126/science.1070378
|
[21] |
Rogers G, Dragert H. Episodic tremor and slip on the Cascadia subduction zone: the chatter of silent slip [J]. Science, 2003, 300(5627): 1942-1943. doi: 10.1126/science.1084783
|
[22] |
Hacker B R, Peacock S M, Abers G A, et al. Subduction factory 2. Are intermediate‐depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? [J]. Journal of Geophysical Research, 2003, 108(B1): 2030.
|
[23] |
Tatsumi Y. Migration of fluid phases and genesis of basalt magmas in subduction zones [J]. Journal of Geophysical Research, 1989, 94(B4): 4697-4707. doi: 10.1029/JB094iB04p04697
|
[24] |
Zheng Y F, Hermann J. Geochemistry of continental subduction-zone fluids [J]. Earth, Planets and Space, 2014, 66: 93. doi: 10.1186/1880-5981-66-93
|
[25] |
Ni H W, Zhang L, Xiong X L, et al. Supercritical fluids at subduction zones: evidence, formation condition, and physicochemical properties [J]. Earth-Science Reviews, 2017, 167: 62-71. doi: 10.1016/j.earscirev.2017.02.006
|
[26] |
Kawamoto T, Hervig R L, Holloway J R. Experimental evidence for a hydrous transition zone in the early Earth’s mantle [J]. Earth and Planetary Science Letters, 1996, 142(3-4): 587-592. doi: 10.1016/0012-821X(96)00113-6
|
[27] |
Smyth J R, Kawamoto T. Wadsleyite II: a new high pressure hydrous phase in the peridotite-H2O system [J]. Earth and Planetary Science Letters, 1997, 146(1-2): E9-E16. doi: 10.1016/S0012-821X(96)00230-0
|
[28] |
Koyama T, Shimizu H, Utada H, et al. Water content in the mantle transition zone beneath the North Pacific derived from the electrical conductivity anomaly[M]//Jacobsen S D, van der Lee S. Earth’s Deep Water Cycle. Washington: American Geophysical Union, 2006: 171-180.
|
[29] |
Utada H, Koyama T, Obayashi M, et al. A joint interpretation of electromagnetic and seismic tomography models suggests the mantle transition zone below Europe is dry [J]. Earth and Planetary Science Letters, 2009, 281(3-4): 249-257. doi: 10.1016/j.jpgl.2009.02.027
|
[30] |
Ohtani E, Yuan L, Ohira I, et al. Fate of water transported into the deep mantle by slab subduction [J]. Journal of Asian Earth Sciences, 2018, 167: 2-10. doi: 10.1016/j.jseaes.2018.04.024
|
[31] |
Peslier A H. A review of water contents of nominally anhydrous natural minerals in the mantles of Earth, Mars and the Moon [J]. Journal of Volcanology and Geothermal Research, 2010, 197(1-4): 239-258. doi: 10.1016/j.jvolgeores.2009.10.006
|
[32] |
Wada I, Behn M D, Shaw A M. Effects of heterogeneous hydration in the incoming plate, slab rehydration, and mantle wedge hydration on slab-derived H2O flux in subduction zones [J]. Earth and Planetary Science Letters, 2012, 353-354: 60-71. doi: 10.1016/j.jpgl.2012.07.025
|
[33] |
Li H Y, Chen R X, Zheng Y F, et al. Water in garnet pyroxenite from the Sulu orogen: implications for crust-mantle interaction in continental subduction zone [J]. Chemical Geology, 2018, 478: 18-38. doi: 10.1016/j.chemgeo.2017.09.025
|
[34] |
Rüpke L H, Morgan J P, Hort M, et al. Serpentine and the subduction zone water cycle [J]. Earth and Planetary Science Letters, 2004, 223(1-2): 17-34. doi: 10.1016/j.jpgl.2004.04.018
|
[35] |
Hacker B R. H2O subduction beyond arcs [J]. Geochemistry, Geophysics, Geosystems, 2008, 9(3): Q03001.
|
[36] |
Canales J P, Carbotte S M, Nedimović M R, et al. Dry Juan de Fuca slab revealed by quantification of water entering Cascadia subduction zone [J]. Nature Geoscience, 2017, 10(11): 864-870. doi: 10.1038/ngeo3050
|
[37] |
Carlson R L, Miller D J. Mantle wedge water contents estimated from seismic velocities in partially serpentinized peridotites [J]. Geophysical Research Letters, 2003, 30(5): 1250.
|
[38] |
McCollom T M, Shock E L. Fluid-rock interactions in the lower oceanic crust: thermodynamic models of hydrothermal alteration [J]. Journal of Geophysical Research, 1998, 103(B1): 547-575. doi: 10.1029/97JB02603
|
[39] |
Contreras-Reyes E, Grevemeyer I, Flueh E R, et al. Alteration of the subducting oceanic lithosphere at the southern central Chile trench-outer rise [J]. Geochemistry, Geophysics, Geosystems, 2007, 8(7): Q07003.
|
[40] |
Ivandic M, Grevemeyer I, Berhorst A, et al. Impact of bending related faulting on the seismic properties of the incoming oceanic plate offshore of Nicaragua [J]. Journal of Geophysical Research, 2008, 113(B5): B05410.
|
[41] |
van Avendonk H J A, Holbrook W S, Lizarralde D, et al. Structure and serpentinization of the subducting Cocos plate offshore Nicaragua and Costa Rica [J]. Geochemistry, Geophysics, Geosystems, 2011, 12(6): Q06009.
|
[42] |
Gou F J, Kodaira S, Kaiho Y, et al. Controlling factor of incoming plate hydration at the north-western Pacific margin [J]. Nature Communications, 2018, 9(1): 3844. doi: 10.1038/s41467-018-06320-z
|
[43] |
Cai C, Wiens D A, Shen W S, et al. Water input into the Mariana subduction zone estimated from ocean-bottom seismic data [J]. Nature, 2018, 563(7731): 389-392. doi: 10.1038/s41586-018-0655-4
|
[44] |
Wan K Y, Lin J, Xia S H, et al. Deep seismic structure across the southernmost Mariana Trench: implications for arc rifting and plate hydration [J]. Journal of Geophysical Research, 2019, 124(5): 4710-4727.
|
[45] |
Contreras-Reyes E, Grevemeyer I, Flueh E R, et al. Upper lithospheric structure of the subduction zone offshore of southern Arauco peninsula, Chile, at ~38°S [J]. Journal of Geophysical Research, 2008, 113(B7): B07303.
|
[46] |
Gou F J, Kodaira S, Yamashita M, et al. Systematic changes in the incoming plate structure at the Kuril trench [J]. Geophysical Research Letters, 2013, 40(1): 88-93. doi: 10.1029/2012GL054340
|
[47] |
Gou F J, Kodaira S, Sato T, et al. Along-trench variations in the seismic structure of the incoming Pacific plate at the outer rise of the northern Japan Trench [J]. Geophysical Research Letters, 2016, 43(2): 666-673. doi: 10.1002/2015GL067363
|
[48] |
Masson D G. Fault patterns at outer trench walls [J]. Marine Geophysical Researches, 1991, 13(3): 209-225. doi: 10.1007/BF00369150
|
[49] |
Ranero C R, Sallarés V. Geophysical evidence for hydration of the crust and mantle of the Nazca plate during bending at the north Chile trench [J]. Geology, 2004, 32(7): 549-552. doi: 10.1130/G20379.1
|
[50] |
Han S S, Carbotte S M, Canales J P, et al. Seismic reflection imaging of the Juan de Fuca plate from ridge to trench: new constraints on the distribution of faulting and evolution of the crust prior to subduction [J]. Journal of Geophysical Research, 2016, 121(3): 1849-1872.
|
[51] |
Supak S, Bohnenstiehl D R, Buck W R. Flexing is not stretching: an analogue study of flexure-induced fault populations [J]. Earth and Planetary Science Letters, 2006, 246(1-2): 125-137. doi: 10.1016/j.jpgl.2006.03.028
|
[52] |
Naliboff J B, Billen M I, Gerya T, et al. Dynamics of outer-rise faulting in oceanic‐continental subduction systems [J]. Geochemistry, Geophysics, Geosystems, 2013, 14(7): 2310-2327. doi: 10.1002/ggge.20155
|
[53] |
Zhou Z Y, Lin J, Behn M D, et al. Mechanism for normal faulting in the subducting plate at the Mariana Trench [J]. Geophysical Research Letters, 2015, 42(11): 4309-4317. doi: 10.1002/2015GL063917
|
[54] |
van Keken P E, Hacker B R, Syracuse E M, et al. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide [J]. Journal of Geophysical Research, 2011, 116(B1): B01401.
|
[55] |
Magni V, Faccenna C, van Hunen J, et al. How collision triggers backarc extension: insight into Mediterranean style of extension from 3-D numerical models [J]. Geology, 2014, 42(6): 511-514. doi: 10.1130/G35446.1
|
[56] |
Tatsumi Y, Eggins S. Subduction Zone Magmatism[M]. Oxford: Blackwell, 1995: 211.
|
[57] |
Anderson D L. Speculations on the nature and cause of mantle heterogeneity [J]. Tectonophysics, 2006, 416(1-5): 7-22.
|
[58] |
Zindler A, Hart S. Chemical geodynamics [J]. Annual Review of Earth and Planetary Sciences, 1986, 14: 493-571. doi: 10.1146/annurev.ea.14.050186.002425
|
[59] |
Hofmann A W. Mantle geochemistry: the message from oceanic volcanism [J]. Nature, 1997, 385(6613): 219-229. doi: 10.1038/385219a0
|
[60] |
Chauvel C, Hofmann A W, Vidal P. HIMU-EM: the French Polynesian connection [J]. Earth and Planetary Science Letters, 1992, 110(1-4): 99-119. doi: 10.1016/0012-821X(92)90042-T
|
[61] |
Brenan J M, Shaw H F, Ryerson F J, et al. Mineral-aqueous fluid partitioning of trace elements at 900 ℃ and 2.0 GPa: constraints on the trace element chemistry of mantle and deep crustal fluids [J]. Geochimica et Cosmochimica Acta, 1995, 59(16): 3331-3350. doi: 10.1016/0016-7037(95)00215-L
|
[62] |
Kogiso T, Hirschmann M M, Frost D J. High-pressure partial melting of garnet pyroxenite: possible mafic lithologies in the source of ocean island basalts [J]. Earth and Planetary Science Letters, 2003, 216(4): 603-617. doi: 10.1016/S0012-821X(03)00538-7
|
[63] |
Aizawa Y, Tatsumi Y, Yamada H. Element transport by dehydration of subducted sediments: implication for arc and ocean island magmatism [J]. Island Arc, 1999, 8(1): 38-46. doi: 10.1046/j.1440-1738.1999.00217.x
|
[64] |
Tatsumi Y, Kogiso T. The subduction factory: its role in the evolution of the Earth's crust and mantle[M]//Larter R D, Leat P T. Intra-oceanic Subduction Systems: Tectonic and Magmatic Processes. London: Geological Society of America, 2003: 55-80.
|
[1] | XU Ming, CHEN Jianwen, YUAN Yong, ZHANG Yinguo, LIANG Jie, LI Huijun, WANG Jianqiang, WU Shuyu. Sedimentary environment of the Lower Cambrian Mufushan Formation in the Lower Yangtze region: Evidence from whole-rock geochemistry[J]. Marine Geology & Quaternary Geology, 2021, 41(6): 82-90. DOI: 10.16562/j.cnki.0256-1492.2020101601 |
[2] | SUN Guohong, TIAN Liyan, LI Xiaohu, ZHANG Hanyu, CHEN Lingxuan, LIU Hongling. A review of studies on the magmatism at Southwest Indian Ridge from petrological and geochemical perspectives[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 126-138. DOI: 10.16562/j.cnki.0256-1492.2021021701 |
[3] | XU Bo. Geochemistry and genesis of the formation water in Huagang Formation of the Tiantai Inversion Zone, the Xihu Depression of the East China Sea Basin[J]. Marine Geology & Quaternary Geology, 2021, 41(3): 62-71. DOI: 10.16562/j.cnki.0256-1492.2020122101 |
[4] | PAN Hong, LIN Xiaoyun, GONG Liuping, QIAO Cheng, XU Honglong. GEOCHEMISTRY OF OIL AND IDENTIFICATION OF SOURCE ROCKS IN THE DINAN ARCH-FUBEI SLOPE AREA OF JUNGGAR BASIN[J]. Marine Geology & Quaternary Geology, 2015, 35(4): 155-161. DOI: 10.16562/j.cnki.0256-1492.2015.04.017 |
[5] | ZHANG Guifang, ZHEN Zhuo, BARRY Rollet, HUANG Kangyou, YUE Yuanfu, ZHU Guangqi. TRACE ELEMENTS GEOCHEMISTRY OF MIN RIVER CORE SEDIMENTS[J]. Marine Geology & Quaternary Geology, 2015, 35(2): 81-90. DOI: 10.3724/SP.J.1140.2015.02081 |
[6] | LIU Feng, CAI Jingong, CHEN Aiguo, PENG Xingpeng. ELEMENT GEOCHEMISTRY OF THE CARBONATE SOURCE ROCK OF THE LOWER PERMIAN CHIHSIA FORMATION IN CHAOHU REGION, ANHUI AND THEIR IMPLICATIONS[J]. Marine Geology & Quaternary Geology, 2013, 33(6): 121-127. DOI: 10.3724/SP.J.1140.2013.06121 |
[7] | XU Cuiling, ZHAO Guangtao, HE Yuyang, LI Deping. GEOCHEMISTRY OF CENOZOIC VOLCANIC ROCKS FROM TENGCHONG, WESTERN YUNNAN[J]. Marine Geology & Quaternary Geology, 2012, 32(2): 65-75. DOI: 10.3724/SP.J.1140.2012.02065 |
[8] | DI Pengfei, FENG Dong, CHEN Duofu, Harry H Roberts. GEOLOGY AND GEOCHEMISTRY OF SEEP CARBONATES FROM BUSH HILL OF THE GULF OF MEXICO[J]. Marine Geology & Quaternary Geology, 2009, 29(2): 49-57. DOI: 10.3724/SP.J.1140.2009.02049 |
[9] | JIANG Xue-jun, YAO De, LIN Xue-hui, ZHAI Shi-kui. GEOCHEMISTRY OF CU, CO, NI, TI,AND MG IN DIAGENETIC FERROMANGANESE NODULES[J]. Marine Geology & Quaternary Geology, 2007, 27(6): 47-54. |
[10] | ZHU Ai-mei, YE Si-yuan, LU Wen-xi, WANG Hong-jin. GEOCHEMISTRY OF NITROGEN,PHOSPHORUS AND IRON AT THE WATER-SEDIMENT INTERFACE IN JIAOZHOU BAY[J]. Marine Geology & Quaternary Geology, 2006, 26(6): 55-64. |
1. |
于传海,刘思青,高维,曾信,赵旭,徐敏. 莫克兰俯冲带巨厚沉积层速度结构及含水量分布特征. 地球物理学报. 2025(03): 1054-1068 .
![]() | |
2. |
李泯,黄松,郝天珧,董淼,徐亚,张健,何庆禹,方桂. 西太平洋新近纪的俯冲起始模型及俯冲带参数分析. 中国科学:地球科学. 2023(03): 461-480 .
![]() | |
3. |
王悠昆,周志远,林间,张帆. 西太平洋俯冲板块正断层系统与动力学特征. 海洋地质与第四纪地质. 2023(05): 173-180 .
![]() | |
4. |
赵明辉,王强,杨富东,张佳政,高红芳,孙龙涛,刘思青,张光学. 花东海盆综合地震探测及其重要的构造意义. 地球科学. 2021(01): 359-368 .
![]() |