Citation: | Fei LIU, Youli LI, Jinghao LEI, Xiu HU, Qingri LIU, Weilin XIN. Response of alluvial fans to climatic changes and fault activities in the north front of South Yongchang Mountains, Northeast margin of Tibet Plateau[J]. Marine Geology & Quaternary Geology, 2019, 39(4): 163-173. DOI: 10.16562/j.cnki.0256-1492.2019030201 |
[1] |
国家地震局地质研究所.祁连山-河西走廊活动断裂系[M].北京: 地震出版社, 1993.
Institute of Geology, China Earthquake Administration. Qilian Mountain Hexi Corridor Active Fault System[M]. Seismological Press, 1993.
|
[2] |
An Z S, John E K, Warren L P, et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times[J]. Nature, 2001, 411(6833): 62-66. doi: 10.1038/35075035
|
[3] |
Kent D V, Muttoni G. Equatorial convergence of India and early Cenozoic climate trends[C]//Proceedings of the National Academy of Sciences of the United States of America. 2008, 105(42): 16065-16070.
|
[4] |
Liu X D, Dong B W. Influence of the Tibetan Plateau uplift on the Asian monsoon-arid environment evolution[J]. Chinese Science Bulletin, 2013, 58(34): 4277-4291. doi: 10.1007/s11434-013-5987-8
|
[5] |
Tapponnier P, Meyer B, Avouac J P, et al. Active thrusting and folding in the Qilian Shan, and decoupling between upper crust and mantle in northeastern Tibet[J]. Earth and Planetary Science Letters, 1990, 97: 382-403. doi: 10.1016/0012-821X(90)90053-Z
|
[6] |
Hetzel R. Late Pleistocene/Holocene slip rate of the Zhangye thrust (Qilian Shan, China) and implications for the active growth of the northeastern Tibetan Plateau[J]. Tectonics, 2004, 23: TC6006, DOI: 1029/2004TC001653.
|
[7] |
李有利, 杨景春.河西走廊平原区全新世河流阶地对气候变化的响应[J].地理科学, 1997, 17(3): 248-252. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700043925
LI Youli, YANG Jingchun. Response of alluvial terraces to Holocene climatic changes in the Hexi Corridor basins, Gansu, China[J].Scientia Geographica Sinica, 1997, 17(3): 248-252. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700043925
|
[8] |
潘保田, 邬光剑, 王义祥, 等.祁连山东段沙沟河阶地的年代与成因[J].科学通报, 2000, 45(24): 2669-2675. doi: 10.3321/j.issn:0023-074X.2000.24.019
PAN Baotian, WU Guangjian, WANG Yixiang, et al. Age and genesis of the Shagou River terraces in eastern Qilian Mountains[J]. Chinese Science Bulletin, 2000, 45(24): 2669-2675. doi: 10.3321/j.issn:0023-074X.2000.24.019
|
[9] |
潘保田, 高红山, 李炳元, 等.青藏高原层状地貌与高原隆升[J].第四纪研究, 2004, 24(1): 50-57. doi: 10.3321/j.issn:1001-7410.2004.01.006
PAN Baotian, GAO Hongshan, LI Bingyuan, et al. Step-Like landforms and uplift of the Qinghai-Xizang Plateau[J]. Quaternary Sciences, 2004, 24(1): 50-57. doi: 10.3321/j.issn:1001-7410.2004.01.006
|
[10] |
Starkel L. Climatically controlled terraces in uplifting mountain areas[J]. Quaternary Science Reviews, 2003, 22(20): 2189-2198. doi: 10.1016/S0277-3791(03)00148-3
|
[11] |
Huang W L, Yang X P, Li, A, et al. Late Pleistocene shortening rate on the northern margin of the Yanqi Basin, southeastern Tian Shan, NW China[J]. JAES, 2015, 112: 11-24.
|
[12] |
Huang W L, Yang X P, Li A, et al. Climatically controlled formation of river terraces in a tectonically active region along the southern piedmont of the Tian Shan, NW China[J]. Geomorphology, 2015, 220: 15-29. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e6b09e89d4ce909776898926ec62f068
|
[13] |
Pan B, Su H, Hu Z, et al. Evaluating the role of climate and tectonics during non-steady incision of the Yellow River: evidence from a 1.24 Ma terrace record near Lanzhou, China[J]. QSR, 2009, 28(27): 3281-3290.
|
[14] |
黄伟亮.天山内部焉耆盆地中晚第四纪地壳缩短速率研究[D].北京: 中国地震局地质研究所, 2015.
HUANG Weiliang. Late Pleistocene shortening rate on the northern margin of the Yanqi Basin, southeastern Tian Shan, NW China[D]. Institute of Geology, China Earthquake Administration, 2015.
|
[15] |
Pan B T, Hu X F, Gao H S, et al. Late Quaternary river incision rates and rock uplift pattern of the eastern Qilian Shan Mountain, China[J].Geomorphology, 2013, 184(430) : 84-97. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=91806fd7baed4784163886ac8185e2d4
|
[16] |
Zheng W J, Zhang P Z, Ge W P, et al. Late Quaternary slip rate of the South Heli Shan Fault(northern Hexi Corridor, NW China) and its implications for northeastward growth of the Tibetan Plateau[J]. Tectonics, 2013, 32(2):271-293. doi: 10.1002/tect.20022
|
[17] |
Lu H H, Zhang T Q, Zhao J X, et al. Late Quaternary alluvial sequence and uplift-driven incision of the Urümqi River in the north front of the Tian Shan, northwestern China[J]. Geomorphology, 2014, 219(219): 141-151.
|
[18] |
钟岳志, 李有利, 熊建国, 等.祁连山东段童子坝河阶地对气候变化与新构造运动的响应[J].古地理学报, 2017, 19(6):1076-1086. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201706011
ZHONG Yuezhi, LI Youli, XIONG Jianguo, et al. Terraces of the Tongziba River, eastern Qilian Mountain and their responses to neotectonic movement and climate change[J]. Journal of Palaeogeography, 2017, 19(6):1076-1086. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201706011
|
[19] |
Hu X F, Pan B T, Kirby E, et al. Rates and kinematics of active shortening along the eastern Qilian Shan, China, inferred from deformed alluvial terraces[J]. Tectonics, 2015, 34, doi: 10.1002/2015TC003978.
|
[20] |
Palunbo L, Hetzel R, Tao M X, et al. Deciphering the rate of mountain growth during topopraphic presteady state: An example from the NE margin of the Tibetan Plateau[J]. Tectonics, 2009, 28: TC4017, DOI: 10.1029/2009TC002455.
|
[21] |
Hetzel R, Tao M, Niedermann S, et al. Implications of the fault scaling law for the growth of topography: mountain ranges in the broken foreland of north-east Tibet[J]. Terra Nova, 2004a, 16(3):157-162. doi: 10.1111/j.1365-3121.2004.00549.x
|
[22] |
杨海波.祁连山北缘佛洞庙-红崖子断裂晚第四纪活动速率[D].北京: 中国地震局地质研究所, 2016. http://cdmd.cnki.com.cn/Article/CDMD-85402-1016300075.htm
YANG Haibo. Late Quaternary slip rates of the Fodongmiao-Hongyazi fault, North margin of Qilian Shan[D]. Beijing: Institute of Geology, China Earthquake Administration, 2009. http://cdmd.cnki.com.cn/Article/CDMD-85402-1016300075.htm
|
[23] |
李安, 王晓先, 张世民, 等.祁连山北缘玉门断裂晚更新世以来的活动速率及古地震[J].地震地质, 2016, 38 (4): 897-910. doi: 10.3969/j.issn.0253-4967.2016.04.008
LI An, WANG Xiaoxian, ZHANG Shimin, et al. The slip rate and paleoearthquakes of the Yumen fault in the northern Qilian mountains [J]. Seismology and Geology, 2016, 38(4): 897-910. doi: 10.3969/j.issn.0253-4967.2016.04.008
|
[24] |
陈文彬.河西走廊及邻近地区最新构造变形基本特征及构造成因分析[D].北京: 中国地震局地质研究所, 2003. http://cdmd.cnki.com.cn/Article/CDMD-85402-2004096204.htm
CHEN Wenbin. Principal features of tectonic deformation and their generation mechanism in the Hexi Corridor and its adjacent regions since late quaternary [D]. Institute of Geology, China Earthquake Administration, Beijing, 2003. http://cdmd.cnki.com.cn/Article/CDMD-85402-2004096204.htm
|
[25] |
闵伟, 张培震, 何文贵, 等.酒西盆地断层活动特征及古地震研究[J].地震地质, 2002, 24(1):35-44. http://d.old.wanfangdata.com.cn/Periodical/dzdz200201004
MIN Wei, ZHANG Peizhen, He Wengui, et al. Research on the active faults and paleoearthquakes in the western Jiuquan Basin[J]. Seismology and Geology, 2017, 24(1): 35-44. http://d.old.wanfangdata.com.cn/Periodical/dzdz200201004
|
[26] |
杨海波, 杨晓平, 黄雄南.祁连山北缘断裂带中段晚第四纪活动速率初步研究[J].地震地质, 2017, 39 (1): 20-42. doi: 10.3969/j.issn.0253-4967.2017.01.002
YANG Haibo, YANG Xiaoping, HUANG Xiongnan. A preliminary study about slip rate of middle segment of the northern Qilian thrust fault zone since late quaternary[J]. Seismology and Geology, 2017, 39 (1): 20-42. doi: 10.3969/j.issn.0253-4967.2017.01.002
|
[27] |
郑文俊.河西走廊及邻区活动构造图像及构造变形模式[D].北京: 中国地震局地质研究所, 2009. http://www.cnki.com.cn/Article/CJFDTotal-GJZT201003011.htm
ZHEGN Wenjun. Geometric pattern and active tectonics of the Hexi Corridor and its adjacent regions[D]. Beijing: Institute of Geology, China Earthquake Administration, 2009. http://www.cnki.com.cn/Article/CJFDTotal-GJZT201003011.htm
|
[28] |
艾晟, 张波, 樊春, 等.武威盆地南缘断裂晚第四纪活动地表形迹与活动速率[J].地震地质, 2017, 39 (2): 408-422. doi: 10.3969/j.issn.0253-4967.2017.02.010
AI Sheng, ZHANG Bo, FAN Chun, et al. Surface tracks and slip of the fault along the southern margin of the Wuwei basin in the late Quaternary[J]. Seismology and Geology, 2017, 39 (2): 408-422. doi: 10.3969/j.issn.0253-4967.2017.02.010
|
[29] |
雷惊昊, 李有利, 胡秀, 等.东大河阶地陡坎对民乐-大马营断裂垂直滑动速率的指示[J].地震地质, 2017, 39 (6):1256-1266. doi: 10.3969/j.issn.0253-4967.2017.06.011
LEI Jinghao, LI Youli, HU Xiu, et al. Vertical slip rate of Minle-Damaying fault indicated by scarps on terraces of Dongda River[J]. Seismology and Geology, 2017, 39 (6):1256-1266. doi: 10.3969/j.issn.0253-4967.2017.06.011
|
[30] |
胡小飞.祁连山北部侵蚀速率的时空分布与构造抬升变形研究[D].兰州: 兰州大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10730-1011034159.htm
HU Xiaofei. Researches on Temporal and Spatial Distributions of Erosion Rates and Tectonic Deformation in the Northern Qilian Shan[D]. Lanzhou: Lanzhou University, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10730-1011034159.htm
|
[31] |
Palumbo L, Hetzel R, Tao M, et al. Catchment-wide denudation rates at the margin of NE Tibet from in situ-produced cosmogenic 10Be[J].Terra Nova, 2011, 23(1): 42-48. doi: 10.1111/j.1365-3121.2010.00982.x
|
[32] |
Champagnac J D, Yuan D M, Ge W P, et al. Slip rate at the north-eastern front of the Qilian Shan, China [J]. Terra Nova, 2010, 22:180-187. doi: 10.1111/j.1365-3121.2010.00932.x
|
[33] |
Hetzel R. Active faulting, mountain growth, and erosion at the margins of the Tibetan Plateau constrained by in situ-produced cosmogenic nuclides[J]. Tectonophysics, 2013, 582:1-24. doi: 10.1016/j.tecto.2012.10.027
|
[34] |
王岳.河西走廊东西段全新世古湖泊演化对比研究[D].兰州: 兰州大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10730-1016723430.htm
WANG Yue. The Comparative Study of Paleolakes Evolution between the Eastern and Western Parts of the Hexi Corridor on Holocene[D].Lanzhou: Lanzhou University, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10730-1016723430.htm
|
[35] |
Yao T D, Thompson L.G, Shi T F, et al. Climate variation since the Last Interglaciation recorded in the Guliya ice core[J]. Science in China, 1997, 40(6):6662-6678. doi: 10.1007-BF02877697/
|
[36] |
郑绵平, 袁鹤然, 赵希涛, 等.青藏高原第四纪泛湖期与古气候[J].地质学报, 2006, 80(2): 176-180. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200602001
ZHENG Mianping, YUAN Heran, ZHAO Xitao, et al. The Quarternary pan-lake (overflow) period and paleoclimate on the Qinghai-Tibet Plateau[J]. Acta Geologica Sinica, 2006, 80(2): 176-180. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200602001
|
[37] |
SHI Y F, LIU X D, LI B Y, et al. A very strong summer monsoon event during 30-40 ka BP in the Qinghai-Xizang (Tibet) Plateau and its relation to precessional cycle[J]. Chinese Science Bulletin, 1999, 40(20): 1851-1857.
|
[38] |
Zuza A V, Cheng X, Yin A. Testing models of Tibetan Plateau for mation with Cenozoic shortening estimates across the Qilian ShanNan Shan thrust belt[J]. Geosphere, 2016, 12(2): 501-532. doi: 10.1130/GES01254.1
|
[39] |
艾明, 毕海芸, 郑文俊, 等.利用无人机摄影测量技术提取活动构造定量参数[J].地震地质, 2018, 40 (6):1276-1292. http://d.old.wanfangdata.com.cn/Periodical/dzdz201806006
AI Ming, BI Haiyun, ZHENG Wenjun, et al. Using unmanned aerial vehicle photogrammetry technology to obtain Quantitative parameters of active tectonics[J]. Seismology and Geology, 2018, 40 (6):1276-1292. http://d.old.wanfangdata.com.cn/Periodical/dzdz201806006
|
[40] |
郑文涛, 杨景春, 段锋军.武威盆地晚更新世河流阶地变形与新构造运动[J].地震地质, 2000, 22 (3): 318-328. doi: 10.3969/j.issn.0253-4967.2000.03.012
ZHENG Wentao, YANG Jingchun, DUAN Fengjun. A study on the relation between deformation of river terraces and neotectonic activity for the Wuwei Basin[J]. Seismology and Geology, 2000, 22 (3): 318-328. doi: 10.3969/j.issn.0253-4967.2000.03.012
|
[41] |
陈杰, 卢演俦, 丁国瑜.祁连山西段酒西盆地区阶地构造变形的研究[J].西北地震学报, 1998, 20 (1): 28-36. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800703441
CHEN Jie, LU Yanchou, DING Guoyu. The latest Quaternary tectonic deformation of terraces of Jiuxi Basin in west Qilian Mountains[J]. Northwestern Seismological Journal, 1998, 20 (1): 28-36. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800703441
|
[42] |
Thompson L G, T Yao, Davis M E, et al. Tropical Climate Instability: The Last Glacial Cycle from a Qinghai-Tibetan Ice Core[J]. Science, 1997, 276:1821-1825. doi: 10.1126/science.276.5320.1821
|