CHENG Jun, HUANG Yi, WANG Shuhong, MIAO Li, YAN Wen. Distribution pattern and controlling factors of redox sensitive elements in the surface sediments from four typical transects in the South China Sea[J]. Marine Geology & Quaternary Geology, 2019, 39(2): 90-103. DOI: 10.16562/j.cnki.0256-1492.2018102601
Citation: CHENG Jun, HUANG Yi, WANG Shuhong, MIAO Li, YAN Wen. Distribution pattern and controlling factors of redox sensitive elements in the surface sediments from four typical transects in the South China Sea[J]. Marine Geology & Quaternary Geology, 2019, 39(2): 90-103. DOI: 10.16562/j.cnki.0256-1492.2018102601

Distribution pattern and controlling factors of redox sensitive elements in the surface sediments from four typical transects in the South China Sea

More Information
  • Received Date: October 25, 2018
  • Revised Date: November 11, 2018
  • Redox sensitive elements play an increasingly important role in environmental analysis. However, few studies have been devoted so far to the distribution pattern of the redox sensitive elements in the seafloor surface sediments. In this paper, seventy-five surface sediment samples were collected and analyzed from the four representative transects in the South China Sea along 18°N, 10°N, 6°N, and 113°E respectively. The contents of main elements and trace elements (including Mo, V, and U) are measured in addition to grain sizes of sediments and enrichment factors of redox sensitive elements. The distribution pattern and controlling factors of redox sensitive elements are then discussed in the paper. Results show that the variations in V and U contents in each transect are in fact very similar. The content variation of Mo is similar to the overall trends of V and U, but more intense than V and U changes. Obviously, the average content of Mo is enriched while V and U depleted in the transects except slightly enriched V in the transect Ⅰ. The contents of V and U in all transects are mainly controlled by the contents of terrigenous debris and biological carbonate as well as the adsorption of fine-grained sediments, whereas the influence of redox environment is low. In contrast, the distribution of Mo mainly depends on the seabed redox environment, but not the contribution of terrigenous debris content and the adsorption of fine-grained sediments. The lower content and enrichment factor of Mo in the Southwestern Sub-basin of the South China Sea may probably attribute to oxidized environment caused by the underflow activity.
  • [1]
    Morford J L, Russell A D, Emerson S. Trace metal evidence for changes in the redox environment associated with the transition from terrigenous clay to diatomaceous sediment, Saanich Inlet, BC[J]. Marine Geology, 2001, 174(1-4): 355-369. doi: 10.1016/S0025-3227(00)00160-2
    [2]
    常华进, 储雪蕾, 冯连君, 等.氧化还原敏感微量元素对古海洋沉积环境的指示意义[J].地质论评, 2009, 55(1): 91-99. doi: 10.3321/j.issn:0371-5736.2009.01.011

    CHANG Huajin, CHU Xuelei, FENG Lianjun, et al. Redox sensitive trace elements as paleoenvironments proxies[J]. Geological Review, 2009, 55(1): 91-99. doi: 10.3321/j.issn:0371-5736.2009.01.011
    [3]
    Rimmer S M. Geochemical paleoredox indicators in Devonian-Mississippian black shales, central Appalachian basin (USA)[J]. Chemical Geology, 2004, 206(3-4): 373-391. doi: 10.1016/j.chemgeo.2003.12.029
    [4]
    许淑梅, 翟世奎, 张爱滨, 等.长江口及其邻近海域表层沉积物中氧化还原敏感性微量元素的环境指示意义[J].沉积学报, 2007, 25(5): 759-766. doi: 10.3969/j.issn.1000-0550.2007.05.015

    XU Shumei, ZHAI Shikui, ZHANG Aibin, et al. Distribution and environment significance of redox sensitive trace elements of the Changjiang Estuary Hypoxia Zone and its contiguous sea area[J]. Acta Sedimentologica Sinica, 2007, 25(5): 759-766. doi: 10.3969/j.issn.1000-0550.2007.05.015
    [5]
    孟楚洁, 胡文瑄, 贾东, 等.宁镇地区上奥陶统五峰组——下志留统高家边组底部黑色岩系地球化学特征与沉积环境分析[J].地学前缘, 2017, 24(6): 300-311. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201706023

    MENG Chujie, HU Wenxuan, JIA Dong, et al. Analyses of geochemistry features and sedimentary environment in the Upper Ordovician Wufeng-Lower Silurian Gaojiabian Formations in Nanjing-Zhenjiang area[J]. Earth Science Frontiers, 2017, 24(6): 300-311. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201706023
    [6]
    王双, 杨瑞东.贵阳花溪燕楼剖面下三叠统大冶组地球化学特征与沉积环境分析[J].古地理学报, 2018, 20(2): 285-298. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201802009

    WANG Shuang, YANG Ruidong. Analysis of geochemistry features and sedimentary environment of the Lower Triassic Daye Formation in Yanlou section of Huaxi, Guiyang[J]. Journal of Palaeogeography, 2018, 20(2): 285-298. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201802009
    [7]
    Algeo T J, Maynard J B. Trace-metal covariation as a guide to water-mass conditions in ancient anoxic marine environments[J]. Geosphere, 2008, 4(5): 872-887. doi: 10.1130/GES00174.1
    [8]
    Algeo T J, Tribovillard N. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation[J]. Chemical Geology, 2009, 268(3-4): 211-225. doi: 10.1016/j.chemgeo.2009.09.001
    [9]
    Tribovillard N, Algeo T J, Baudin F, et al. Analysis of marine environmental conditions based on molybdenum-uranium covariation-Applications to Mesozoic paleoceanography[J]. Chemical Geology, 2012, 324: 46-58.
    [10]
    Algeo T J, Morford J, Cruse A. Reprint of: New applications of trace metals as proxies in marine paleoenvironments[J]. Chemical Geology, 2012, 324: 1-5.
    [11]
    汤冬杰, 史晓颖, 赵相宽, 等. Mo-U共变作为古沉积环境氧化还原条件分析的重要指标——进展、问题与展望[J].现代地质, 2015, 29(1): 1-13. doi: 10.3969/j.issn.1000-8527.2015.01.001

    TANG Dongjie, SHI Xiaoying, ZHAO Xiangkuan, et al. Mo-U Covariation as an important proxy for sedimentary environment redox conditions-progress, problems and prospects[J]. Geoscience, 2015, 29(1): 1-13. doi: 10.3969/j.issn.1000-8527.2015.01.001
    [12]
    Dahl T W, Anbar A D, Gordon G W, et al. The behavior of molybdenum and its isotopes across the chemocline and in the sediments of sulfidic Lake Cadagno, Switzerland[J]. Geochimica et Cosmochimica Acta, 2010, 74(1): 144-163. doi: 10.1016/j.gca.2009.09.018
    [13]
    温汉捷, 张羽旭, 樊海峰, 等.华南下寒武统地层的Mo同位素组成特征及其古海洋环境意义[J].科学通报, 2010, 55(2): 176-181. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201002009

    WEN Hanjie, ZHANG Yuxu, FAN Haifeng, et al. Mo isotopes in the Lower Cambrian formation of southern China and its implications on paleo-ocean environment[J]. Chinese Science Bulletin, 2010, 55(2): 176-181. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201002009
    [14]
    周炼, 苏洁, 黄俊华, 等.判识缺氧事件的地球化学新标志——钼同位素[J].中国科学:地球科学, 2011, 41(3): 309-319. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201103004

    ZHOU Lian, SU Jie, HUANG Junhua, et al. A new paleoenvironmental index for anoxic events-Mo isotopes in black shales from Upper Yangtze marine sediments[J]. Science China Earth Science, 2011, 41(3): 309-319. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201103004
    [15]
    Andersen M B, Romaniello S, Vance D, et al. A modern framework for the interpretation of U-238/U-235 in studies of ancient ocean redox[J]. Earth and Planetary Science Letters, 2014, 400: 184-194. doi: 10.1016/j.epsl.2014.05.051
    [16]
    Dickson A J, Cohen A S, Coe A L. Continental margin molybdenum isotope signatures from the early Eocene[J]. Earth and Planetary Science Letters, 2014, 404: 389-395. doi: 10.1016/j.epsl.2014.08.004
    [17]
    Wen H J, Fan H F, Zhang Y X, et al. Reconstruction of early Cambrian ocean chemistry from Mo isotopes[J]. Geochimica et Cosmochimica Acta, 2015, 164: 1-16. doi: 10.1016/j.gca.2015.05.008
    [18]
    Kurzweil F, Wille M, Schoenberg R, et al. Continuously increasing delta Mo-98 values in Neoarchean black shales and iron formations from the Hamersley Basin[J]. Geochimica et Cosmochimica Acta, 2015, 164: 523-542. doi: 10.1016/j.gca.2015.05.009
    [19]
    Goto K T, Anbar A D, Gordon G W, et al. Uranium isotope systematics of ferromanganese crusts in the Pacific Ocean: Implications for the marine U-238/U-235 isotope system[J]. Geochimica et Cosmochimica Acta, 2014, 146: 43-58. doi: 10.1016/j.gca.2014.10.003
    [20]
    Algeo T J, Maynard J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J]. Chemical Geology, 2004, 206(3-4): 289-318. doi: 10.1016/j.chemgeo.2003.12.009
    [21]
    Asael D, Rouxel O, Poulton S W, et al. Molybdenum record from black shales indicates oscillating atmospheric oxygen levels in the Early Paleoproterozoic[J]. American Journal of Science, 2018, 318(3): 275-299. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=44fc2fdab875978dffa324b6e29f5cf5
    [22]
    Palomares R M, Hernandez R L, Frias J M. Mechanisms of trace metal enrichment in submarine, methane-derived carbonate chimneys from the Gulf of Cadiz[J]. Journal of Geochemical Exploration, 2012, 112: 297-305. doi: 10.1016/j.gexplo.2011.09.011
    [23]
    Sato H, Hayashi K, Ogawa Y, et al. Geochemistry of deep sea sediments at cold seep sites in the Nankai Trough: Insights into the effect of anaerobic oxidation of methane[J]. Marine Geology, 2012, 323: 47-55. https://www.sciencedirect.com/science/article/abs/pii/S0025322712001648
    [24]
    Hu Y, Feng D, Peckmann J, et al. New insights into cerium anomalies and mechanisms of trace metal enrichment in authigenic carbonate from hydrocarbon seeps[J]. Chemical Geology, 2014, 381: 55-66. doi: 10.1016/j.chemgeo.2014.05.014
    [25]
    Adelson J M, Helz G R, Miller C V. Reconstructing the rise of recent coastal anoxia; molybdenum in Chesapeake Bay sediments[J]. Geochimica et Cosmochimica Acta, 2001, 65(2): 237-252. doi: 10.1016/S0016-7037(00)00539-1
    [26]
    Chaillou G, Anschutz P, Lavaux G, et al. The distribution of Mo, U, and Cd in relation to major redox species in muddy sediments of the Bay of Biscay[J]. Marine Chemistry, 2002, 80(1): 41-59. doi: 10.1016-S0304-4203(02)00097-X/
    [27]
    Ge L, Jiang S Y, Swennen R, et al. Chemical environment of cold seep carbonate formation on the northern continental slope of South China Sea: Evidence from trace and rare earth element geochemistry[J]. Marine Geology, 2010, 277(1-4): 21-30. doi: 10.1016/j.margeo.2010.08.008
    [28]
    Wang S H, Yan W, Chen Z, et al. Rare earth elements in cold seep carbonates from the southwestern Dongsha area, northern South China Sea[J]. Marine and Petroleum Geology, 2014, 57: 482-493. doi: 10.1016/j.marpetgeo.2014.06.017
    [29]
    Wang S H, Zhang N, Chen H, et al. The surface sediment types and their rare earth element characteristics from the continental shelf of the northern south China sea[J]. Continental Shelf Research, 2014, 88: 185-202. doi: 10.1016/j.csr.2014.08.005
    [30]
    Wang S H, Wu S Z, Yan W, et al. Rare metal elements in surface sediment from five bays on the northeastern coast of the South China Sea[J]. Environmental Earth Sciences, 2015, 74(6): 4961-4971. doi: 10.1007/s12665-015-4504-6
    [31]
    Liu F W, Miao L, Cai G Q, et al. The rare earth element geochemistry of surface sediments in four transects in the South China Sea and its geological significance[J]. Environmental Earth Sciences, 2015, 74(3): 2511-2522. doi: 10.1007/s12665-015-4265-2
    [32]
    McManus J. Grain size determination and interpretation[C]//In: Tucker M, ed. Techniques in sedimentology. Blackwell, Oxford, 1988: 63-85.
    [33]
    Murray R W, Leinen M. Scavenged excess aluminum and its relationship to bulk titanium in biogenic sediment from the central equatorial Pacific Ocean[J]. Geochimica et Cosmochimica Acta, 1996, 60(20): 3869-3878. doi: 10.1016/0016-7037(96)00236-0
    [34]
    Li G, Rashid H, Zhong L F, et al. Changes in deep water oxygenation of the South China Sea since the Last Glacial Period[J]. Geophysical Research Letters, 2018, 45. https://doi.org/10.1029/2018GL078568.
    [35]
    Rudnick R L, Gao S. Composition of the Continental Crust[M]. Oxford: Elsevier, 2014: 1-51.
    [36]
    赵一阳.中国海大陆架沉积物地球化学的若干模式[J].地质科学, 1983, 18(4): 307-314. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX198304000.htm

    ZHAO Yiyang. Some geochemical patterns of shelf sediments of the China Sea[J]. Scientia Geologica Sinica, 1983, 18(4): 307-314. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX198304000.htm
    [37]
    许淑梅, 翟世奎, 张爱滨, 等.长江口外缺氧区沉积物中元素分布的氧化还原环境效应[J].海洋地质与第四纪地质, 2007, 27(3): 1-8. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=30eba64c-f181-4278-8516-cf40ad4a4e87

    XU Shumei, ZHAI Shikui, ZHANG Aibin, et al. Redox environment effect on the redox sensitive elements in surface sediments from the Yangtze Estuary Hypoxia Zone[J]. Marine Geology & Quaternary Geology, 2007, 27(3): 1-8. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=30eba64c-f181-4278-8516-cf40ad4a4e87
    [38]
    Boning P, Brumsack H J, Bottcher M E, et al. Geochemistry of Peruvian near-surface sediments[J]. Geochimica et Cosmochimica Acta, 2004, 68(21): 4429-4451. doi: 10.1016/j.gca.2004.04.027
    [39]
    李泽文, 栾振东, 阎军, 等.南海北部外陆架表层沉积物粒度参数特征及物源分析[J].海洋科学, 2011, 35(12): 92-100. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hykx201112015

    LI Zewen, LUAN Zhendong, YAN Jun, et al. Characterization of grain size parameters and the provenance analysis of the surface sediment in the outer shelf of the northern South China Sea[J]. Marine Sciences, 2011, 35(12): 92-100. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hykx201112015
    [40]
    张晋. 南海南部表层沉积物粒度和粘土矿物组成与分布特征及其物源指示[D]. 中国石油大学(华东)硕士学位论文, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10425-1016711605.htm

    ZHANG Jin. Composition and distribution characteristics of grain-size and clay minerals in surface sediments of the southern South China Sea and their indication to provenance[D]. Master's Thesis of China University of Petroleum(East China), 2014. http://cdmd.cnki.com.cn/Article/CDMD-10425-1016711605.htm
    [41]
    李学杰, 汪品先, 廖志良, 等.南海西部表层沉积物碎屑矿物分布特征及其物源[J].中国地质, 2008, (1): 123-130. doi: 10.3969/j.issn.1000-3657.2008.01.013

    LI Xuejie, WANG Pinxian, LIAO Zhiliang, et al. Distribution of clastic minerals of surface sediments in the western China Sea and their provenance[J]. Geology in China, 2008, (1): 123-130. doi: 10.3969/j.issn.1000-3657.2008.01.013
    [42]
    Zhang C S, Wang L J, Li G S, et al. Grain size effect on multi-element concentrations in sediments from the intertidal flats of Bohai Bay, China[J]. Applied Geochemistry, 2002, 17(1): 59-68. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=12899223c2a9304dd695642efb7bad9c
    [43]
    张晓东, 翟世奎, 许淑梅, 等.长江口外缺氧区沉积物中氧化还原敏感性元素的"粒控效应"[J].中国海洋大学学报:自然科学版, 2005, 35(5): 868-874. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qdhydxxb200505034

    ZHANG Xiaodong, ZHAI Shikui, XU Shumei, et al. The "Grain Size Effect" of redox sensitive elements in the sediments in the hypoxia zone of the Changjiang Estuary[J]. Periodical of Ocean University of China (Natural Science Edition), 2005, 35(5): 868-874. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qdhydxxb200505034
    [44]
    Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1-2): 12-32. doi: 10.1016/j.chemgeo.2006.02.012
    [45]
    Erickson B E, Helz G R. Molybdenum (Ⅵ) speciation in sulfidic waters: Stability and lability of thiomolybdates[J]. Geochimica et Cosmochimica Acta, 2000, 64(7): 1149-1158. doi: 10.1016/S0016-7037(99)00423-8
    [46]
    Wehrli B, Stumm W. Vanadyl in natural waters: Adsorption and hydrolysis promote oxygenation[J]. Geochimica et Cosmochimica Acta, 1989, 53(1): 69-77. doi: 10.1016/0016-7037(89)90273-1
    [47]
    Breit G N, Wanty R B. Vanadium accumulation in carbonaceous rocks: A review of geochemical controls during deposition and diagenesis[J]. Chemical Geology, 1991, 91(2): 83-97. https://www.sciencedirect.com/science/article/abs/pii/0009254191900834
  • Related Articles

    [1]LI Xuejie, LIAO Zhiliang, TIAN Chengjing, ZHONG Hexian, ZHANG Jiangyong. Distribution pattern of volcanic glasses in the surficial sediments of the South China Sea and their provenance[J]. Marine Geology & Quaternary Geology, 2022, 42(3): 1-8. DOI: 10.16562/j.cnki.0256-1492.2021092801
    [2]ZHAO Shuai, LI Xuejie, YAO Yongjian, XIE Xinong, XIAO Suyun, HE Xi, DENG Yutian, SHI Menglin, ZHOU Mo. Orogenic events in Southern South China Sea and their relationship with the subduction of the Proto South China Sea[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 147-162. DOI: 10.16562/j.cnki.0256-1492.2018102801
    [3]ZHANG Jin, LI Anchun, WAN Shiming, HUANG Jie, LU Jian, JIANG Fuqing, LI Tiegang. GRAIN SIZE DISTRIBUTION OF SURFACE SEDIMENTS IN THE SOUTHERN SOUTH CHINA SEA AND INFLUENCING FACTORS[J]. Marine Geology & Quaternary Geology, 2016, 36(2): 1-10. DOI: 10.16562/j.cnki.0256-1492.2016.02.001
    [4]YANG Qunhui, LI Mujun, YANG Shengxiong, ZHU Benduo, JI Fuwu, WANG Hu, ZHOU Huaiyang. GRAIN SIZE DISTRIBUTION OF SURFACE SEDIMENTS IN THE SOUTHWESTERN SOUTH CHINA SEA AND TRANSPORT TREND ANALYSIS[J]. Marine Geology & Quaternary Geology, 2013, 33(6): 1-7. DOI: 10.3724/SP.J.1140.2013.06001
    [5]LIU Baoming, LIU Hailing. THE MESOZOIC IN THE SOUTH CHINA SEA AND ADJACENT AREAS: NEW TARGETS FOR HYDROCARBON EXPLORATION[J]. Marine Geology & Quaternary Geology, 2011, 31(2): 105-109. DOI: 10.3724/SP.J.1140.2011.02105
    [6]GE Qian, CHU Fengyou, LIU Jingpu, DU Yuansheng, XUE Zuo, FANG Yinxia. DISTRIBUTION OF THE CLAY MINERALS IN SURFACE SEDIMENTS OF THE SOUTH CHINA SEA AND THEIR PROVENANCE[J]. Marine Geology & Quaternary Geology, 2010, 30(4): 57-66. DOI: 10.3724/SP.J.1140.2010.04057
    [7]ZHAO Qingfang, GONG Jianming, LI Shuanglin, HE Xingliang, FU Shaoying. GEOCHEMICAL CHARACTERISTICS OF RARE EARTH ELEMENTS OF SURFACE SEDIMENTS IN SHENHU AREA OF SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2010, 30(1): 65-70. DOI: 10.3724/SP.J.1140.2010.01065
    [8]LI Xue-jie, WANG Pin-xian, XU Cai-zhen, XU Yuan-ai, CHEN Fang. CLAY MINERALS DISTRIBUTION IN SURFACE SEDIMENTS IN WESTERN SOUTH CHINA SEA AND PROVENANCE[J]. Marine Geology & Quaternary Geology, 2008, 28(1): 9-16.
    [9]QIU Yan. DISTRIBUTION CHARACTERISTICS AND CONTROLLING FACTORS OF CLAY MINERALS IN SURFACE SEDIMENTS FROM THE CENTRAL AND SOUTHERN SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2007, 27(5): 1-7.
    [10]ZHANG Chong, WU Shi-min, QIU Xue-lin. FORMATION OF FORELAND BASINS IN THE SOUTH OF THE SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2007, 27(1): 61-70.

Catalog

    Article views (2756) PDF downloads (17) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return