LIN Gang, CHEN Linying, LUO Min, CHEN Duofu. The geochemical characteristics of the surface sediments in the New Britain Trench of the Western Pacific Ocean and their implications for provenance[J]. Marine Geology & Quaternary Geology, 2019, 39(3): 12-27. DOI: 10.16562/j.cnki.0256-1492.2018060701
Citation: LIN Gang, CHEN Linying, LUO Min, CHEN Duofu. The geochemical characteristics of the surface sediments in the New Britain Trench of the Western Pacific Ocean and their implications for provenance[J]. Marine Geology & Quaternary Geology, 2019, 39(3): 12-27. DOI: 10.16562/j.cnki.0256-1492.2018060701

The geochemical characteristics of the surface sediments in the New Britain Trench of the Western Pacific Ocean and their implications for provenance

More Information
  • Received Date: June 06, 2018
  • Revised Date: July 21, 2018
  • Most of the world trenches belongs to the hadal zone, the deepest part of the earth. The sources of sediments in the trenches are always different due to the difference in geographic location, topography, climate and others. In order to further understand the composition and sources of sediments in hadal trenches, the New British Trench, which is close to land, is chosen as the research object of this paper. By analyzing the geochemical characteristics of the bottom sediments of the trench, we studied the sources of sediments in different depths and regions of the trench. It is found that the bottom sediments of the New Britain Trench shaped like a reversed V are mainly derived from the surrounding volcanogenic materials, no matter they are located in the bathyal zone, abyssal zone, or even hadal zone. However, the materials in the western part of the reversed V shaped trench are rather different from those in its east. The western part of the New British Trench is mainly affected by volcanogenic materials from the Rabaul Volcano in the east of the New Britain Island, the northern part volcanoes of the New Britain Island, and the Solomon Islands, and the proportion of volcanogenic materials is the highest in the northeast stations from the northern part volcanoes of the New Britain Island. Compared to the western part, the eastern part of the New British Trench is more strongly affected by the TLTF volcanic chain (volcanoes Tabar-Lihir-Tanga-Feni). It is believed that the different sources of the New British Trench are related to the complex ocean currents between the western part and the eastern part of the trench. Furthermore, the bottom (the deepest) of the western part of the trench is dominated by river sediments but less influenced by volcanogenic materials.
  • [1]
    Wolff T. The concept of the hadal or ultra-abyssal fauna[J]. Deep Sea Research and Oceanographic Abstracts, 1970, 17(6): 983-1003. doi: 10.1016/0011-7471(70)90049-5
    [2]
    Jamieson A J, Fujii T, Mayor D J, et al. Hadal trenches: the ecology of the deepest places on Earth[J]. Trends in Ecology & Evolution, 2010, 25 (3): 190-197. http://cn.bing.com/academic/profile?id=1ec891356117ac6244f7e1c49d5fd6ab&encoded=0&v=paper_preview&mkt=zh-cn
    [3]
    Jamieson A J, Fujii T. Trench connection[J]. Biology Letters, 2011, 7(5): 641-643. doi: 10.1098/rsbl.2011.0231
    [4]
    肖春晖, 王永红, 林间.海沟沉积物研究进展[J].热带海洋学报, 2017, 36(6): 27-38. http://d.old.wanfangdata.com.cn/Periodical/rdhy201706004

    XIAO Chunhui, WANG Yonghong, LIN Jian. Research progress on ocean trench sedimentation [J]. Journal of Tropical Oceanography, 2017, 36 (6): 27-38. http://d.old.wanfangdata.com.cn/Periodical/rdhy201706004
    [5]
    Heuret A, Conrad C P, Funiciello F et al. Relation between subduction megathrust earthquakes, trench sediment thickness and upper plate strain[J]. Geophysical Research Letters, 2012, 39 (5): L05304. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0226367761/
    [6]
    Smith G L, Mcneilll C, Wang Kelin, et al. Thermal structure and megathrust seismogenic potential of the Makran subduction zone[J]. Geophysical Research Letters, 2013, 40 (8): 1528-1533. doi: 10.1002/grl.50374
    [7]
    王汾连, 何高文, 王海峰, 等.马里亚纳海沟柱状沉积物稀土地球化学特征及其指示意义[J].海洋地质与第四纪地质, 2016, 36(4): 67-75. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201604008

    WANG Fenlian, HE Gaowen, WANG Haifeng et al. Geochemistry of rare earth elements in a core from mariana trench and its significance [J]. Marine Geology & Quaternary Geology, 2016, 36 (4): 67-75. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201604008
    [8]
    Turnewitsch R, Falahat S, Stehlikova J, et al. Recent sediment dynamics in hadal trenches: Evidence for the influence of higher-frequency (tidal, near-inertial) fluid dynamics[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2014, 90: 125-138. doi: 10.1016/j.dsr.2014.05.005
    [9]
    Luo M, Thomas J A, Tong H P et al. More reducing bottom-water redox conditions during the Last Glacial Maximum in the southern Challenger Deep (Mariana Trench, western Pacific) driven by enhanced productivity[J]. Deep-Sea Research Ⅱ, 2017, doi: 10.1016/j.dsr2.2017.01.006.
    [10]
    李克让, 周春平, 沙万英.西太平洋暖池基本特征及其对气候的影响[J].地理学报, 1998, 53(6): 511-519. doi: 10.3321/j.issn:0375-5444.1998.06.006

    LI Kerang, ZHOU Chunping, SHA Wanying. Basic features of the warm pool in the western pacific and its impact on climate [J]. Acta Geographica Sinica, 1998, 53(6): 511-519. doi: 10.3321/j.issn:0375-5444.1998.06.006
    [11]
    Lea D W, Pak D K, Spero H J. Climate impact of late quaternary equatorial Pacific sea surface temperature variations[J]. Science, 2000, 289:1719-1724. doi: 10.1126/science.289.5485.1719
    [12]
    Howell D G, Murray R W. A budget for continental growth and denudation[J]. Science, 1986, 233 (4762): 446-449. doi: 10.1126/science.233.4762.446
    [13]
    Hay W W, Sloan J L, Wold C N. Mass/age distribution and composition of sediments on the ocean floor and the global rate of sediment subduction[J]. Journal of Geophysical Research: Solid Earth (1978-2012), 1998, 93 (B12):14933-14940. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/JB093iB12p14933
    [14]
    颜文, 陈木宏, 李春娣, 等.西太平洋暖池近3万年来的沉积序列及其环境特征—WP92-3柱样的REE记录[J].矿物学报, 2006, 26(1): 22-28. doi: 10.3321/j.issn:1000-4734.2006.01.004

    YAN Wen, CHEN Muhong, LI Chundi, et al. The sedimentary sequences during last 30 ka revealed by REE records in core WP92-3 from West Pacific Warm Pool and their environmental implications [J]. Acta Mineralogica Sinica, 2006, 26 (1): 22-38. doi: 10.3321/j.issn:1000-4734.2006.01.004
    [15]
    路波, 李铁刚, 于心科, 等.赤道西太平洋翁通爪哇海台西南部25万年以来的火山活动:来自沉积物元素地球化学的证据[J].地球科学——中国地质大学学报, 2012, 37: 125-133. http://d.old.wanfangdata.com.cn/Periodical/dqkx2012z1012

    LU Bo, LI Tiegang, YU Xinke, et al. Past 250 ka volcanic activities in southwest Ontong Java Plateau, West Equatorial Pacific: Evidences from element geochemistry [J]. Earth Science—Journal of China University of Geosciences, 2012, 37: 125-133. http://d.old.wanfangdata.com.cn/Periodical/dqkx2012z1012
    [16]
    吴家望, 刘志飞, 周超.西太平洋暖池晚第四纪黏土矿物的冰期旋回和岁差周期[J].科学通报, 2012, 57(23): 2145-2157. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201223001

    WU Jiawang, LIU Zhifei, ZHOU Chao. Late Quaternary glacial cycle and precessional period of clay mineral assemblages in the Western Pacific Warm Pool [J]. Chinese Science Bulletin, 2012, 57 (23): 2145-2157. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201223001
    [17]
    Cullers R L. The controls on the major and trace element variation of shales, siltstones and sandstones of Pennsylvanian-Permian age, from uplifted continental block in Colorado to platform sediment in Kansas, USA[J]. Geochimica et Cosmochimica Acta, 1994, 55: 4955-4972.
    [18]
    Munksgaard N C, Lim K, Parry D L. Rare earth elements as provenance indicators in North Australian estuarine and coastal marine sediments[J]. Estuarine, Coastal and Shelf Science. 2003, 57(3): 399-409. doi: 10.1016/S0272-7714(02)00368-2
    [19]
    徐兆凯, 李安春, 李铁刚, 等.东菲律宾海表层沉积物常量元素组成及地质意义[J].海洋地质与第四纪地质, 2010, 30(6): 43-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201006006

    XU Zhaokai, LI Anchun, LI Tiegang, et al. Major element compositions of surface sediments in the east Philippine Sea and its geological implication [J]. Marine Geology & Quaternary Geology, 2010, 30 (6): 43-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201006006
    [20]
    Cooper P, Taylor B. Seismotectonics of New Guinea: A model for arc reversal following arc-continent collision[J]. Tectonics, 1987, 6 (1): 53-67. http://cn.bing.com/academic/profile?id=9147dba73e876cfc7e79f55402feeafe&encoded=0&v=paper_preview&mkt=zh-cn
    [21]
    Johnson R. Geotectonics and volcanism in Papua New Guinea: a review of the late Cainozoic[J]. BMR Journal of Australian Geology and Geophysics, 1979, 4: 181-207. http://cn.bing.com/academic/profile?id=8c8b23f7ce57cdb53eb7c70b51470d18&encoded=0&v=paper_preview&mkt=zh-cn
    [22]
    Davies H L, Price R C. Basalts from the Solomon and Bismarck Seas[J]. Geo-Marine Letters, 1987, 6 (4): 193-202. http://cn.bing.com/academic/profile?id=de6174a147377deab9b7e2052d92253b&encoded=0&v=paper_preview&mkt=zh-cn
    [23]
    Kamenov G D, Perfit M R, Mueller P A, et al. Controls on magmatism in an island arc environment: study of lavas and sub-arc xenoliths from the Tabar-Lihir-Tanga-Feni island chain, Papua New Guinea[J]. Contributions to Mineralogy and Petrology, 2008, 155 (5): 635-656. doi: 10.1007/s00410-007-0262-0
    [24]
    Hall R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations[J]. Journal of Asian Earth Sciences, 2002, 20 (4): 353-431. doi: 10.1016/S1367-9120(01)00069-4
    [25]
    Commission for the Geological Map of the World. Geological World Atlas, Scale 1:10000000[M]. Paris: United Nations Educational, Scientific and Cultural Organization, 1975.
    [26]
    Kaars S V D, Kershaw P, Wang X, et al. A Late Quaternary palaeoecological record from the Banda Sea, Indonesia: Patterns of vegetation, climate and biomass burning in Indonesia and northern Australia[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2000, 155: 135-153. doi: 10.1016/S0031-0182(99)00098-X
    [27]
    Mackey D J, O'Sullivan J E O, Watson R J. Iron in the western Pacific: A riverine or hydrothermal source for iron in the Equatorial Undercurrent[J]. Deep-Sea Research Part I, 2002, 49: 877-893. doi: 10.1016/S0967-0637(01)00075-9
    [28]
    Kershaw A P, Kaars S V D, Moss P T. Late Quaternary Milankovitch-scale climatic change and variability and its impact on monsoonal Australasia[J]. Marine Geology, 2003, 201: 81-95. doi: 10.1016/S0025-3227(03)00210-X
    [29]
    Lindstrom E, Lukas R, Fine R, et al. The Western Equatorial Pacific Ocean Circulation study[J]. Nature, 1987, 330: 533-537. doi: 10.1038/330533a0
    [30]
    Tsuchiya M, Lukas R, Fine R, et al. Source waters of the Pacific Equatorial Undercurrent[J]. Progress Oceanography, 1989, 23: 101-147. doi: 10.1016/0079-6611(89)90012-8
    [31]
    Butt J, Lindstrom E. Currents off the East coast of New Ireland, Papua New Guinea, and their relevance to Regional Undercurrents in the Western Equatorial Pacific Ocean[J]. Journal of Geophysical Research Oceans, 1994, 99: 12503-12514. doi: 10.1029/94JC00399
    [32]
    Fine R A, Lukas R, Bingham F M, et al. The Western Equatorial Pacific: A water mass crossroads[J]. Journal of Geophysical Research Oceans, 1994, 99: 25063-25080. doi: 10.1029/94JC02277
    [33]
    Cresswell G R. Coastal currents of northern Papua New Guinea, and the Sepik River outflow[J]. Marine & Freshwater Research, 2000, 51: 553-564. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=848e94a7e0c76a9d4637afc3c0b29b1d
    [34]
    Cravatte S, Ganachaud A, Duong Q P, et al. Observed circulation in the Solomon Sea from SADCP data[J]. Progress in Oceanography, 2011, 88: 116-130. doi: 10.1016/j.pocean.2010.12.015
    [35]
    William V Boynton. Cosmochemistry of the Rare Earth Elements: Meteorite Studies[J]. Developments in Geochemistry, 1984, 2: 63-114. doi: 10.1016/B978-0-444-42148-7.50008-3
    [36]
    Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution[M]. Blackwell, Malden, 1985:312.
    [37]
    Taylor S R, Mclennan S M. The geochemical evolution of the continental-crust[J]. Reviews of Geophysics, 1995, 33: 241-265. doi: 10.1029/95RG00262
    [38]
    Whitmore G P, Crook K A W, Johnson D P. Grain size control of mineralogy and geochemistry in modern river sediment, New Guinea collision, Papua New Guinea[J]. Sedimentary Geology, 2004, 171: 129-157. doi: 10.1016/j.sedgeo.2004.03.011
    [39]
    Hettler J, Irion G, Lehmann B. Environmental impact of mining waste disposal on a tropical lowland river system: a case study on the Ok Tedi Mine, Papua New Guinea[J]. Mineralium Deposita, 1997, 32: 280-291. doi: 10.1007/s001260050093
    [40]
    Woodhead J D, Johnson R W. Isotopic and trace-element profiles across the New Britain island arc, Papua New Guinea[J]. Contributions to Mineralogy & Petrology, 1993, 113: 479-491. http://cn.bing.com/academic/profile?id=e44ee0a01d9289eb7c96b9fc8724e9e9&encoded=0&v=paper_preview&mkt=zh-cn
    [41]
    Bultitude R J, Johnson R W, Chappell B W. Andesites of Bagana Volcano, Papua New Guinea: Chemical stratigraphy, and a reference andesite composition[J]. Journal of Biomolecular Nmr, 2001, 21 (2). http://cn.bing.com/academic/profile?id=0b81be5f35de9e81a7891c0c5500710d&encoded=0&v=paper_preview&mkt=zh-cn
    [42]
    Wallace D A, Johnson R W, Chappell B W, et al. Cainozoic volcanism of the Tabar, Lihir, Tanga and Feni Islands, Papua New Guinea: Geology, whole-rock analyses, and rock-forming mineral compositions[M]. Bureau Mineral Resources Report 243, Australian Government Publishing Service, 1983: 62.
    [43]
    Kennedy A K, Grove T L, Johnson R W. Experimental and major element constraints on the evolution of lavas from Lihir Island, Papua New Guinea[J]. Contributions to Mineralogy & Petrology, 1990a, 104: 722-734. http://cn.bing.com/academic/profile?id=c678a1d628ae9b01eb347744c2e11a2b&encoded=0&v=paper_preview&mkt=zh-cn
    [44]
    Kennedy A K, Hart S R, Frey F A. Composition and isotopic constraints on the petrogenesis of alkaline arc lavas: Lihir Island, Papua New Guinea[J]. Journal of Geophysical Research Solid Earth, 1990b, 95: 6929-6942. doi: 10.1029/JB095iB05p06929
    [45]
    Gill J B, Morris J D, Johnson R W. Timescale for producing the geochemical signature of island arc magmas: U-Th-Po and Be-B systematics in recent Papua New Guinea lavas[J]. Geochimica et Cosmochimica Acta, 1993, 57: 4269-4283. doi: 10.1016/0016-7037(93)90322-N
    [46]
    Wood C P, Nairn I A, McKee C O, et al. Petrology of the Rabaul Caldera area, Papua New Guinea[J]. Journal of Volcanology and Geothermal Research, 1995, 69: 285-302. doi: 10.1016/0377-0273(95)00034-8
    [47]
    Stracke A, Hegner E. Rifting-related volcanism in an oceanic post-collisional setting: The Tabar-Lihir-Tanga- Feni (TLTF) island chain, Papua New Guinea[J]. Lithos, 1998, 45: 545-560. doi: 10.1016/S0024-4937(98)00049-8
    [48]
    Woodhead J D, Eggins S M, Johnson R W. Magma genesis in the New Britain island arc: Further insights into meltingand mass transfer processes[J]. Journal of Petrology, 1998, 39: 1641-1668. doi: 10.1093/petroj/39.9.1641
    [49]
    Müller D, Franz L, Herzig P M, et al. Potassic igneous rocks from the vicinity of epithermal gold mineralization, Lihir Island, Papua New Guinea[J]. Lithos, 2001, 57: 163-186. doi: 10.1016/S0024-4937(01)00035-4
    [50]
    Pearce, J.A., Parkinson, I.J., 1993. Trace element models for mantle melting: Application to volcanic arc petrogenesis[J]. Magmatic Processes and Plate Tectonics, 1993, 76: 373-403. doi: 10.1144-GSL.SP.1993.076.01.19/
    [51]
    Herzig P, Hannington M, Stoffers P, et al. Volcanism, hydrothermal processes and biological communities at shallow submarine volcanoes of the New Ireland forearc (Papua New Guinea)[R]//Cruise Report SONNE-133, Technische Universitat Bergakademie Freiberg, 1998: 146.
    [52]
    Chadwick J, Perfit M, McInnes B, et al. Arc lavas on both sides of a trench: Slab window effects at the Solomon Islands triple junction, SW Pacific[J]. Earth and Planetary Science Letters, 2009, 279: 293-302. doi: 10.1016/j.epsl.2009.01.001
    [53]
    Heming R F, Rankin P C. Ce-anomalous lavas from Rabaul caldera, Papua New Guinea[J]. Geochimica et Comoschimica Acta, 1979, 43: 1351-1355. doi: 10.1016/0016-7037(79)90125-X
    [54]
    Horz K H, Worthington T J, Winn K, et al. Late Quaternary tephra in the New Ireland Basin, Papua New Guinea[J]. Journal of Volcanology and Geothermal Research, 2004, 132: 73-95. doi: 10.1016/S0377-0273(03)00421-9
    [55]
    Hannigan R E, Sholkovitz E R. The development of middle rare earth element enrichments in freshwaters: weathering of phosphate minerals[J]. Chemical Geology, 2001, 175: 495-508. doi: 10.1016/S0009-2541(00)00355-7
    [56]
    Rollinson. Using Geochemical Data: Evaluation, Presentation Interpretation[M]. Longman Scientific Technical, 1993, 352.
    [57]
    Condie K C, Dengate J, Cullers R L. Behavior of rare earth elements in a paleoweathering profile on granodiorite in the Front Range, Colorado, USA[J]. Geochimica Cosmochimica Acta, 1995, 59: 279-294. doi: 10.1016/0016-7037(94)00280-Y
    [58]
    Sharma A, Rajamani V. Major element, REE and other trace element behavior in amphibolite weathering under semiarid conditions in Southern India[J]. Journal of Geology, 2000, 108: 487-496. doi: 10.1086/314409
    [59]
    Wei G J, Liu Y, Li X H, et al. High-resolution elemental records from the South China Sea and their paleoproductivity implications[J]. Paleoceanography, 2003, 18: 1054-1065. doi: 10.1029-2002PA000826/
    [60]
    Nesbitt H W, Markovics G. Weathering of granodioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments[J]. Geochimica Cosmochimica Acta, 1997, 61 (8): 1653-1670. doi: 10.1016/S0016-7037(97)00031-8
    [61]
    Byrne R H, Kim K H. Rare earth element scavenging in seawater[J]. Geochimica Cosmochimica Acta, 1990, 54 (10): 2645-2656. doi: 10.1016/0016-7037(90)90002-3
    [62]
    Freslon N, Bayon G, Toucanne S, et al. Rare earth elements and neodymium isotopes in sedimentary organic matter[J]. Geochimica Cosmochimica Acta, 2014, 140: 177-198. doi: 10.1016/j.gca.2014.05.016
    [63]
    吴梦霜, 邵磊, 庞雄等.南海北部深水区沉积物稀土元素特征及其物源指示意义[J].沉积学报, 2012, 30(4): 672-678. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201204008

    WU Mengshuang, SHAO Lei, PANG Xiong, et al. REE geochemical characteristics of sediments and its implications in the deepwater area of the northern South China Sea [J]. Acta Sedimentologica Sinica, 2012, 30 (4): 672-678. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201204008
    [64]
    Floyd P A, Leveridge B E. Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic Sandstones[J]. Journal of the geological society of London, 1987, 144: 531-542. doi: 10.1144/gsjgs.144.4.0531
    [65]
    Nozaki Y, Ohta Y. Rapid and frequent trubidite accumulation in the bottom of Izu-Ogasawwara Trench: chemical and radiochemical evidence[J]. Earth and Planetary Science Letters, 1993, 120: 345-360. doi: 10.1016/0012-821X(93)90249-9
    [66]
    Bhatia M R, Crook K A W. Trace element characteristics of graywackes and tectonic discrimination of sedimentary basins[J]. Contributions to Mineralogy & Petrology, 1986, 92, 181-193. http://cn.bing.com/academic/profile?id=726d14abef54a68355ab0a529dadc6c0&encoded=0&v=paper_preview&mkt=zh-cn
    [67]
    Milliman J D, Syvitski J P M. Geomorphic/Tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers[J]. Journal of Geology, 1992, 100: 525-544. doi: 10.1086/629606
  • Related Articles

    [1]MI Beibei, ZHANG Yong, MEI Xi, WANG Zhonglei, DOU Yanguang. Distribution of rare earth elements in surface sediments of the South Yellow Sea and its implication to sediment provenances[J]. Marine Geology & Quaternary Geology, 2022, 42(6): 93-103. DOI: 10.16562/j.cnki.0256-1492.2022072901
    [2]QI Wenjing, LI Xiaoyan, FAN Dejiang, ZHANG Hui, YIN Zhengxin, LIU Shengfa. Rare earth element composition of the surface sediments from the Ninetyeast Ridge and its implications for provenance[J]. Marine Geology & Quaternary Geology, 2022, 42(2): 92-100. DOI: 10.16562/j.cnki.0256-1492.2021050701
    [3]XIAO Chunhui, WANG Yonghong, LIN Jian, TIAN Jiwei. Characteristics of rare earth elements in deep-water sediments in Mariana “Trench-Basin” system and their provenance constraints[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 102-114. DOI: 10.16562/j.cnki.0256-1492.2020040202
    [4]CHE Hong, HU Bangqi, DING Xue, SONG Weiyu, GUO Jianwei, CUI Ruyong, DENG Yinan. Rare earth element geochemistry characteristics and implications of pore-water from deep sea sediment in Western Pacific Ocean[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 75-86. DOI: 10.16562/j.cnki.0256-1492.2020102601
    [5]HU Siyi, ZENG Zhigang, YIN Xuebo, ZHU Bowen, FANG Xue, QI Haiyan. Characteristics of rare earth elements in the sediment cores from the Okinawa Trough and their implications for sediment provenance[J]. Marine Geology & Quaternary Geology, 2019, 39(1): 69-82. DOI: 10.16562/j.cnki.0256-1492.2017082301
    [6]GUO Yulong, YANG Shouye, SU Ni, YIN Ping, WANG Zhongbo. Rare earth element geochemistry of the sediments from small rivers draining southeast China[J]. Marine Geology & Quaternary Geology, 2018, 38(1): 139-149. DOI: 10.16562/j.cnki.0256-1492.2018.01.014
    [7]CHU Zheng, HU Ningjing, LIU Jihua, GAO Jianfeng, ZHU Aimei, GAO Jingjing, ZHANG Hui. RARE EARTH ELEMENTS IN SEDIMENTS OF WEST PHILIPPINE SEA AND THEIR IMPLICATIONS FOR SEDIMENT PROVENANCE[J]. Marine Geology & Quaternary Geology, 2016, 36(5): 53-62. DOI: 10.16562/j.cnki.0256-1492.2016.05.006
    [8]WANG Fenlian, HE Gaowen, WANG Haifeng, REN Jiangbo. GEOCHEMISTRY OF RARE EARTH ELEMENTS IN A CORE FROM MARIANA TRENCH AND ITS SIGNIFICANCE[J]. Marine Geology & Quaternary Geology, 2016, 36(4): 67-75. DOI: 10.16562/j.cnki.0256-1492.2016.04.008
    [9]CHEN Zhihua, HUANG Yuanhui, TANG Zheng, WANG Haozhuang, GE Shulan, FANG Xisheng, HAN Xibin, WANG Aijun, WU Li, ZHU Zhimin. RARE EARTH ELEMENTS IN THE OFFSHORE SURFACE SEDIMENTS OF THE NORTHEASTERN ANTARCTIC PENINSULA AND THEIR IMPLICATIONS FOR PROVENANCE[J]. Marine Geology & Quaternary Geology, 2015, 35(3): 145-155. DOI: 10.3724/SP.J.1140.2015.03145
    [10]CAI Guanqiang, QIU Yan, PENG Xuechao, ZHONG Hexian. THE GEOCHEMICAL CHARACTERISTICS OF TRACE ELEMENTS AND REES IN SURFICIAL SEDIMENTS OF THE SOUTHWESTERN SOUTH CHINA SEA AND THEIR IMPLICATIONS[J]. Marine Geology & Quaternary Geology, 2010, 30(5): 53-62. DOI: 10.3724/SP.J.1140.2010.05053

Catalog

    Article views (3084) PDF downloads (57) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return