ZOU Yanghao, RAN Linhua, Martin G Wiesner, LIU Fei, LIANG Wen, CHEN Jianfang, LIU Lianwen. Sediment records and their paleoceanographic implications in the upwelling area of the southwestern South China Sea during the last 140, 000 years[J]. Marine Geology & Quaternary Geology, 2019, 39(2): 123-133. DOI: 10.16562/j.cnki.0256-1492.2018031601
Citation: ZOU Yanghao, RAN Linhua, Martin G Wiesner, LIU Fei, LIANG Wen, CHEN Jianfang, LIU Lianwen. Sediment records and their paleoceanographic implications in the upwelling area of the southwestern South China Sea during the last 140, 000 years[J]. Marine Geology & Quaternary Geology, 2019, 39(2): 123-133. DOI: 10.16562/j.cnki.0256-1492.2018031601

Sediment records and their paleoceanographic implications in the upwelling area of the southwestern South China Sea during the last 140, 000 years

More Information
  • Received Date: March 15, 2018
  • Revised Date: September 27, 2018
  • Main sediment components in the modern upwelling area of the southwestern South China Sea during the last 140, 000 years were analyzed for a gravity core retrieved by the SONNE 187 cruise in 2006, aiming to reveal the marine environmental changes in the southwestern South China Sea since the last interglacial. During the last 140, 000 years, the mass percent of carbonate was generally high in interglacial but low in glacial periods, as the typical "Atlantic type of carbonate", suggesting strong influences of the terrestrial input in the southwestern South China Sea. Relatively high accumulation rate of organic carbon, biogenic opal and lithogenic components was found in MIS 2 and MIS 4, related to the enhanced primary productivity provoked by the increase in terrestrial input nutrients, as a result of strengthened winter monsoon and the decline of sea level during the ice age; It might also be related to the enhanced ballast effect of the lithogenic matters of sinking particles during the ice age. At the peak of the last interglacial period (MIS 5e), strengthened upwelling off Vietnam coast induced by stronger summer monsoon was responsible for the increase in primary productivity and accumulation of both biogenic and lithogenic sediments.
  • [1]
    Wang P, Li Q, Li C F. Geology of the China Seas[M]. Elsevier, 2014.
    [2]
    Cheng X, Huang B, Jian Z, et al. Foraminiferal isotopic evidence for monsoonal activity in the South China Sea: a present-LGM comparison[J]. Marine Micropaleontology, 2005, 54(1): 125-139.
    [3]
    Zhao M, Huang C Y, Wang C C, et al. A millennial-scale UK′ 37 sea-surface temperature record from the South China Sea(8°N) over the last 150 kar: Monsoon and sea-level influence[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 236: 39-55. doi: 10.1016/j.palaeo.2005.11.033
    [4]
    Hellerman S, Rosenstein M. Normal monthly wind stress over the world ocean with error estimates[J]. Journal of Physical Oceanography, 1983, 13(7): 1093-1104. doi: 10.1175/1520-0485(1983)013<1093:NMWSOT>2.0.CO;2
    [5]
    WIESNER M G. Fluxes of pariculate matter in the South China Sea[J]. Particle Flux in the Ocean, Scope 57, 1996: 293-312.
    [6]
    Jian Z, Cheng X, Zhao Q, et al. Oxygen isotope stratigraphy and events in the northern South China Sea during the last 6 million years[J]. Science in China Series D: Earth Sciences, 2001, 44(10): 952-960. doi: 10.1007/BF02907088
    [7]
    Tamburini F, Adatte T, Föllmi K, et al. Investigating the history of East Asian monsoon and climate during the last glacial-interglacial period (0-140 000 years): mineralogy and geochemistry of ODP Sites 1143 and 1144, South China Sea[J]. Marine Geology, 2003, 201(1): 147-168.
    [8]
    Hanebuth T, Stattegger K, Grootes P M. Rapid flooding of the Sunda Shelf: a late-glacial sea-level record[J]. Science, 2000, 288(5468): 1033-1035. doi: 10.1126/science.288.5468.1033
    [9]
    Ragueneau O, Tréguer P, Leynaert A, et al. A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy[J]. Global and Planetary Change, 2000, 26(4): 317-365. doi: 10.1016/S0921-8181(00)00052-7
    [10]
    Wells M L, Vallis G K, Silver E A. Tectonic processes in Papua New Guinea and past productivity in the eastern equatorial Pacific Ocean[J]. Nature, 1999, 398(6728): 601. doi: 10.1038/19281
    [11]
    Archer D, Lyle M, Rodgers K, et al. What controls opal preservation in tropical deep-sea sediments?[J]. Paleoceanography, 1993, 8(1): 7-21. doi: 10.1029/92PA02803
    [12]
    DeMaster D J. The supply and accumulation of silica in the marine environment[J]. Geochimica et Cosmochimica acta, 1981, 45(10): 1715-1732. doi: 10.1016/0016-7037(81)90006-5
    [13]
    Mortlock R A, Froelich P N. A simple method for the rapid determination of biogenic opal in pelagic marine sediments[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1989, 36(9): 1415-1426. doi: 10.1016/0198-0149(89)90092-7
    [14]
    Hurd D C, Theyer F. Changes in the physical and chemical properties of biogenic silica from the central equatorial Pacific; Part Ⅱ, Refractive index, density, and water content of acid-cleaned samples[J]. American Journal of Science, 1977, 277(9): 1168-1202. doi: 10.2475/ajs.277.9.1168
    [15]
    Mortlock R A, Froelich P N. A simple method for the rapid determination of biogenic opal in pelagic marine sediments[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1989, 36(9): 1415-1426. doi: 10.1016/0198-0149(89)90092-7
    [16]
    Imbrie J, Hays J D, Martinson D G, et al. The orbital theory of Pleistocene climate: support from a revised chronology of the marine d18O record[C]. Milankovitch & Climate: Understanding the Response to Astronomical Forcing. Milankovitch and Climate: Understanding the Response to Astronomical Forcing, 1984.
    [17]
    Wetzel A, Tjallingii R, Wiesner M G. Bioturbational structures record environmental changes in the upwelling area off Vietnam (South China Sea) for the last 150, 000 years[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 311(3-4): 256-267. doi: 10.1016/j.palaeo.2011.09.003
    [18]
    Wang P, Wang L, Bian Y, et al. Late Quaternary paleoceanography of the South China Sea: surface circulation and carbonate cycles[J]. Marine Geology, 1995, 127(1-4): 145-165. doi: 10.1016/0025-3227(95)00008-M
    [19]
    Wang L, Sarnthein M, Erlenkeuser H, et al. East Asian monsoon climate during the Late Pleistocene: high-resolution sediment records from the South China Sea[J]. Marine Geology, 1999, 156(1): 245-284. https://www.sciencedirect.com/science/article/abs/pii/S0025322798001820
    [20]
    Wang Y, Cheng H, Edwards R L, et al. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224, 000 years[J]. Nature, 2008, 451(7182): 1090-1093. doi: 10.1038/nature06692
    [21]
    王汝建, 李建.南海ODP1143站第四纪高分辨率的蛋白石记录及其古生产力意义[J].科学通报, 2003, 48(1): 74-77. doi: 10.3321/j.issn:0023-074X.2003.01.019

    WANG Rujian, LI Jian. Quaternary high resolution opal record and its paleoproductivity implication at ODP site 1143, southern South China Sea[J]. Chinese Science Bulletin, 2003, 48(1): 74-77. doi: 10.3321/j.issn:0023-074X.2003.01.019
    [22]
    刘传联, 祝幼华, 成鑫荣.南海南部第四纪表层海水古生产力变化的钙质超微化石证据[J].海洋地质与第四纪地质, 2001, 21(4): 61-66. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=11661e2f-87e7-4fbe-b362-07f952db01ae

    LIU Chuanlian, ZHU Youhua, CHENG Xinrong. Calcareous nanno- fossil evidence for variations in Quaternary surface water paleopro- ductivity in the southern South China Sea[J]. Marine Geology & Quaternary Geology, 2001, 21(4): 61-66. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=11661e2f-87e7-4fbe-b362-07f952db01ae
    [23]
    Zhao M, Huang C Y, Wang C C, et al. A millennial-scale U 37 K′ sea-surface temperature record from the South China Sea (8 N) over the last 150 kar: Monsoon and sea-level influence[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 236(1): 39-55. https://www.sciencedirect.com/science/article/pii/S0031018206001313
    [24]
    Wang P X, Min Q B, Bian Y H, et al. Planktonic foraminifera in the continental slope of the northern South China Sea during the last 130, 000 years and their paleo-oceanographic implications [J]. Acta Geologica Sinica, 1986, 60(3): 215-225.
    [25]
    Liu Z, Zhao Y, Colin C, et al. Source-to-sink transport processes of fluvial sediments in the South China Sea[J]. Earth-Science Reviews, 2016, 153: 238-273. doi: 10.1016/j.earscirev.2015.08.005
    [26]
    Stevenson F J, Cheng C N. Organic geochemistry of the Argentine Basin sediments: carbon-nitrogen relationships and Quaternary correlations[J]. Geochimica et Cosmochimica Acta, 1972, 36(6): 653-671. doi: 10.1016/0016-7037(72)90109-3
    [27]
    Emerson S, Hedges J I. Processes controlling the organic carbon content of open ocean sediments[J]. Paleoceanography, 1988, 3(5): 621-634. doi: 10.1029/PA003i005p00621
    [28]
    Thunell R C, Qingmin M, Calvert S E, et al. Glacial-Holocene biogenic sedimentation patterns in the South China Sea: Productivity variations and surface water pCO2[J]. Paleoceanography, 1992, 7(2): 143-162. doi: 10.1029/92PA00278
    [29]
    Sarnthein M, Winn K, Duplessy J C, et al. Global variations of surface ocean productivity in low and mid latitudes: influence on CO2 reservoirs of the deep ocean and atmosphere during the last 21, 000 years[J]. Paleoceanography, 1988, 3(3): 361-399. doi: 10.1029/PA003i003p00361
    [30]
    Eppley R W, Peterson B J. Particulate organic matter flux and planktonic new production in the deep ocean[J]. Nature, 1979, 282(5740): 677. doi: 10.1038/282677a0
    [31]
    黄宝琦, 翦知湣, 林慧玲.南海东北部晚第四纪古生产力变化[J].海洋地质与第四纪地质, 2000, 20(2): 65-68. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=2d853c8f-0b28-460b-abca-d9a69ce2d700

    HUANG Baoqi, JIAN Zhimin, LIN Huiling. Late Quaternary chan- ges of paleoproductivity in the northeastern South China Sea[J]. Marine Geology & Quaternary Geology, 2000, 20(2): 65-68. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=2d853c8f-0b28-460b-abca-d9a69ce2d700
    [32]
    李丽, 王慧, 罗布次仁, 等.南海北部4万年以来有机碳和碳酸盐含量变化及古海洋学意义[J].海洋地质与第四纪地质, 2008, 28(6): 79-85. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=23581573-de42-4095-96de-54ca3ac9c70c

    LI li, WANG Hui, LUO Buciren, et al. The characterizations and paleoceanographic significances of organic and inorganic carbon in northern South China Sea during past 40ka[J]. Marine Geology & Quaternary Geology, 2008, 28(6): 79-85. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=23581573-de42-4095-96de-54ca3ac9c70c
    [33]
    青子琪, 刘连文, 郑洪波.越南岸外夏季上升流区22万年来东亚季风的沉积与地球化学记录[J].海洋地质与第四纪地质, 2005, 25(2): 68-72. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=58a23395-3883-471e-a1ae-85c46b683084

    QING Ziqi, LIU Lianwen, ZHENG Hongbo. Sedimentological and geochemical records of East Asian Monsoon in summer upwelling region off the coast of Vietnam for the past 220ka[J]. Marine Geology & Quaternary Geology, 2005, 25(2): 68-72. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=58a23395-3883-471e-a1ae-85c46b683084
    [34]
    黄宝琦, 翦知湣.越南岸外晚第四纪上升流与东亚夏季风变迁[J].第四纪研究, 1999, 19(6): 518-526. doi: 10.3321/j.issn:1001-7410.1999.06.004

    HUANG Baoqi, JIAN Zhimin. Late Quaternary coastal upwelling and variations of the East Asian summer Monsoon off the Vietnam coast[J]. Quaternary Research, 1999, 19(6): 518-526. doi: 10.3321/j.issn:1001-7410.1999.06.004
    [35]
    向菲, 王汝建, 李建如, 等.越南岸外上升流区48万年来高分辨率的生源组分记录及其古海洋学意义[J].海洋地质与第四纪地质, 2006, 26(6): 81-89. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=566e7f8c-2d53-4d5c-8e7c-d098e12dab86

    XIANG Fei, WANG Rujian, LI Jianru, et al. High-resolution records of biogenic components and their Paleoceanographic implications in the upper upwelling area of the South China Sea off eastern Viet- nam over past 480 ka[J]. Marine Geology & Quaternary Geology, 2006, 26(6): 81-89. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=566e7f8c-2d53-4d5c-8e7c-d098e12dab86
    [36]
    苏翔, 刘传联, 李建如.越南岸外上升流区45万年来上层海水变化的颗石藻证据[J].海洋地质与第四纪地质, 2007, 27: 71-76. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=d3e7634c-256a-4ddc-94f8-be2e98c4d2f8

    SU Xiang, LIU Chuanlian, LI Jianru. Coccolith evidence for variations in upper ocean water in upwelling area off the coast of Viet- nam for the past 450 ka[J]. Marine Geology & Quaternary Geology, 2007, 27: 71-76. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=d3e7634c-256a-4ddc-94f8-be2e98c4d2f8
    [37]
    梅西, 张驯华, 郑洪波, 等.南海南部120 ka以来元素地球化学记录的东亚夏季风变迁[J].矿物岩石地球化学通报, 2010, 29(2): 134-141. doi: 10.3969/j.issn.1007-2802.2010.02.004

    MEI Xi, ZHANG Xunhua, ZHENG Hongbo, et al. Element Geo- chemical record in southern South China Sea sediments during the past 120 ka and its implications for East Asian summer Mon- soon variation[J]. Bulletin of Mineralogy, Petrology and Geo-Chemistry, 2010, 29(2): 134-141. doi: 10.3969/j.issn.1007-2802.2010.02.004
    [38]
    Pennington J T, Chavez F P. Seasonal fluctuations of temperature, salinity, nitrate, chlorophyll and primary production at station H3/M1 over 1989-1996 in Monterey Bay, California[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 2000, 47(5-6): 947-973. doi: 10.1016/S0967-0645(99)00132-0
    [39]
    Ning X R, Chai F, Xue H, et al. Physical-biological oceanographic coupling influencing phytoplankton and primary production in the South China Sea[J]. Journal of Geophysical Research: Oceans, 2004, 109(C10). doi: 10.1029/2005JC002968
    [40]
    Chen C, Wang G. Interannual variability of the eastward current in the western South China Sea associated with the summer Asian monsoon[J]. Journal of Geophysical Research: Oceans, 2014, 119(9): 5745-5754. doi: 10.1002/2014JC010309
    [41]
    Honjo S. Seasonality and interaction of biogenic and lithogenic particulate flux at the Panama Basin[J]. Science, 1982, 218(4575): 883-884. doi: 10.1126/science.218.4575.883
    [42]
    Jickells T D, Dorling S, Deuser W G, et al. Air-borne dust fluxes to a deep water sediment trap in the Sargasso Sea[J]. Global Biogeochemical Cycles, 1998, 12(2): 311-320. doi: 10.1029/97GB03368
    [43]
    Honjo S, Manganini S J, Cole J J. Sedimentation of biogenic matter in the deep ocean[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1982, 29(5): 609-625. doi: 10.1016/0198-0149(82)90079-6
    [44]
    Spratt R M, Lisiecki L E. A Late Pleistocene sea level stack[J]. Climate of the Past, 2016, 12(4): 1079. doi: 10.5194/cp-12-1079-2016
    [45]
    Lambeck K, Chappell J. Sea level change through the last glacial cycle[J]. Science, 2001, 292(5517): 679-686. doi: 10.1126/science.1059549
  • Related Articles

    [1]LI Xuejie, LIAO Zhiliang, TIAN Chengjing, ZHONG Hexian, ZHANG Jiangyong. Distribution pattern of volcanic glasses in the surficial sediments of the South China Sea and their provenance[J]. Marine Geology & Quaternary Geology, 2022, 42(3): 1-8. DOI: 10.16562/j.cnki.0256-1492.2021092801
    [2]LIU Yanan, LIU Baohua, LIU Chenguang, HUA Qingfeng, YAN Wenhua. Research on seismic background noise in the Eastern Subbasin of the South China Sea[J]. Marine Geology & Quaternary Geology, 2021, 41(2): 109-117. DOI: 10.16562/j.cnki.0256-1492.2020051501
    [3]ZHAN Wenhuan, LI Jian, TANG Qinqin. SUBDUCTION OF THE PALEO-SPREADING-RIDGE IN EASTERN SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2017, 37(6): 1-11. DOI: 10.16562/j.cnki.0256-1492.2017.06.001
    [4]XIE Anyuan, ZHONG Lifeng, YAN Wen. TIMING AND GENESIS OF CENOZOIC MAGMATISMS IN THE SOUTH CHINA SEA AND SURROUNDING AREAS[J]. Marine Geology & Quaternary Geology, 2017, 37(2): 108-118. DOI: 10.16562/j.cnki.0256-1492.2017.02.011
    [5]LIU Yi, SUN Liguang, LUO Yuhan, SUN Song, WANG Yuhong. RECORDS OF TERRIGENOUS DUST IN LACUSTRINE SEDIMENTS FROM DONGDAO ISLAND,SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2013, 33(3): 1-8. DOI: 10.3724/SP.J.1140.2013.03001
    [6]GONG Yanfen, YANG Wenbin, TAN Shudong. OIL AND GAS RESOURCES IN THE SOUTH CHINA SEA AND ITS DEVELOPMENT STRATEGY: A REVIEW[J]. Marine Geology & Quaternary Geology, 2012, 32(5): 137-147. DOI: 10.3724/SP.J.1140.2012.05137
    [7]Wang Liang, LIU Chuan-lian. MILLENNIAL SCALE PALEOCEANOGRAPHIC VARIATIONS FROM THE LAST GLACIAL IN THE SOUTHERN SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2008, 28(4): 85-91. DOI: 10.3724/SP.J.1140.2008.03085
    [8]LI Xue-jie, WANG Pin-xian, XU Cai-zhen, XU Yuan-ai, CHEN Fang. CLAY MINERALS DISTRIBUTION IN SURFACE SEDIMENTS IN WESTERN SOUTH CHINA SEA AND PROVENANCE[J]. Marine Geology & Quaternary Geology, 2008, 28(1): 9-16.
    [9]WU Lu-shan, ZHU Zhao-yu, QIU Yan, CHEN Fang, CHEN Chao-yun, ZHONG He-xian, ZHOU Hou-yun. PLANKTONIC FORAMINIFERA FROM THE SOUTHWESTERN CONTINENTAL SLOPE OF THE SOUTH CHINA SEA SINCE LAST GLACIAL AND THEIR PALEO-CLIMATE IMPLICATION[J]. Marine Geology & Quaternary Geology, 2006, 26(6): 1-8.
    [10]ZHOU Guan-hua, WEN Zhen-he, JIANG Xiao-dian, ZHAO Yong-chao, LIU Qin-huo, TIAN Guo-liang. ANALYSIS ON VISUALIZATION OF THE SUBMARINE LANDFORM OF SOUTH CHINA SEA AND ITS GEOLOGICAL MEANINGS[J]. Marine Geology & Quaternary Geology, 2006, 26(2): 139-145.
  • Cited by

    Periodical cited type(9)

    1. 张旭鹏,魏建兵. 基于双线性注意力网络的垃圾图像识别与分类方法. 长江信息通信. 2024(01): 109-111 .
    2. 陈小冬,田宝帅. 一体式声磁综合探测系统设计与应用. 海洋测绘. 2024(01): 8-11 .
    3. 黄承孝,刘娉婷. 基于CA-YOLOv5s的水下目标识别方法研究. 海洋技术学报. 2024(03): 17-24 .
    4. 王胜平,刘娉婷,陈晓红,陈志高. 基于轻量化YOLOv7算法的侧扫声纳图像沉船检测. 海洋测绘. 2024(04): 21-25 .
    5. 周光波,张培珍,莫晴舒,尹晓锋. 基于拉东投影与改进卷积神经网络的小样本水下目标声呐图像识别方法. 哈尔滨工程大学学报. 2024(10): 2048-2056 .
    6. 郝紫霄,王琦. 基于声呐图像的水下目标检测研究综述. 水下无人系统学报. 2023(02): 339-348 .
    7. 窦国贤,周伟,喻成琛,郭力旋. 基于K均值的超分辨率图像噪声识别方法. 自动化与仪表. 2023(09): 68-72+77 .
    8. 伍玉彬,康娟萍,刘浩然. 基于视觉传达技术的船舶图像弱小目标跟踪方法. 舰船科学技术. 2023(21): 205-208 .
    9. 郑毅. 侧扫声呐图像纹理特征在分析沉船识别中的应用. 中国水运. 2022(S1): 200-204 .

    Other cited types(6)

Catalog

    Article views (3339) PDF downloads (44) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return