马里亚纳弧前Conical蛇纹岩泥火山顶自生沉积物特征及其对渗漏流体的指示

佟宏鹏, 胡海明, 陈琳莹, 陈多福

佟宏鹏,胡海明,陈琳莹,等. 马里亚纳弧前Conical蛇纹岩泥火山顶自生沉积物特征及其对渗漏流体的指示[J]. 海洋地质与第四纪地质,2022,42(6): 1-10. DOI: 10.16562/j.cnki.0256-1492.2022051101
引用本文: 佟宏鹏,胡海明,陈琳莹,等. 马里亚纳弧前Conical蛇纹岩泥火山顶自生沉积物特征及其对渗漏流体的指示[J]. 海洋地质与第四纪地质,2022,42(6): 1-10. DOI: 10.16562/j.cnki.0256-1492.2022051101
TONG Hongpeng,HU Haiming,CHEN Linying,et al. Constrains of seepage fluids based on the characteristics of authigenic deposition from Conical serpentinite mud volcano in the Mariana forearc[J]. Marine Geology & Quaternary Geology,2022,42(6):1-10. DOI: 10.16562/j.cnki.0256-1492.2022051101
Citation: TONG Hongpeng,HU Haiming,CHEN Linying,et al. Constrains of seepage fluids based on the characteristics of authigenic deposition from Conical serpentinite mud volcano in the Mariana forearc[J]. Marine Geology & Quaternary Geology,2022,42(6):1-10. DOI: 10.16562/j.cnki.0256-1492.2022051101

马里亚纳弧前Conical蛇纹岩泥火山顶自生沉积物特征及其对渗漏流体的指示

基金项目: 国家自然科学基金“马里亚纳弧前蛇纹岩泥火山烟囱状自生沉积的成因及深源蛇纹石化流体渗漏活动记录” (41776080),马里亚纳弧前海底蛇纹岩泥火山无机成因甲烷形成水合物的条件及潜力分析(41776050)
详细信息
    作者简介:

    佟宏鹏(1985—),女,博士,副研究员,主要从事海底流体活动沉积记录研究,E-mail:hptong@shou.edu.cn

  • 中图分类号: P736.4

Constrains of seepage fluids based on the characteristics of authigenic deposition from Conical serpentinite mud volcano in the Mariana forearc

  • 摘要: 马里亚纳弧前蛇纹岩泥火山顶部海底发育由低温碱性流体渗漏形成的自生沉积物,记录了渗漏流体特征,对俯冲带的物质循环研究有重要意义。但目前对复杂矿物组成的自生沉积物及其所指示的渗漏流体信息仍不清楚。对采自马里亚纳弧前Conical蛇纹岩泥火山的自生沉积物进行了岩石学、矿物学及主量和微量元素分析。结果表明,Conical蛇纹岩泥火山自生沉积物呈疏松多孔状,极易碎,碎块主要呈薄片状和球粒状。薄片状碎块呈白色,主要由针状文石和棱柱状方解石组成,CaO含量较高(49.3%~53.3%),MgO含量较低(2.3%~4.5%)。球粒状碎块呈黄色或白色,为无定形镁硅酸盐,MgO含量较高 (25.5%~29.1%),CaO 含量较低(0.5%~2.9%)。碳酸盐岩碎块的总稀土含量(ΣREE)为227.2~4 136.6 ng/g;无定形镁硅酸盐碎块的ΣREE为115.4~364.9 ng/g,均显示轻微重稀土富集的平坦型配分模式。自生沉积物的稀土配分模式显示,除两个稀土含量相对较高的碳酸盐岩样品外,渗漏流体的贡献高于90%,说明两类样品均形成于较强的渗漏环境,并且碳酸盐及镁硅酸盐可能分别形成于“低硅型”和“高硅型”不同的流体活跃期。
    Abstract: Authigenic depositions induced by low-temperature alkaline seepage fluids occur on the top of the Mariana forearc serpentinite mud volcanoes, which are archives of the seepage fluids and are significant for studying the material circulation of the subduction zone. However, little is known about the features of the authigenic depositions composed of multiple minerals and their recording of seepage fluids. In this paper, we investigated the petrology, mineralogy and major and trace element compositions of authigenic depositions collected from Conical serpentinite mud volcano in Mariana forearc. The authigenic depositions from Conical serpentinite mud volcano are loose and extremely friable into lamellar and spherical fragments. The lamellar fragments are white, mainly composed of needle-like aragonite and prismatic calcite, with high CaO contents (49.3%~53.3%) and low MgO contents (2.3%~4.5%). The spherical fragments are yellow or white, made of amorphous magnesium silicate, with high MgO contents (25.5%~29.1%) and low CaO contents (0.5%~2.9%). ΣREE of the carbonate fragments range from 227.2 ng/g to 4136.6 ng/g, while the ΣREE of the amorphous magnesium silicate fragments are from 115.4 ng/g to 364.9 ng/g. All samples show flat distribution patterns with slight enrichment of heavy rare earth elements. The rare earth element distribution patterns of authigenic depositions indicate that the contribution of seepage fluids is higher than 90% except for two carbonate samples with relatively high rare earth element contents. This suggests that all samples should form in the intense seepage environments, but the carbonates and magnesium silicates may be induced by varied types of seepage fluid, namely, "low-silica type" and "high-silica type".
  • 图  1   马里亚纳弧前Conical蛇纹岩泥火山位置图

    b图引自文献[7]。

    Figure  1.   Location of the Conical serpentine mud volcano in Mariana forearc

    Illustration figure b cited after reference [7].

    图  2   Conical蛇纹岩泥火山自生沉积物手标本

    a. 具有不规则型残余流体通道的疏松多孔自生沉积物,箭头指示残余流体通道;b. 薄片状碎块;c. 黄色球粒状碎块;d白色球粒状碎块。

    Figure  2.   Authigenic deposition from Conical serpentine mud volcano

    a. Loose porous authigenic deposition with irregular residual fluid path marker by the arrow; b. lamellar fragment; c. yellow spherical fragment; d. white spherical fragment.

    图  3   Conical蛇纹岩泥火山自生沉积物显微结构特征

    a. 薄片状碎块发育针状文石的显微薄片照片(正交偏光)及b扫描电镜照片;c. 薄片状碎块中棱柱状方解石与针状文石伴生发育,碳酸盐矿物与镁硅酸盐矿物间孔隙明显,能谱分析显示1、2和3分别为文石,镁硅酸盐和方解石;d. 球粒状碎块由块状及边缘的球状(箭头)无定形镁硅酸盐组成(单偏光);e—f. 为球状无定形镁硅酸盐扫描电镜照片,能谱分析结果显示主要元素组成为Si、O、Mg。红色小圈为能谱测试点。

    Figure  3.   The microstructure features of authigenic deposition from Conical serpentinite mud volcano

    a. Thin section photo of lamellar fragments showing acicular aragonite (polarized light); b. Photo showing acicular aragonite under scanning electron microscope (SEM); c. SEM photo showing prismatic calcite associated with acicular aragonite, but separated with irregular magnesium silicate by obvious porosity; the energy dispersive spectrometer (EDS) results indicate that 1, 2 and 3 are aragonite, magnesium silicate and calcite, respectively; d. Thin section photo showing spherical fragments are composed of massive parts and spherular parts at edges (single polarized light); e-f. SEM photos of amorphous magnesium silicates showing spherular structure; EDS results show that spherular fractures are composed of Si, O, Mg elements.

    图  4   Conical蛇纹岩泥火山自生沉积物部分主量元素含量图

    Figure  4.   Part of the major element contents in authigenic deposition from Conical serpentine mud volcano

    图  5   Conical蛇纹岩泥火山自生沉积物及马里亚纳弧前蛇纹岩泥火山渗漏流体澳大利亚后太古代页岩标准化稀土配分模式图

    海水与渗漏流体数据来自文献[14]。

    Figure  5.   Rare earth element patterns of authigenic deposition from Conical serpentinite mud volcano and of seepage fluids from Marianas forearc serpentinite mud volcanoes standardized by Post-Archean Australian Shale

    Data of seepage fluids and seawater after reference [14].

    图  6   渗漏流体与海水混合流体的澳大利亚后太古代页岩标准化稀土配分模式(a)及Eu/Eu*值与拟合海水贡献比例(b)

    a中0%代表南Chamorro渗漏流体,b中曲线根据海水与南Chamorro渗漏流体定量混合后与其对应的Eu/Eu*值拟合;样品中海水贡献比例根据混合流体曲线对应拟合函数计算,不在曲线上的点默认海水贡献为0。

    Figure  6.   The rare earth partitioning patterns of mixed fluids of seepage fluids and seawater standardized by Post-Archean Australian Shale (a) and Eu/Eu* values V.S. modeled seawater contribution ratios (b)

    a. 0% represents the REE pattern of the seepage fluid from South Chamorro serpentinite mud volcano; b.The curve is deduced according to the Eu/Eu* values of mixed fluids of seawater and the seepage fluid from South Chamorro serpentinite mud volcano; The proportion of seawater contribution in the sample is calculated according to the corresponding fitting function of the mixed fluid curve, The seawater ratios of the points with Eu/Eu* values beyond the curve were taken as 0.

    表  1   Conical蛇纹岩泥火山自生沉积物主量元素特征

    Table  1   Characteristics of major elements in authigenic deposition from Conical serpentine mud volcano

    %  
    样品编号碎块类型MgOCaONa2OAl2O3P2O5K2OFe2O3-T
    h1薄片状2.353.31.10.020.020.010.010 9
    h2薄片状3.850.11.20.110.030.020.073 6
    h3薄片状4.549.31.30.000.030.020.0030
    h4薄片状3.449.71.10.010.020.010.006 3
    h5薄片状2.552.81.20.220.030.020.053 0
    h6薄片状2.350.91.10.270.060.020.130 2
    h7混合碎块8.639.31.30.020.030.050.011 8
    h8混合碎块18.918.21.80.060.030.100.025 5
    h9混合碎块11.633.91.40.010.020.060.003 0
    h10混合碎块7.841.11.40.010.030.040.006 8
    h11混合碎块22.511.22.10.020.030.110.008 0
    h12混合碎块8.040.61.40.010.030.040.003 3
    h13球粒状28.10.72.00.010.020.140.013 0
    h14球粒状27.22.12.10.000.030.130.006 7
    h15球粒状28.60.72.20.000.020.130.001 1
    h16球粒状28.10.72.20.000.020.130.001 5
    h17球粒状27.90.52.30.010.020.130.002 2
    h18球粒状27.70.92.60.000.030.140.000 2
    h19球粒状27.00.82.50.000.020.130.002 7
    h20球粒状25.52.92.20.000.030.130.002 3
    h21球粒状29.10.52.50.010.020.140.002 3
    h22球粒状27.02.22.40.000.030.130.003 4
      注:主量元素分析结果未包含碳和硅元素含量,以及部分氧元素含量。
    下载: 导出CSV

    表  2   Conical蛇纹岩泥火山自生沉积物稀土元素含量及特征

    Table  2   Contents and characteristics of REE in authigenic deposition of Conical serpentinite mud volcano

    ng/g  
    样品编号LaCePrNdSmEuGdTbDyYHoErTmYbLuΣREECe/Ce*Eu/Eu*
    h140.5155.87.389.78.810.05.83.19.3125.03.09.30.46.21.4350.62.075.40
    h289.1168.929.4121.614.016.737.46.328.6371.710.326.42.329.83.0583.70.752.36
    h351.997.76.536.29.25.52.01.47.299.02.93.70.32.80.3227.21.178.00
    h451.0147.415.666.64.613.912.31.911.8118.43.27.08.51.1344.91.195.33
    h5848.4161.5121.1516.984.922.689.412.9107.91 201.324.067.314.0105.318.42 194.80.111.17
    h61 620.9547.2245.71 020.1174.945.2127.216.7125.71 079.926.770.516.285.214.64 136.60.201.48
    h747.791.59.237.49.07.312.02.022.3160.13.27.81.49.82.1262.71.003.22
    h855.8127.520.082.330.312.938.66.556.0461.013.527.15.933.35.2514.80.861.88
    h916.969.13.620.68.010.111.91.05.689.02.24.50.40.91.9156.72.064.88
    h1035.067.88.631.02.07.15.62.811.0114.33.17.50.410.81.5194.30.905.96
    h1154.8124.68.048.319.411.913.64.214.1120.75.37.812.41.4325.71.344.56
    h1249.286.05.542.115.18.424.71.811.1104.64.16.04.10.8258.81.131.96
    h1355.7142.56.154.411.612.417.84.416.0319.66.316.01.818.41.3364.91.673.71
    h1432.677.25.323.16.44.16.01.19.980.04.37.40.52.72.5183.21.333.47
    h1521.950.92.525.14.83.62.51.611.4139.53.68.06.11.3143.31.495.50
    h169.870.81.017.06.60.30.758.82.13.90.51.61.2115.44.7837.14
    h1757.081.89.042.02.99.18.22.18.6158.33.46.30.412.11.8244.70.825.29
    h188.5105.63.28.13.19.58.21.78.0109.11.63.70.15.00.7167.04.577.01
    h198.397.94.38.30.314.061.82.95.22.60.6144.511.323.36
    h2016.858.14.14.01.04.68.01.05.1121.12.97.32.28.93.8127.91.613.61
    h2148.8135.26.467.39.55.59.90.65.3126.12.67.60.12.51.2302.61.692.46
    h2210.077.61.76.00.97.34.00.69.874.22.55.50.84.40.3131.54.3010.67
      Ce/Ce*=2CeN/(LaN+PrN),Pr/Pr*=2PrN/(CeN+NdN),Eu/Eu*=EuN/(0.33NdN+0.67GdN),ΣREE不包括Y。“−”表示未检出。
    下载: 导出CSV
  • [1]

    Fryer P. Serpentinite mud volcanism: observations, processes, and implications [J]. Annual Review of Marine Science, 2012, 4(1): 345-373. doi: 10.1146/annurev-marine-120710-100922

    [2]

    Frery E, Fryer P, Kurz W, et al. Episodicity of structural flow in an active subduction system, new insights from mud volcano's carbonate veins – Scientific Ocean drilling expedition IODP 366 [J]. Marine Geology, 2021, 434(3): 106431.

    [3]

    Mottl M J, Wheat C G, Fryer P, et al. Chemistry of springs across the Mariana forearc shows progressive devolatilization of the subducting plate [J]. Geochimica et Cosmochimica Acta, 2004, 68(23): 4915-4933. doi: 10.1016/j.gca.2004.05.037

    [4]

    Haggerty J. Evidence from fluid seeps atop serpentine seamounts in the Mariana Forearc: clues for emplacement of the seamounts and their relationship to Forearc Tectonics [J]. Marine Geology, 1991, 102(1-4): 293-309. doi: 10.1016/0025-3227(91)90013-T

    [5]

    Fryer P, Wheat C G, Williams T, et al. Mariana serpentinite mud volcanism exhumes subducted seamount materials: implications for the origin of life [J]. Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences, 2020, 378(2165): 20180425. doi: 10.1098/rsta.2018.0425

    [6]

    Parkinson I J, Pearce J A. Peridotites from the Izu-Bonin-Mariana forearc (ODP leg 125): Evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting [J]. Journal of Petrology, 1998, 39(9): 1577-1618. doi: 10.1093/petroj/39.9.1577

    [7]

    Savov I P, Ryan J G, D'antonio M, et al. Geochemistry of serpentinized peridotites from the Mariana Forearc Conical Seamount, ODP Leg 125: Implications for the elemental recycling at subduction zones [J]. Geochemistry, Geophysics, Geosystems, 2005, 6(4): 1-24.

    [8]

    Fryer P, Ambos E L, Hussong D M. Origin and emplacement of Mariana forearc seamounts [J]. Geology, 1985, 13(11): 774-777. doi: 10.1130/0091-7613(1985)13<774:OAEOMF>2.0.CO;2

    [9]

    Haggerty J A. Petrology and Geochemistry of Neocene Sedimentary Rocks from Mariana Forearc Seamounts: Implications for Emplacement of the Seamounts [M]. Washington DC American Geophysical Union Geophysical Monograph Series, 1987, 175-185.

    [10]

    Savov I P, Ryan J G, D'antonio M, et al. Shallow slab fluid release across and along the Mariana arc-basin system: Insights from geochemistry of serpentinized peridotites from the Mariana fore arc [J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B9).

    [11]

    Haggerty J, Fisher J. Short-Chain Organic Acids in Interstitial Waters from Mariana and Bonin Forearc Serpentines: Leg 125 [J]. Proceedings of the Ocean Drilling Program, Scientific Results, 1992: 125.

    [12]

    Fryer P, Wheat C G, Mottl M J. Mariana blueschist mud volcanism: Implications for conditions within the subduction zone [J]. Geology, 1999, 27(2): 103-106. doi: 10.1130/0091-7613(1999)027<0103:MBMVIF>2.3.CO;2

    [13]

    Mottl M J, Komor S C, Fryer P, et al. Deep-slab fuel extremophilic Archaea on a Mariana forearc serpentinite mud volcano: Ocean Drilling Program Leg 195 [J]. Geochemistry Geophysics Geosystems, 2003, 4(11): 1-14.

    [14]

    Hulme S M, Wheat C G, Fryer P, et al. Pore water chemistry of the Mariana serpentinite mud volcanoes: A window to the seismogenic zone [J]. Geochemistry, Geophysics, Geosystems, 2010, 11(1): Q01X09.

    [15]

    Tran T H, Kato K, Wada H, et al. Processes involved in calcite and aragonite precipitation during carbonate chimney formation on Conical Seamount, Mariana Forearc: Evidence from geochemistry and carbon, oxygen, and strontium isotopes [J]. Journal of Geochemical Exploration, 2014, 137: 55-64. doi: 10.1016/j.gexplo.2013.11.013

    [16] 佟宏鹏, 姚凯, 陈琳莹, 等. 马里亚纳弧前Quaker蛇纹岩泥火山自生烟囱生长模式[J]. 海洋地质与第四纪地质, 2021, 41(06):15-26 doi: 10.16562/j.cnki.0256-1492.2021062501

    TONG Hongpeng, YAO Kai, CHEN Linying, et al. Formation model of authigenic chimneys on the Quaker serpentinite mud volcano in the Mariana forearc [J]. Marine Geology & Quaternary Geology, 2021, 41(06): 15-26. doi: 10.16562/j.cnki.0256-1492.2021062501

    [17]

    Fryer P, Saboda K L, Johnson L E, et al. Conical Seamount: SeaMARC II, Alvin submersible, and seismic reflection studies [M]. //Fryer P, Pearce J A, Stokking L B, et al. Proceedings of the Ocean Drilling Program Initial Reports. College Station, TX: Ocean Drilling Program, 1990: 69-80.

    [18]

    Yamanaka T, Mizota C, Satake H, et al. Stable isotope evidence for a putative endosymbiont-based lithotrophic bathymodiolus sp. mussel community atop a serpentine seamount [J]. Geomicrobiology Journal, 2003, 20(3): 185-197. doi: 10.1080/01490450303876

    [19]

    Gharib J, J. Clastic metabasites and authigenic minerals within serpentinite protrusions from the Mariana forearc: Implications for subforearc subduction processes [D]. Ph. D. Dissertation. Honolulu: University of Hawaii, 2006.

    [20]

    Mottl M J. Pore waters from serpentinite seamounts in the Mariana and Izu-Bonin forearcs, Leg 125: evidence for volatiles from the subducting slab. [C]//Fryer P, Pearce J A, Stokking L B, et al. Proceedings of the Ocean Drilling Program Scientific Results. College Station, TX: Ocean Drilling Program, 1992: 373-385.

    [21]

    Fryer P, Mottl M, Johnson L, et al. Serpentine bodies in the forearcs of western pacific convergent margins: origin and associated fluids [J]. Active Margins and marginal basins of the Western Pacific, 1995: 259-279.

    [22]

    Charlou J L, Donval J P, Fouquet Y, et al. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14'N, MAR) [J]. Chemical Geology, 2002, 191(4): 345-359. doi: 10.1016/S0009-2541(02)00134-1

    [23]

    Mccollom T. M. Laboratory Simulations of Abiotic Hydrocarbon Formation in Earth's Deep Subsurface [J]. Reviews in Mineralogy & Geochemistry, 2013, 75(1): 467-494.

    [24]

    Mccollom T M, Seewald J S. A reassessment of the potential for reduction of dissolved CO2 to hydrocarbons during serpentinization of olivine [J]. Geochimica Et Cosmochimica Acta, 2001, 65(21): 3769-3778. doi: 10.1016/S0016-7037(01)00655-X

    [25]

    Proskurowski G, Lilley M D, Seewald J S, et al. Abiogenic Hydrocarbon Production at Lost City Hydrothermal Field [J]. Science, 2008, 319(5863): 604-607. doi: 10.1126/science.1151194

    [26] 丁兴, 刘志锋, 黄瑞芳, 等. 大洋俯冲带的水岩作用——蛇纹石化[J]. 工程研究-跨学科视野中的工程, 2016, 8(3):268

    DING Xing, LIU Zhifeng, HUANG Ruifang, et al. Water-Rock Interaction in Oceanic Subduction Zone: Serpentinization [J]. Journal of Engineering Studies, 2016, 8(3): 268.

    [27]

    Bebout G E. The impact of subduction-zone metamorphism on mantle-ocean chemical cycling [J]. Chemical Geology, 1995, 126(2): 191-218. doi: 10.1016/0009-2541(95)00118-5

    [28]

    Wheat C G, Seewald J S, Takai K. Fluid transport and reaction processes within a serpentinite mud volcano: South Chamorro Seamount [J]. Geochimica et Cosmochimica Acta, 2020, 269: 413-428. doi: 10.1016/j.gca.2019.10.037

    [29] 冯俊熙, 罗敏, 胡钰, 等. 海底蛇纹岩化伴生的碳酸盐岩研究进展[J]. 矿物岩石地球化学通报, 2016, 35(4):789-799 doi: 10.3969/j.issn.1007-2802.2016.04.019

    FENG Junxi, LUO Min, HU Yu, et al. Progress of the Research on Authigenic Carbonates Associated with Oceanic Serpentinization [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(4): 789-799. doi: 10.3969/j.issn.1007-2802.2016.04.019

    [30]

    Albers E, Shervais J, Hansen C, et al. Shallow depth, substantial change: fluid-metasomatism causes major compositional modifications of subducted volcanics (Mariana forearc) [J]. Frontiers in Earth Science, 2021, 10: 826312.

    [31]

    Alt J C, Shanks W C. Stable isotope compositions of serpentinite seamounts in the Mariana forearc: Serpentinization processes, fluid sources and sulfur metasomatism [J]. Earth and Planetary Science Letters, 2006, 242(3): 272-285.

    [32]

    Fleet A J. Hydrothermal and hydrogenous ferro-manganese deposits: Do they form a continuum? The rare earth element evidence [M]. Springer US, 1983, 12: 535–555.

    [33]

    Wheat C G, Fryer P, Fisher A T, et al. Borehole observations of fluid flow from South Chamorro Seamount, an active serpentinite mud volcano in the Mariana forearc [J]. Earth and Planetary Science Letters, 2008, 267(3-4): 401-409. doi: 10.1016/j.jpgl.2007.11.057

图(6)  /  表(2)
计量
  • 文章访问数:  1957
  • HTML全文浏览量:  374
  • PDF下载量:  121
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-10
  • 修回日期:  2022-05-30
  • 网络出版日期:  2022-12-25
  • 刊出日期:  2022-12-27

目录

    /

    返回文章
    返回